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This paper deals with a class of nonlinear elliptic equations in an unbounded domain
D of Rn, n≥ 3, with a nonempty compact boundary, where the nonlinear term satisfies
some appropriate conditions related to a certain Kato class K∞(D). Our purpose is to
give some existence results and asymptotic behaviour for positive solutions by using the
Green function approach and the Schauder fixed point theorem.
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1. Introduction

In this paper, we are concerned with the following nonlinear elliptic equation

Δ(u) + f (·,u)= 0 in D, (1.1)

(in the sense of distributions) with some boundary values (see problems (1.8), (1.15) be-
low), where D is an unbounded domain in Rn (n≥ 3) with a nonempty compact bound-
ary.

Numerous results are obtained for (1.1), in both bounded and unbounded domains
D ⊂ Rn with different boundary conditions (see, e.g., [2, 5–9, 11, 12] and the reference
therein).

Our aim in this paper is to undertake a study of (1.1) when the nonlinear term f (x, t)
satisfies some appropriate conditions related to a certain Kato class of functions K∞(D)
and to answer the questions of existence and asymptotic behaviour of positive solutions.

Our tools are based essentially on some inequalities satisfied by the Green function
GD(x, y) of (−Δ) in D which allow to some properties of functions belonging to the class
K∞(D) introduced in [1] as the following definition.
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2 Positive solutions on some exterior domains

Definition 1.1. A Borel measurable function q inD belongs to the classK∞(D) if q satisfies
the following conditions:

lim
α→0

(
sup
x∈D

∫
(|x−y|≤α)∩D

ρD(y)
ρD(x)

GD(x, y)
∣∣q(y)

∣∣dy
)
= 0,

lim
M→∞

(
sup
x∈D

∫
(|y|≥M)∩D

ρD(y)
ρD(x)

GD(x, y)
∣∣q(y)

∣∣dy
)
= 0,

(1.2)

where ρD(x)= δD(x)/(1 + δD(x)) and δD(x) denotes the euclidien distance from x to the
boundary of D.

We will often refer in this paper to the bounded continuous solutionHg of the Dirich-
let problem

Δw = 0 in D,

w/∂D = g,

lim
|x|→∞

w(x)= 0,

(1.3)

where g is a nonnegative bounded continuous function in ∂D.
We also refer to the Green potential of a measurable nonnegative function f , defined

in D by

V f (x)=
∫
D
GD(x, y) f (y)dy. (1.4)

Our paper is organized as follows. Our existence results are proved in Sections 3 and 4.
In Section 2, we collect and improve some preliminary results about the Green function
GD and the class K∞(D). In Section 3, we establish an existence result for (1.1) where a
singular term and a sublinear term are combined in the nonlinearity f (x, t).

The pure singular elliptic equation

Δu+ p(x)u−γ = 0, γ > 0, x ∈D ⊂Rn (1.5)

has been extensively studied for both bounded and unbounded domain D. We refer to
([5–9] and the references therein) for various existence and uniqueness results related to
solutions for (1.5).

For more general situations and when D is an unbounded domain with a nonempty
compact boundary Bachar et al. showed in [1] that the following problem:

Δu+ϕ(x,u)= 0 in D,

u/∂D = 0,

lim
|x|→∞

u(x)= 0,

(1.6)

admits a unique positive solution if ϕ is a nonnegative measurable function on (0,∞),
which is nonincreasing and continuous with respect to the second variable and for each
c > 0, the function ϕ(·,c)∈ K∞(D).
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On the other hand, (1.1) with a sublinear term f (·,u) have been studied in Rn by Bre-
sis and Kamin [2]. Indeed, the authors proved the existence and uniqueness of a positive
solution for the problem

Δu+ ρ(x)uα = 0 in Rn,

liminf
|x|→∞

u(x)= 0, (1.7)

with 0 < α < 1 and ρ is a nonnegative measurable function satisfying some appropriate
conditions.

