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The authors study the boundedness for a large class of sublinear operator T generated by Cald-
erón-Zygmund operator on generalized Morrey spaces Mp,ϕ. As an application of this result, the
boundedness of the commutator of sublinear operators Ta on generalized Morrey spaces is
obtained. In the case a ∈ BMO(Rn), 1 < p <∞ and Ta is a sublinear operator, we find the sufficient
conditions on the pair (ϕ1, ϕ2) which ensures the boundedness of the operator Ta from one gen-
eralized Morrey space Mp,ϕ1 to another Mp,ϕ2 . In all cases, the conditions for the boundedness of
Ta are given in terms of Zygmund-type integral inequalities on (ϕ1, ϕ2), which do not assume
any assumption on monotonicity of ϕ1, ϕ2 in r. Conditions of these theorems are satisfied by
many important operators in analysis, in particular pseudodifferential operators, Littlewood-Paley
operator, Marcinkiewicz operator, and Bochner-Riesz operator.

1. Introduction

For x ∈ R
n and r > 0, we denote by B(x, r) the open ball centered at x of radius r, and by

�B(x, r) denote its complement. Let |B(x, r)| be the Lebesgue measure of the ball B(x, r).
Let f ∈ Lloc

1 (Rn). The Hardy-Littlewood maximal operatorM is defined by

Mf(x) = sup
t>0

|B(x, t)|−1
∫
B(x,t)

∣∣f(y)∣∣dy. (1.1)

Let K be a Calderón-Zygmund singular integral operator, briefly a Calderón-Zyg-
mund operator, that is, a linear operator bounded from L2(Rn) to L2(Rn) taking all infinitely
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continuously differentiable functions f with compact support to the functions f ∈ Lloc
1 (Rn)

represented by

Kf(x) =
∫

Rn

k
(
x, y

)
f
(
y
)
dy x /∈ supp f. (1.2)

Such operators were introduced in [1]. Here, k(x, y) is a continuous function away from the
diagonal which satisfies the standard estimates: there exist c1 > 0 and 0 < ε ≤ 1 such that

∣∣k(x, y)∣∣ ≤ c1∣∣x − y∣∣−n, (1.3)

for all x, y ∈ R
n, x /=y, and

∣∣k(x, y) − k(x′, y
)∣∣ + ∣∣k(y, x) − k(y, x′)∣∣ ≤ c1

(
|x − x′|∣∣x − y∣∣

)ε∣∣x − y∣∣−n, (1.4)

whenever 2|x − x′| ≤ |x − y|.
It is well known that maximal operator and Calderón-Zygmund operators play an

important role in harmonic analysis (see [2–6]).
Suppose that T represents a linear or a sublinear operator, which satisfies that for any

f ∈ L1(Rn)with compact support and x /∈ supp f

∣∣Tf(x)∣∣ ≤ c0
∫

Rn

∣∣f(y)∣∣∣∣x − y∣∣n dy, (1.5)

where c0 is independent of f and x.
For a function a, suppose that the commutator operator Ta represents a linear or a sub-

linear operator, which satisfies that for any f ∈ L1(Rn)with compact support and x /∈ supp f

∣∣Taf(x)∣∣ ≤ c0
∫

Rn

∣∣a(x) − a(y)∣∣∣∣x − y∣∣−n∣∣f(y)∣∣dy, (1.6)

where c0 is independent of f and x.
We point out that the condition (1.5) was first introduced by Soria and Weiss in [7].

The condition (1.5) are satisfied by many interesting operators in harmonic analysis, such as
the Calderón-Zygmund operators, Carleson’s maximal operator, Hardy-Littlewood maximal
operator, C. Fefferman’s singular multipliers, R. Fefferman’s singular integrals, Ricci-Stein’s
oscillatory singular integrals, and the Bochner-Riesz means (see [7, 8] for details).

In this work, we prove the boundedness of the sublinear operator T satisfies the con-
dition (1.5) generated by Calderón-Zygmund operator from one generalized Morrey space
Mp,ϕ1 to another Mp,ϕ2 , 1 < p < ∞, and from M1,ϕ1 to the weak space WM1,ϕ2 . In the case
a ∈ BMO(Rn), 1 < p < ∞ and the commutator operator Ta is a sublinear operator, we
find the sufficient conditions on the pair (ϕ1, ϕ2) which ensures the boundedness of the
operators Ta from Mp,ϕ1 to Mp,ϕ2 . Finally, as applications, we apply this result to several
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particular operators such as the pseudodifferential operators, Littlewood-Paley operator,
Marcinkiewicz operator, and Bochner-Riesz operator.

By A � B, we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A � B and B � A, we write A ≈ B and say that A and B are
equivalent.

2. Morrey Spaces

The classical Morrey spacesMp,λ were originally introduced by Morrey Jr. in [9] to study the
local behavior of solutions to second-order elliptic partial differential equations. For the prop-
erties and applications of classical Morrey spaces, we refer the readers to [9, 10].

