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1. Introduction

An important and ubiquitous problem in predator-prey theory and related topics in
mathematical ecology concerns the long-term coexistence of species. In the natural world
there are many species whose individual members have a life history that takes them through
two stages: immature and mature. In particular, we have in mind mammalian populations
and some amphibious animals, which exhibit these two stages. Recently, nonautonomous
systemswith a stage structure have been considered in [1–16]; in particular periodic predator-
prey systems with a stage structure were discussed in [3, 4, 7, 13, 14].

Already, in [3], Cui and Song proposed the following predator-prey model with stage
structure for prey:

ẋ1(t) = a(t)x2(t) − b(t)x1(t) − d(t)x2
1(t) − p(t)x1(t)y(t),

ẋ2(t) = c(t)x1(t) − f(t)x2
2(t),

ẏ(t) = y(t)
(−g(t) + h(t)x1(t) − q(t)y(t)

)
.

(1.1)

They obtained a set of sufficient and necessary condition which guarantee the permanence of
the system.
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In [4], Cui and Takeuchi considered the following periodic predator-prey system with
a stage structure:

ẋ1(t) = a(t)x2(t) − b(t)x1(t) − d(t)x2
1(t) − p(t)φ(t, x1)x1y(t),

ẋ2(t) = c(t)x1(t) − f(t)x2
2(t),

ẏ(t) = y(t)
(−g(t) + h(t)φ(t, x1)y(t) − q(t)y(t)

)
,

(1.2)

where

0 < φ(t, x1) < L,
∂

∂x1

(
φ(t, x1)x1

) ≥ 0 (x1 > 0). (1.3)

Recently, Huang et al. [7] studied the following periodic stage-structured three-species
predator-prey system with Holling IV and Beddington-DeAngelis functional response:

ẋ1(t) = a(t)x2(t) − b(t)x1(t) − d(t)x2
1(t) −

h1(t)x1(t)
k1(t) + x2

1(t)
y1(t),

ẋ2(t) = c(t)x1(t) − f(t)x2
2(t) −

h2(t)x2(t)
k2(t) +m(t)x2(t) + n(t)y2(t)

y2(t),

ẏ1(t) = y1(t)

(

−q1(t) +
p1(t)x1(t)

k1(t) + x2
1(t)

− g1(t)y1(t)

)

,

ẏ2(t) = y2(t)
(
−q2(t) +

p2(t)x2(t)
k2(t) +m(t)x2(t) + n(t)y2(t)

− g2(t)y2(t)
)
,

(1.4)

where a(t), b(t), c(t), d(t), f(t), m(t), n(t), hi(t), ki(t), pi(t), qi(t), and gi(t) (i = 1, 2) are all
continuous positive ω-periodic functions; x1(t) and x2(t) denote the density of immature
and mature prey species at time t, respectively; y1(t) represents the density of the predator
that preys on immature prey; y1(t) represents the density of the other predator that preys on
mature prey at time t.

It is assumed in the classical predator-preymodel that each individual predator admits
the same ability to attack prey and each individual prey admits the same risk to be attacked
by predator. This assumption seems not to be realistic for many animals. On the other hand,
predator-prey systems where only immature individuals are consumed by their predator are
well known in nature. One example is described in [9], where the Chinese fire-bellied newt,
which is unable to prey upon the mature rana chensinensis, can only prey on its immature.

To the best of the authors’ knowledge, for the nonautonomous periodic case of
predator-prey systems with stage structure for both predator and prey, whether one could
obtain the permanence of the system or not is still an open problem.
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Motivated by the above question, we consider the following periodic predator-prey
system with general nonlinear functional responses and stage structure for both predator
and prey:

ẋ1(t) = a1(t)x2(t) − b1(t)x1(t) − d1(t)x2
1(t) − g(x1(t))y2(t),

ẋ2(t) = c1(t)x1(t) − f1(t)x2
2(t),

ẏ1(t) = a2(t)y2(t) − b2(t)y1(t) − d2(t)y2
1(t) + k(t)g(x1(t))y1(t),

ẏ2(t) = c2(t)y1(t) − f2(t)y2
2(t),

(1.5)

where ai(t), bi(t), ci(t), di(t), fi(t), i = 1, 2, and k(t) are all continuous positive ω-periodic
functions. Here x1(t) and x2(t) denote the density of immature and mature prey species,
respectively, and y1(t) and y2(t) denote the density of immature andmature predator species,
respectively. The function g(x) is assumed to satisfy the following assumptions which has
been studied in detail by Georgescu and Morosanu in [17].

(G) g(x) of class C1 is increasing on R+, g(0) = 0, and such that x �→ g(x)/x is
decreasing on R+, |g ′(x)| ≤ L for x ∈ R+,where L ≥ 0.