In the third section, we combine a singular term and a sublinear term in the nonlin-
earity. Indeed, we consider the following boundary value problem

Δu+ϕ(x,u) +ψ(·,u)= 0 in D (in the sense of distributions),

u > 0 in D,

u/∂D = 0,

lim
|x|→∞

u(x)= 0,

(1.8)

where ϕ and ψ are required to satisfy the following hypotheses.
(H1) ϕ is a nonnegative Borel measurable function on D × (0,∞), continuous and

nonincreasing with respect to the second variable .
(H2) ∀c > 0, x→ ϕ(x,cθ(x))∈ K∞(D), where θ(x)= δD(x)/(1 + |x|)n−1.
(H3) ψ is a nonnegative Borel measurable function onD× (0,∞), continuous with re-

spect to the second variable such that there exist a nontrivial nonnegative func-
tion p and a nonnegative function q ∈ K∞(D) satisfying for x ∈D and t > 0

p(x) f (t)≤ ψ(x, t)≤ q(x)g(t), (1.9)

where f is a measurable nondecreasing function on [0,∞) satisfying

lim
t→0+

f (t)
t
= +∞ (1.10)

and g is a nonnegative measurable function locally bounded on [0,∞) satisfying

limsup
t→∞

g(t)
t

<
1

‖Vq‖∞
. (1.11)

By using a fixed point argument, we will state the following existence result.

Theorem 1.2. Assume (H1)–(H3). Then the problem (1.8) has a positive solution u ∈
C0(D) satisfying for each x ∈D

aθ(x)≤ u(x)≤V(ϕ(·,aθ)
)
(x) + bVq(x), (1.12)

where a, b are positive constants.
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Note that in [11] Mâagli and Masmoudi studied the case ϕ= 0, under similar condi-
tions to those in (H3). Indeed the authors gave an existence result for

Δu+ψ(·,u)= 0, in D, (1.13)

with some boundary conditions, where D is an unbounded domain in Rn (n≥ 2) with a
compact nonempty boundary.

Typical examples of nonlinearities satisfying (H1)–(H3) are

ϕ(x, t)= p(x)
(
θ(x)

)γ
t−γ, for γ ≥ 0,

ψ(x, t)= p(x)tαlog
(
1 + tβ

)
, for α,β ≥ 0 such that α+β < 1,

(1.14)

where p is a nonnegative function in K∞(D).
In Section 4, we consider the nonlinearity f (x, t) = −ϕ(x, t) and we use a fixed point

argument to investigate an existence result for (1.1). More precisely we fix a nonnegative
function ξ continuous on ∂D and we consider the following problem:

Δu= ϕ(x,u) in D (in the sense of distributions)

u/∂D = ξ
lim
|x|→∞

u(x)= λ≥ 0,
(1.15)

where ϕ : D× [0,∞)→ [0,∞) is a Borel measurable function satisfying the following hy-
potheses:

(H4) ϕ is continuous and nondecreasing with respect to the second variable,
(H5) ϕ(x,0)= 0;∀x ∈D,
(H6) ∀c > 0, ϕ(·,c)∈ K∞(D).

Under these hypothesis, we prove the following theorem.

Theorem 1.3. Assume (H4)–(H6). Then the problem (1.15) has a unique nontrivial non-
negative solution u∈ Cb(D) satisfying

0≤ λh(x) +Hξ(x)−u(x)≤Vϕ(·,c)(x); ∀x ∈D, (1.16)

where h is the harmonic function given by

h(x)= 1−H1(x). (1.17)

Remark 1.4 (see [3, page 116]). If we suppose further that there exists α∈ (0,1) such that
ϕ is locally α-hölder continuous on D× [0,∞), then the solution u of the problem (1.15)
is in C2+α

loc(D).

As consequence of the preceding theorem we prove the following corollary.

