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We characterise the set of fixed points of a class of holomorphic maps on complex mani-
folds with a prescribed homology. Our main tool is the Lefschetz number and the action
of maps on the first homology group.

1. Introduction and main result

In this note we are concerned with fixed point theory for holomorphic self maps on com-
plex manifolds. After the well-known Schwarz lemma on the unit disk, which assumes
a fixed point, the Pick theorem was proved in [8]. This can be extended to a Pick-type
theorem on hyperbolic Riemann surfaces as is shown in [5, 7]. For a more general type
of space: open, connected and bounded subsets of a Banach space, the Earle-Hamilton
theorem was proved in [2].

We prove a similar theorem for periodic points of holomorphic maps of complex man-
ifolds with a prescribed homology. Our proof comes from a topological viewpoint and
bears no relation with other methods of proof for this problem. We use a result of Fagella
and Llibre in [3] which relates the Lefschetz number to the set of fixed points for holo-
morphic maps on compact complex manifolds. In fact, we show that for many situations,
holomorphic maps can have at most one fixed point.

We recall the classical results first. First we state a Pick-type theorem. This is very close
to the well-known Pick theorem on the unit disk D, which is in turn very similar to the
classical Schwarz lemma on D (see [7] for both results). Let Per( f ) denote the set of
periods of the periodic points of f . Also define Fix( f ) to be the set of fixed points of f
and define Perm( f ) to be the set of periodic points of period m.

The following Pick-type theorem is [7, Theorem 5.2].

Theorem 1.1. Suppose that S is a hyperbolic Riemann surface. Then for a holomorphic map
f : S→ S,

(a) either f p is the identity for some p;
(b) or f has one periodic point: a fixed point;
(c) or f no periodic points.
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The following is the Earle-Hamilton theorem, see [2, 4] for more details. (In fact, the
usual setting for this theorem is complex Banach spaces.) We say that a set E is mapped
strictly inside a subset F of the metric space X by the map f if there is some ε > 0 such
that Bε( f (E))⊂ F where Bε(A) is the ε-neighbourhood of the set A⊂ X .

Theorem 1.2. Let M ⊂ Cm be a bounded connected open set and f : M →M be holomor-
phic. If f (M) lies strictly inside M then f has a unique fixed point.

Note that if the map f satisfies the theorem then so does f m. Therefore, Per( f )= {1}.
Given a complex manifold M ⊂ Cm, let f : M →M be a holomorphic map which ex-

tends continuously to M the closure of M, and furthermore, so that f (M) is inside
◦
M,

the interior of M. Here we take the closure with respect to the usual topology on Cm and
the interior with respect to the topology of M. We denote the set of such maps by �(M).
Observe that if M has no boundary then whenever f : M →M is holomorphic, we have
f ∈�(M). Also note that whenever M is open and bounded then f ∈�(M) maps M
strictly inside itself. The following is our main result.

Theorem 1.3. Suppose that M is a complex manifold and f ∈ �(M). Suppose further

that H1(M,Q) =
n︷ ︸︸ ︷

Q⊕···⊕Q for n ≥ 0 (when n = 0 we suppose H1(M,Q) = {0}) and
Hk(M,Q)= 0 for k > 1. Then

(a) either there is some m≥ 1 such that f m has infinitely many fixed points;
(b) or f has only one periodic point: a fixed point;
(c) or f has no periodic points.

Furthermore, if Hk(M,Q)= 0 for k > 0 then we are in case (b).

For example, in case (a) we could consider a rational rotation of the torus; in case (b)
we could consider the map z �→ z/2 on the unit disk; in case (c) we could consider an
irrational rotation of the torus.

Note that our theorem can apply in any dimension and does not require manifolds to
be open or bounded. Therefore, in some cases it is an extension of Theorems 1.1 and 1.2.

2. Proof of the main result

To prove Theorem 1.3 we use Lefshetz number and Theorem 2.1 below. We recall the
concept of Lefschetz number. Let M be a compact manifold of dimension M. Then a
continuous map f : M →M induces an endomorphism f∗k : Hk(M,Q)→Hk(M,Q) for
k = 0,1, . . . ,n on the rational homology of M. The Lefschetz number of f is defined by

L( f )=
n∑

k=0

(−1)k trace
(
f∗k
)
. (2.1)

Since f∗k are integral matrices, it follows that L( f ) is an integer.
By the well-known Lefschetz Fixed Point theorem, if L( f ) 	= 0 then f has a fixed point

(see, for instance, [1]). We can consider L( f m) too: also L( f m) 	= 0 implies that f m has a
fixed point.
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Our main tool here is the following theorem of [3].

Theorem 2.1. Let M be a complex manifold and f ∈�(M) be a nonconstant map. Suppose
that for m≥ 1, all fixed points of f m are isolated. Then L( f m)≥ #Fix( f m).

In fact, in [3] the assumption on the periodic points was that the set of all periodic
points must be isolated. It is straightforward to weaken this assumption as above. Also,

it was assumed that f was holomorphic on a compact manifold M and that f (M)⊂
◦
M.

However, we do not need holomorphicity on the boundary of our manifold since we
cannot have any fixed points there.

Remark 2.2. In fact, it is easy to see from the proof of this theorem, that we come to the
same conclusions for maps which are not holomorphic, but for which det(I −D f m(x)) >
0 for any x ∈ Fix( f m).