Note that hypothesis (G) is satisfied if function g(x) represents Holling type II
functional response, that is, g(x) = ax/(1 + bx), in which a is the search rate of the resource
and of the intermediate consumer, and b represents the corresponding clearance rate, that is,
search rate multiplied by the (supposedly constant) handling time.

The aim of this paper is, by further developing the analysis technique of Cui and Song
[3] and Cui and Takeuchi [4], to obtain a set of sufficient and necessary conditions which
ensure the permanence of the system (1.5). The rest of the paper is arranged as follows. In
Section 2, we introduce some lemmas and then state the main result of this paper. The result
is proved in Section 3.

2. Main Results

Definition 2.1. The system

ẋ = F(t, x), x ∈ Rn (2.1)

is said to be permanent if there exists a compact setK in the interior ofRn
+ = {(x1, x2, . . . , xn) ∈

Rn | xi ≥ 0, i = 1, 2, . . . , n}, such that all solutions starting in the interior of Rn
+ ultimately enter

K and remain in K.

Lemma 2.2 (see [6]). If a(t), b(t), c(t), d(t), and f(t) are all ω-periodic, then system

ẋ1(t) = a(t)x2(t) − b(t)x1(t) − d(t)x2
1(t),

ẋ2(t) = c(t)x1(t) − f(t)x2
2(t)

(2.2)

has a positive ω-periodic solution (x∗
1(t), x

∗
2(t)) which is globally asymptotically stable with respect to

R2
+ = {(x1, x2) : x1 > 0, x2 > 0}.

Theorem 2.3. System (1.5) is permanent.
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3. Proof of the Main Results

We need the following propositions to prove Theorem 2.3. The hypotheses of the lemmas and
theorems of the preceding section are assumed to hold in what follows.

Proposition 3.1. There exists a positive constantMx such that

lim sup
t→∞

xi(t) ≤ Mx, i = 1, 2. (3.1)

Proof. Obviously, R+
4 is a positively invariant set of system (1.5). Given any positive solution

(x1(t), x2(t), y1(t), y2(t)) of (1.5), from the first and second equations of system(1.5), we have

ẋ1(t) ≤ a1(t)x2(t) − b1(t)x1(t) − d1(t)x2
1(t),

ẋ2(t) ≤ c1(t)x1(t) − f1(t)x2
2(t).

(3.2)

By Lemma 2.2, the following auxiliary equation

u̇1(t) = a1(t)u2(t) − b1(t)u1(t) − d1(t)u2
1(t),

u̇2(t) = c1(t)u1(t) − f1(t)u2
2(t)

(3.3)

has a globally asymptotically stable positive ω-periodic solution (x∗
1(t), x

∗
2(t)). Let

(u1(t), u2(t)) be the solution of (3.3)with ui(0) = xi(0). By comparison, we then have

xi(t) ≤ ui(t), i = 1, 2 (3.4)

for t ≥ 0. From the global attractivity of (x∗
1(t), x

∗
2(t)), for any positive ε > 0 small enough,

there exists a T0 > 0 such that

∣∣ui(t) − x∗
i (t)

∣∣ < ε, t ≥ T0 (3.5)

(3.4) combined with (3.5) leads to

xi(t) < x∗
i (t) + ε, t > T0. (3.6)

Let Mx = max0≤t≤ω{x∗
i (t) + ε : i = 1, 2}, then we have

lim sup
t→∞

xi(t) ≤ Mx. (3.7)

This completes the proof of Proposition 3.1.

Proposition 3.2. There exists a positive constantmy such that

lim inf
t→∞

yi(t) ≥ my, i = 1, 2. (3.8)
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Proof. Given any positive solution (x1(t), x2(t), y1(t), y2(t)) of (1.5), from the third and fourth
equations of system (1.5), we have

ẏ1(t) ≥ a2(t)y2(t) − b2(t)y1(t) − d2(t)y2
1(t),

ẏ2(t) ≥ c2(t)y1(t) − f2(t)y2
2(t).

(3.9)

By Lemma 2.2, the following auxiliary equation

v̇1(t) = a2(t)v2(t) − b2(t)v1(t) − d2(t)v2
1(t),

v̇2(t) = c2(t)v1(t) − f2(t)v2
2(t)

(3.10)

has a globally asymptotically stable positive ω-periodic solution (y∗
1(t), y

∗
2(t)). Let

(v1(t), v2(t)) be the solution of (3.10)with vi(0) = yi(0). By comparison, we then have

yi(t) ≥ vi(t), i = 1, 2 (3.11)

for t ≥ 0. From the global attractivity of (y∗
1(t), y

∗
2(t)), for any positive ε > 0 small enough

(ε < min0≤t≤ω{y∗
i (t) : i = 1, 2}), there exists a T1 > 0 such that

∣∣vi(t) − y∗
i (t)

∣∣ < ε, t ≥ T1 (3.12)

(3.11) combined with (3.12) leads to

yi(t) > y∗
i (t) − ε, t > T1. (3.13)

Let my = min0≤t≤ω{y∗
i (t) − ε : i = 1, 2}, then we have

lim inf
t→∞

yi(t) ≥ my. (3.14)

This completes the proof of Proposition 3.2.