Corollary 1.5. Let a : [0,∞)→ [0,∞) be a continuous function. Assume that ϕ is a lo-
cally hölder continuous function satisfying (H4)–(H6) and let ξ be a nontrivial nonnegative
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continuous function on ∂D. Then the following problem:

Δu+ a(u)|∇u|2 = ϕ(·,u) in D

u= ξ on ∂D

lim
|x|→∞

u(x)= λ≥ 0
(1.18)

has a unique nontrivial nonnegative bounded solution u∈ C2(D).

In order to simplify our statements, we define some convenient notations.

Notations. Throughout this paper, we will adopt the following notations.
(i) D is an unbounded domain in Rn (n ≥ 2) such that the complementary of D

in Rn , D
c =⋃d

j=1Dj where Dj is a bounded C1,1-domain and Di
⋂
Dj =∅, for

i = j.
(ii) Cb(D)= { f ∈ C(D) : f is bounded in D}.

(iii) C0(D)= { f ∈ C(D) : limx→z∈∂D f (x)= lim|x|→∞ f (x)= 0}.
We note that Cb(D) and C0(D) are two Banach spaces endowed with the uni-

form norm

‖ f ‖∞ = sup
x∈D

∣∣ f (x)
∣∣. (1.19)

(iv) For x ∈D, we denote by

λD(x)= δD(x)
(
δD(x) + 1

)
. (1.20)

(v) Let f and g be two positive functions on a set S.
We denote f ∼ g, if there exists a constant c > 0 such that

1
c
g(x)≤ f (x)≤ cg(x) ∀x ∈ S. (1.21)

We denote f � g, if there exists a constant c > 0 such that

f (x)≤ cg(x) ∀x ∈ S. (1.22)

(vi) We recall that if f ∈ L1
loc(D) andV f ∈ L1

loc(D), then we have in the distributional
sense (see [3, page 52])

Δ(V f )=− f in D. (1.23)

(vii) For each q ∈ B+(D) such that V(q) <∞, we denote by Vq the unique Kernel
which satisfies the following resolvent equation (see [10])

V =Vq +Vq(qV)=Vq +V
(
qVq

)
. (1.24)

(viii) Let f ∈�+(D) such that V f <∞. We recall that for each x ∈ D, the function
t→Vtq f (x) is completely monotone on [0,+∞).

(ix) Let a∈Rn\D and r > 0 such that B(a,r)⊂Rn\D.
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Then we have

GD(x, y)= r2−nG(D−a)/r

(
x− a
r

,
y− a
r

)
, for x, y ∈D,

δD(x)= rδ(D−a)/r

(
x− a
r

)
, for x ∈D.

(1.25)

So without loss of generality, we may suppose throughout this paper that B(0,1) ⊂
Rn�D. Moreover, we denote by D∗ the open set given by

D∗ = {x∗ ∈ B(0,1) : x ∈D∪{∞}}, (1.26)

where x∗ = x/|x|2 is the Kelvin inversion from D∪ {∞} onto D∗. Then, (see [1]), we
have for x, y ∈D,

GD(x, y)= |x|2−n|y|2−nGD∗
(
x∗, y∗

)
. (1.27)

2. Properties of the green function and the class K∞(D)

In this section, we recall and improve some results concerning the Green functionGD(x, y)
and the Kato class K∞(D), which are stated in [1].

3G-Theorem. There exists a constant C0 > 0 depending only on D such that for all x, y
and z in D

GD(x,z)GD(z, y)
GD(x, y)

≤ C0

(
ρD(z)
ρD(x)

GD(x,z) +
ρD(z)
ρD(y)

GD(y,z)
)
. (2.1)

Proposition 2.1. On D2 (i.e., x, y ∈D), we have

GD(x, y)∼ 1
|x− y|n−2

min
(

1,
λD(x)λD(y)
|x− y|2

)
, (2.2)

ρD(y)
ρD(x)

GD(x, y)� (δD(y)
)2

, (2.3)

δD(x)δD(y)
|x|n−1|y|n−1

�GD(x, y). (2.4)