We will need the following lemma, see the appendix of [6].

Lemma 2.3. Let µ1, . . . ,µq be complex numbers with |µj| = 1. For any ε > 0 there exist in-
finitely many values of m such that |µmj − 1| < ε for all 1≤ j ≤ q. Hence, Re(µmj ) > 1− ε for
every µj .

Proof of Theorem 1.3. We suppose that there is no m≥ 1 such that f m has infinitely many
fixed points. Then every fixed point for f m is isolated for any m. So we have the result of
Theorem 2.1. In particular, this means that L( f m)∈N∪{0} for all m∈N.

In the case that Hk(M)= 0 for k > 0, f∗0 = (1), multiplication by 1; and for k > 0, f∗k
is the zero map. So we have L( f m) = 1 for all m ≥ 1. Therefore, by the Lefschetz Fixed
Point theorem, f has a fixed point. Furthermore, by Theorem 2.1, #Fix( f m) ≤ 1 for all
m≥ 1. Therefore, Per( f )= {1}.

When n≥ 1, f∗1 is an n×n matrix with integer entries and with eigenvalues λ1, . . . ,λn,
see [9]. So trace( f∗1)= λ1 + ···+ λn and L( f m)= 1− λm1 −···− λmn .

We reorder the eigenvalues in order of decreasing modulus (when two eigenvalues
have the same modulus, any choice of order suffices).

Case 1. Suppose that |λ1| > 1.
Suppose that |λ1| = ··· = |λk| for some maximal 1 ≤ k < n (the case k = n follows

similarly). Consider µj = λj/|λ1| for 1 ≤ j ≤ k. If we let ε > 0 as in Lemma 2.3 we have
some sequence ml →∞ such that Re(µml

1 + ···+µml

k ) > k(1− ε). Therefore,

Re
(
λml

1 + ···+ λml

k

)
>
∣∣λ1
∣∣mlk(1− ε),

∣∣Re
(
λml

k+1 + ···+ λml
n

)∣∣≤ (n− k)
∣∣λk+1

∣∣ml .
(2.2)

Since |λ1| > |λk+1| there must exist some large enough ml such that

Re
(
λml

1 + ···+ λml

k

)
> 1 +

∣∣Re
(
λml

k+1 + ···+ λml
n

)∣∣. (2.3)

Thus 1− (λml
1 + ···+ λml

n ) is negative, which is not possible by Theorem 2.1.
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Case 2. Suppose that 0 < |λ1| < 1.
If λ2, . . . ,λn = 0 then L( f ) cannot be an integer so this is not possible by the definition

of Lefschetz number. If |λ2| > 0 we will again show that there exists some m≥ 1 such that
L( f m) is not an integer. We suppose that |λ1| = ··· = |λk| for some maximal 1 ≤ k < n
(the case k = n follows similarly). As in Case 1, we can choose ε > 0 and let µj = λj/|λ1| for
1≤ j ≤ k. From Lemma 2.3, we have a sequence ml →∞ such that Re(µml

1 + ···+ µml

k ) >
k(1− ε) and so

Re
(
λml

1 + ···+ λml

k

)
>
∣∣λ1
∣∣mlk(1− ε),

∣∣Re
(
λml

k+1 + ···+ λml
n

)∣∣≤ (n− k)
∣∣λk+1

∣∣ml .
(2.4)

Since |λ1| > |λk+1| there must exist some large enough ml such that

∣∣Re
(
λml

1 + ···+ λml

k

)∣∣ >
∣∣Re

(
λml

k+1 + ···+ λml
n

)∣∣, (2.5)

so Re(λml
1 + ···+ λml

k ) 	= 0. Since for large ml, we have |λml
1 + ···+ λml

n | < 1 we know that
1− (λml

1 + ···+ λml
n ) cannot be an integer. This is not possible.

Case 3. Suppose that |λ1| = 1. We will show that the only possibility is that λ= 1, λ2, . . . ,λn
= 0 and we have no fixed points.

Suppose that |λ1| = ··· = |λk| = 1 for some maximal 1≤ k ≤ n.

Case 3a. First suppose that k ≥ 2. For large m, Re(λmk+1 + ···+ λmn ) is very small. Again,
by Lemma 2.3, for any ε > 0 we have some sequence ml →∞ such that

Re
(
λml

1 + ···+ λml

k

)
> k(1− ε). (2.6)

So, since k ≥ 2, for ml large enough we have 1− λml
1 + ···+ λml

n negative, a contradic-
tion by Theorem 2.1.

Case 3b. Suppose that k = 1. If λ1 were not real then λ1 would also be an eigenvalue, so
k could not be 1. Therefore, λ1 =±1. We may suppose that λi = 0 for 1 < i≤ n (the case
where 0 < |λ2| is clear because as in Case 2, for large m, L( f m) will not be an integer). If
λ1 = 1 then L( f m)= 0 for all m so there are no fixed points of f m.

If λ1 =−1 then L( f )= 2 and L( f 2)= 0. By the Lefschetz Fixed Point theorem, L( f )=
2 implies that f has a fixed point. Therefore, f 2 has a fixed point and by Theorem 2.1,
L( f 2)≥ 1: so we have a contradiction.

Case 4. Suppose that all the eigenvalues are zero then L( f m)= 1 for all m∈N. Therefore,
f has a fixed point and Per( f )= {1}. This completes the proof of the theorem. �
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