Proposition 3.3. There exists a positive constantMy such that

lim sup
t→+∞

yi(t) ≤ My, i = 1, 2. (3.15)

Proof. Given any positive solution (x1(t), x2(t), y1(t), y2(t)) of (1.5), by Proposition 3.1, there
exists a T2 > 0 such that

0 < xi(t) ≤ Mx, t > T2. (3.16)
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From the third and fourth equations of system (1.5), we have

ẏ1(t) ≤ a2(t)y2(t) −
(
b2(t) − k(t)g(Mx)

)
y1(t) − d2(t)y2

1(t),

ẏ2(t) ≤ c2(t)y1(t) − f2(t)y2
2(t).

(3.17)

By Lemma 2.2, the following auxiliary equation

v̇1(t) = a2(t)v2(t) −
(
b2(t) − k(t)g(Mx)

)
v1(t) − d2(t)v2

1(t),

v̇2(t) = c2(t)v1(t) − f2(t)v2
2(t)

(3.18)

has a globally asymptotically stable positive ω-periodic solution (ỹ∗
1(t), ỹ

∗
2(t)). Let

(v1(t), v2(t)) be the solution of (3.18)with vi(0) = yi(0). By comparison, we then have

yi(t) ≤ vi(t), i = 1, 2 (3.19)

for t ≥ 0. From the global attractivity of (ỹ∗
1(t), ỹ

∗
2(t)), for above given positive ε > 0, there

exists a T3 > 0 such that

∣∣vi(t) − ỹ∗
i (t)

∣∣ < ε, t ≥ T3 (3.20)

(3.19) combined with (3.20) leads to

yi(t) < ỹ∗
i (t) + ε, t > T3. (3.21)

Let My = max0≤t≤ω{ỹ∗
i (t) + ε : i = 1, 2}, then we have

lim sup
t→∞

yi(t) ≤ My. (3.22)

This completes the proof of Proposition 3.3.

Proposition 3.4. There exists a positive constantmx < Mx, such that

lim inf
t→∞

xi(t) ≥ mx, i = 1, 2. (3.23)

Proof. By Propositions 3.1 and 3.3, there exists a T4 > 0 such that

0 < xi(t) ≤ Mx; 0 < yi(t) ≤ My; t > T4. (3.24)
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From the first and second equations of system (1.5), we have

ẋ1(t) ≥ a1(t)x2(t) −
(
b1(t) +

g(x1(t))
x1(t)

My

)
x1(t) − d1(t)x2

1(t),

ẋ2(t) ≥ c1(t)x1(t) − f1(t)x2
2(t).

(3.25)

Since g(x) is assumed to satisfy the assumptions (G), by the differential mean value
theorem, we have

g(x1(t))
x1(t)

=
g(x1(t)) − g(0)

x1(t) − 0
= g ′(ξ) ≤ L, 0 < ξ < x1(t). (3.26)

From (3.25) and (3.26), one has

ẋ1(t) ≥ a1(t)x2(t) −
(
b1(t) + LMy

)
x1(t) − d1(t)x2

1(t),

ẋ2(t) ≥ c1(t)x1(t) − f1(t)x2
2(t).

(3.27)

By Lemma 2.2, the following auxiliary equation:

u̇1(t) = a1(t)u2(t) −
(
b1(t) + LMy

)
u1(t) − d1(t)u2

1(t),

u̇2(t) = c1(t)u1(t) − f1(t)u2
2(t)

(3.28)

has a globally asymptotically stable positive ω-periodic solution (x̃∗
1(t), x̃

∗
2(t)). Let

(u1(t), u2(t)) be the solution of (3.27) with ui(0) = xi(0). By comparison, we then have

xi(t) ≥ ui(t), i = 1, 2 (3.29)

for t ≥ 0. From the global attractivity of (x̃∗
1(t), x̃

∗
2(t)), for any positive ε > 0 small enough

(ε < min0≤t≤ω{x̃∗
i (t) : i = 1, 2}), there exists a T5 > 0 such that

∣∣ui(t) − x̃∗
i (t)

∣∣ < ε, t ≥ T5 (3.30)

(3.29) combined with (3.30) leads to

xi(t) > x̃∗
i (t) − ε, t > T5. (3.31)

Let mx = min0≤t≤ω{x̃∗
i (t) − ε : i = 1, 2}, then we have

lim inf
t→∞

xi(t) ≥ mx. (3.32)

This completes the proof of Proposition 3.4.

Proof of Theorem 2.3. By Propositions 3.1, 3.2, 3.3, and 3.4, system (1.5) is permanent. This
completes the proof of Theorem 2.3.
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