Moreover, for M > 1 and r > 0 there exists a constant C > 0 such that for each x ∈ D and
y ∈D satisfying |x− y| ≥ r and |y| ≤M, we have

GD(x, y)≤ CρD(x)ρD(y)
|x− y|n−2

. (2.5)

In the sequel, we use the notation

‖q‖D = sup
x∈D

∫
D

ρD(y)
ρD(x)

GD(x, y)
∣∣q(y)

∣∣dy, (2.6)

αq = sup
x,y∈D

∫
D

GD(x,z)GD(z, y)
GD(x, y)

∣∣q(z)
∣∣dz. (2.7)
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It is shown in [1] that

If q ∈ K∞(D), then ‖q‖D <∞. (2.8)

Now, we remark that from the 3G-theorem we have

αq ≤ 2C0‖q‖D, (2.9)

where C0 is the constant given in the 3G-theorem.

Proposition 2.2. For any nonnegative superharmonic function v inD and any q ∈ K∞(D),
we have ∫

D
GD(x, y)v(y)

∣∣q(y)
∣∣dy ≤ αqv(x), ∀x ∈D. (2.10)

Proof. Let v be a positive superharmonic function in D. Then by ([13, Theorem 2.1, page
164]), there exists a sequence ( fk)k of positive measurable functions in D such that the
sequence (vk)k defined on D by

vk(y) :=
∫
D
GD(y,z) fk(z)dz (2.11)

increases to v.
Since for each x ∈D, we have

∫
D
GD(x, y)vk(y)

∣∣q(y)
∣∣dy ≤ αqvk(x), (2.12)

the result follows from the monotone convergence theorem. �

Proposition 2.3 (see [1]). Let q be a function in K∞(D). Then
(a) the potential Vq is bounded in D and limx→z∈∂D Vq(x)= 0,
(b) the function x→ (δD(x)/|x|n−1)q(x) is in L1(D),
(c)

θ(x)�Vq(x). (2.13)

Proposition 2.4 (see [1]). Let q be a nonnegative function in K∞(D). Then the family of
function

�q = {V p; p ≤ q} (2.14)

is relatively compact in C0(D).

Example 2.5. Let p > n/2 and λ,μ∈ R such that λ < 2− n/p < μ. Then using the Hölder
inequality and the same arguments as in ([1, Proposition 3.4]), we prove that for each f ∈
Lp(D), the function defined on D by f (x)/|x|μ−λ(δD(x))λ belongs to K∞(D). Moreover,
by taking p = +∞, we find again the results of [1].
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Proposition 2.6. Let v be a nonnegative superharmonic function in D and q ∈ K∞+ (D).
Then for each x ∈D such that 0 < v(x) <∞, we have

exp
(−αq) · v(x)≤ v(x)−Vq(qv)(x)≤ v(x). (2.15)

Proof. Let v be a nonnegative superharmonic function in D. Then by [13, Theorem 2.1,
page 164], there exists a sequence ( fk)k of positive measurable functions in D such that
the sequence (vk)k given in D by

vk(x) :=
∫
D
GD(x, y) fk(y)dy (2.16)

increases to v.
Let x ∈D such that 0 < v(x) <∞. Then there exists k0 ∈N such that 0 < V fk(x) <∞,

for k ≥ k0.
Now, for a fixed k ≥ k0, we consider the function γ(t)=Vtq fk(x).
Since by (viii) the function γ is completely monotone on [0,∞), then logγ is convex

on [0,∞).
Therefore

γ(0)≤ γ(1)exp
(
− γ′(0)
γ(0)

)
, (2.17)

which means

V fk(x)≤Vq fk(x)exp
(
V
(
qV fk

)
(x)

V fk(x)

)
. (2.18)

Hence, it follows from Proposition 2.3 that

exp
(−αq) ·V fk(x)≤Vq fk(x). (2.19)

Consequently, from (1.24) we obtain that

exp
(−αq) ·V fk(x)≤V fk(x)−Vq

(
qV fk(x)

)
(x)≤V fk(x). (2.20)

By letting k→∞, we deduce the result. �

3. First existence result

In this section, we give an existence result for problem (1.8). We recall that θ(x)= δD(x)/
((1 + |x|)n−1)∼ δD(x)/|x|n−1 and we prove Theorem 1.2.

Proof of Theorem 1.2. Assuming (H1)–(H3), we will use the Schauder fixed point theo-
rem. Let K be a compact of D such that we have

0 < α :=
∫
K
θ(y)p(y)dy <∞, (3.1)

where p is given in (H3).
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We put β :=min{θ(x) : x ∈ K}. We note that by (2.4) there exists a constant α1 > 0
such that for each x, y ∈D

α1θ(x)θ(y)≤GD(x, y). (3.2)

Then from (1.10), we deduce that there exists a > 0 such that

α1α f (aβ)≥ a. (3.3)

On the other hand, since q ∈ K∞(D), then by Proposition 2.4 we have that ‖Vq‖∞ <∞.
So taking limsupt→∞ g(t)/t < δ < 1/‖Vq‖∞ we deduce by (1.11) that there exists ρ > 0
such that for t ≥ ρ we have g(t)≤ δt. Put γ = sup0≤t≤ρ g(t). So we have that

0≤ g(t)≤ δt+ γ; t ≥ 0. (3.4)

Furthermore by (2.13), we note that there exists a constant α2 > 0 such that

α2θ(x)≤Vq(x); ∀x ∈D, (3.5)

and from (H2) and Proposition 2.4, we have ‖Vϕ(·,aθ)‖∞ <∞.
Let b =max{a/α2, (δ‖Vϕ(·,aθ)‖∞ + γ)/(1− δ‖Vq‖∞)} and consider the closed con-

vex set

Λ= {u∈ C0(D) : aθ(x)≤ u(x)≤Vϕ(·,aθ)(x) + bVq(x); ∀x ∈D}. (3.6)

Obviously, by (3.5) we have that the set Λ is nonempty. Define the integral operator T on
Λ by

Tu(x)=
∫
D
GD(x, y)

[
ϕ
(
y,u(y)

)
+ψ
(
y,u(y)

)]
dy; ∀x ∈D. (3.7)

Let us prove that TΛ⊂Λ. Let u∈Λ and x ∈D, then by (3.4) we have

Tu(x)≤Vϕ(·,aθ)(x) +
∫
D
GD(x, y)q(y)g(y)dy

≤Vϕ(·,aθ)(x) +
∫
D
GD(x, y)q(y)

[
δu(y) + γ

]
dy

≤Vϕ(·,aθ)(x) +
∫
D
GD(x, y)q(y)

[
δ
(∥∥Vϕ(·,aθ)∥∥∞ + b‖Vq‖∞

)
+ γ
]
dy

≤Vϕ(·,aθ)(x) + bVq(x).

(3.8)
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Moreover from the monotonicity of f , (3.2) and (3.3), we have

Tu(x)≥
∫
D
GD(x, y)ψ

(
y,u(y)

)
dy

≥ α1θ(x)
∫
D
θ(y)p(y) f

(
aθ(y)

)
dy

≥ α1θ(x) f (aβ)
∫
K
θ(y)p(y)dy

≥ α1α f (aβ)θ(x)

≥ aθ(x).

(3.9)

On the other hand, we have that for u∈Λ,

ϕ(·,u)≤ ϕ(·,aθ), ψ(·,u)≤ [δ(∥∥Vϕ(·,aθ)∥∥∞ + b‖Vq‖∞
)

+ γ
]
q. (3.10)

This implies by Proposition 2.6 that TΛ is relatively compact in C0(D). In particular, we
deduce that TΛ⊂Λ.

Next we prove the continuity of T in Λ. Let (uk)k be a sequence in Λ which converges
uniformly to a function u in Λ. Then since ϕ and ψ are continuous with respect to the
second variable, we deduce by the dominated convergence theorem that

∀x ∈D, Tuk(x)−→ Tu(x) as k −→∞. (3.11)

Now, since TΛ is relatively compact in C0(D), then we have the uniform convergence.
Hence T is a compact operator mapping Λ to itself. So the Schauder fixed point theorem
yields to the existence of a function u∈Λ such that

u(x)=
∫
D
GD(x, y)

[
ϕ
(
y,u(y)

)
+ψ
(
y,u(y)

)]
dy; ∀x ∈D. (3.12)

Finally since q and ϕ(·,aθ) are in K∞(D), we deduce by (3.10) and Proposition 2.4, that
the map y → ϕ(y,u(y)) + ψ(y,u(y)) ∈ L1

loc(D). Moreover, since u ∈ C0(D), we deduce
from (3.12) that V(ϕ(·,u) +ψ(·,u))∈ L1

loc(D).
Hence u satisfies in the sense of distributions the elliptic equation

Δu+ϕ(·,u) +ψ(·,u)= 0, in D (3.13)

and so it is a solution of the problem (1.8). �

Example 3.1. Let α,β ≥ 0 such that 0≤ α+β < 1, γ > 0 and p ∈ K∞(D). Then the problem

Δu+ p(x)
[(
u(x)

)−γ(
θ(x)

)γ
+
(
u(x)

)α
log
(
1 +
(
u(x)

)β)]= 0, in D

u > 0 in D
(3.14)

has a solution u∈ C0(D) satisfying

aθ(x)≤ u(x)≤ bV p(x), (3.15)

where a, b are two positive constants.
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4. Second existence result

In this section, we aim at proving Theorem 1.3. The proof is based on the following
lemma related to the maximum principle for elliptic equation.

For u∈ C(D), put u+ =max(u,0).

Lemma 4.1. Let ϕ1 and ϕ2 satisfying (H4)–(H6). Assume that ϕ1 ≤ ϕ2 on D×R+ and there
exist two continuous functions u, v on D satisfying

(a) Δu−ϕ1(·,u+)= 0= Δv−ϕ2(·,v+) in D;
(b) u,v ∈ Cb(D);
(c) u≥ v on ∂D and lim|x|→∞u(x)≥ lim|x|→∞ v(x).

Then u≥ v in D.

Proof. Suppose that the open set Ω = {x ∈ D : u(x) < v(x)} is nonempty. Put z = u− v.
Then z ∈ Cb(D) and satisfies

Δz = ϕ1(·,u+)−ϕ2(·,v+)

= (ϕ1(·,u+)−ϕ2(·,u+)
)

+
(
ϕ2(·,u+)−ϕ2(·,v+)

)≤ 0 in Ω

z ≥ 0 on ∂Ω

lim
|x|→∞,x∈Ω

z(x)≥ 0.

(4.1)

Hence from ([4, page 420]), we conclude that z ≥ 0 in Ω, which is in contradiction with
the definition of Ω. This completes the proof. �
Proof of Theorem 1.3. An immediate consequence of the comparison principle, given by
Lemma 4.1, is that the problem (1.15) has at most one solution in D. The existence of
such a solution is assured by the Schauder fixed point theorem. Indeed, to construct a
solution, we consider the convex set

Λ= {u∈ Cb(D) : u≤ c}, (4.2)

where c := λ+‖ξ‖∞.
We define the integral operator T on Λ by

Tu(x)= λh(x) +Hξ(x)−Vϕ(·,u+)(x); for x ∈D, (4.3)

where h is given by (1.17).
Since ‖Hξ‖∞ ≤ ‖ξ‖∞, then for each u∈Λ, we have

Tu(x)≤ λh(x) +Hξ(x)≤ λ+‖ξ‖∞ = c; for each x ∈D. (4.4)

Furthermore, putting q = ϕ(·,c), we have by (H6) that q ∈ K∞(D). So by (H4), we deduce
that Vϕ(·,u+) ∈ �q. This together with the fact that h and Hξ are in Cb(D) imply by
Proposition 2.4 that TΛ is relatively compact in Cb(D) and in particular TΛ⊂Λ.

From the continuity of ϕ with respect to the second variable, we deduce that T is
continuous in Λ and so it is a compact operator from Λ to itself. Then by the Schauder
fixed point theorem, we deduce that there exists a function u∈Λ satisfying

u(x)= λh(x) +Hξ(x)−Vϕ(·,u+)(x). (4.5)
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This implies, using Proposition 2.4 and the fact that Vϕ(·,u+)∈ C0(D), that u satisfies in
the sense of distributions

Δu−ϕ(·,u+)= 0 in D,

u= ξ on ∂D,

lim
|x|→∞

u(x)= λ.
(4.6)

Therefore using hypothesis (H5) and Lemma 4.1 we deduce that u≥ 0. �

Corollary 4.2. Let ϕ satisfying (H4)–(H6), ξ be a nontrivial nonnegative continuous func-
tion on ∂D and λ≥ 0. Suppose that there exists a function q ∈ K∞(D) such that

0≤ ϕ(x, t)≤ q(x)t on D× [0,λ+‖ξ‖∞
]
. (4.7)

Then the solution u of (1.15) given in Theorem 1.3 satisfies

e−αq
(
λh(x) +Hξ(x)

)≤ u(x)≤ λh(x) +Hξ(x). (4.8)

Proof. Let ω(x)= λh(x) +Hξ(x). Since u satisfies the integral equation

u(x)= ω(x)−Vϕ(·,u)(x), (4.9)

then using (1.24), we obtain

u−Vq(qu)= ω−Vq(qω)− [Vϕ(·,u)−Vq
(
qV
(
ϕ(·,u)

))]
= ω−Vq(qω)−Vq

(
ϕ(·,u)

)
.

(4.10)

That is

u= ω−Vq(qω) +V
(
qu−ϕ(·,u)

)
. (4.11)

Now since 0 < u ≤ λ+ ‖ξ‖∞ then by (4.7), we conclude the result from Proposition 2.6.
�

Example 4.3. Let ξ be nontrivial nonnegative continuous function on ∂D. Let σ > 0 and
q ∈ K∞(D). Put ϕ(x, t)= q(x)tσ . Then for each λ≥ 0 the following problem:

Δu− q(x)uσ = 0, in D (in the sense of distributions),

u= ξ on ∂D,

lim
|x|→∞

u(x)= λ
(4.12)

has a positive bounded continuous solution u satisfying in D

0≤ λh(x) +Hξ(x)−u(x)≤ (λ+‖ξ‖∞
)σ
Vq(x). (4.13)

In particular if σ > 1, then there exists c ∈ (0,1) such that

c
(
λh(x) +Hξ(x)

)≤ u(x)≤ λh(x) +Hξ(x). (4.14)
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Proof of Corollary 1.5. Let ρ(t)= ∫ t0(e
∫ s

0 a(r)dr)ds, for t ≥ 0. Then ρ is a �2 diffeomorphism
from [0,∞) to itself. Let v = ρ(u). Then v satisfies

Δv = ρ′(ρ−1(v)
)
ϕ
(
y,ρ−1(v)

)
in D,

v = ρ ◦ ξ on ∂D,

lim
|x|→∞

v(x)= ρ(λ)≥ 0.
(4.15)

Put φ(y,v) = ρ′(ρ−1(v))ϕ(y,ρ−1(v)) for y ∈ D. Then φ satisfies the same hypothesis as
ϕ. Hence from Theorem 1.3 the problem (4.15) has a unique nontrivial nonnegative
bounded solution v ∈ C2(D). Consequently u= ρ−1(v) is the unique nontrivial nonneg-
ative bounded solution in C2(D) of the problem (1.18). �
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