We denote by Mp,λ ≡ Mp,λ(Rn) the Morrey space, the space of all functions f ∈
Lloc
p (Rn) with finite quasinorm

∥∥f∥∥Mp,λ
≡ ∥∥f∥∥Mp,λ(Rn) = sup

x∈Rn, r>0
r−λ/p

∥∥f∥∥Lp(B(x,r)), (2.1)

where 1 ≤ p <∞ and 0 ≤ λ ≤ n.
Note thatMp,0 = Lp(Rn) andMp,n = L∞(Rn). If λ < 0 or λ > n, thenMp,λ = Θ, where

Θ is the set of all functions equivalent to 0 on R
n.

We also denote by WMp,λ ≡ WMp,λ(Rn) the weak Morrey space of all functions f ∈
WLloc

p (Rn) for which

∥∥f∥∥WMp,λ
≡ ∥∥f∥∥WMp,λ(Rn) = sup

x∈Rn, r>0
r−λ/p

∥∥f∥∥WLp(B(x,r))
<∞, (2.2)

whereWLp(B(x, r)) denotes the weak Lp-space of measurable functions f for which

∥∥f∥∥WLp(B(x,r))
≡ ∥∥fχB(x,r)∥∥WLp(Rn)

= sup
t>0

t
∣∣{y ∈ B(x, r) : ∣∣f(y)∣∣ > t}∣∣1/p

= sup
0<t≤|B(x,r)|

t1/p
(
fχB(x,r)

)∗(t) <∞.

(2.3)

Here, g∗ denotes the nonincreasing rearrangement of a function g.
Chiarenza and Frasca [11] studied the boundedness of the maximal operator M in

these spaces. Their result can be summarized as follows.

Theorem 2.1. Let 1 ≤ p < ∞ and 0 ≤ λ < n. Then, for p > 1 the operator M is bounded on Mp,λ

and for p = 1M is bounded fromM1,λ toWM1,λ.

Di Fazio and Ragusa [12] studied the boundedness of the Calderón-Zygmund
operators in Morrey spaces, and their results imply the following statement for Calderón-
Zygmund operators K.

Theorem 2.2. Let 1 ≤ p < ∞, 0 < λ < n. Then, for 1 < p < ∞ Calderón-Zygmund operator K is
bounded onMp,λ and for p = 1K is bounded fromM1,λ toWM1,λ.
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Note that Theorem 2.2 was proved by Peetre [10] in the case of the classical Calderón-
Zygmund singular integral operators.

3. Generalized Morrey Spaces

We find it convenient to define the generalized Morrey spaces in the form as follows.

Definition 3.1. Let ϕ(x, r) be a positive measurable function on R
n × (0,∞) and 1 ≤ p <∞. We

denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space, the space of all functions f ∈
Lloc
p (Rn) with finite quasinorm

∥∥f∥∥Mp,ϕ
≡ ∥∥f∥∥Mp,ϕ(Rn) = sup

x∈Rn, r>0
ϕ(x, r)−1 |B(x, r)|−1/p∥∥f∥∥Lp(B(x,r)). (3.1)

Also, byWMp,ϕ ≡WMp,ϕ(Rn)we denote the weak generalized Morrey space of all functions
f ∈WLloc

p (Rn) for which

∥∥f∥∥WMp,ϕ
≡ ∥∥f∥∥WMp,ϕ(Rn) = sup

x∈Rn, r>0
ϕ(x, r)−1 |B(x, r)|−1/p∥∥f∥∥WLp(B(x,r))

<∞. (3.2)

According to this definition, we recover the spacesMp,λ andWMp,λ under the choice
ϕ(x, r) = r(λ−n)/p:

Mp,λ = Mp,ϕ

∣∣
ϕ(x,r)=r(λ−n)/p ,

WMp,λ = WMp,ϕ

∣∣
ϕ(x,r)=r(λ−n)/p .

(3.3)

In [13–19], there were obtained sufficient conditions on ϕ1 and ϕ2 for the boundedness
of the maximal operator M and Calderón-Zygmund operator K from Mp,ϕ1 to Mp,ϕ2 ,
1 < p <∞ (see also [20–23]). In [19], the following condition was imposed on ϕ(x, r):

c−1ϕ(x, r) ≤ ϕ(x, t) ≤ c ϕ(x, r), (3.4)

whenever r ≤ t ≤ 2r, where c (≥1) does not depend on t, r and x ∈ R
n, jointly with the

condition

∫∞

r

ϕ(x, t)p
dt

t
≤ Cϕ(x, r)p, (3.5)

for the sublinear operator T satisfies the condition (1.5), where C (>0) does not depend on r
and x ∈ R

n.
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4. Sublinear Operators Generated by Calderón-Zygmund Operators in
the Spaces Mp,ϕ

In [24] (see, also [25, 26]), the following statements was proved by sublinear operator T
satisfies the condition (1.5), containing the result in [18, 19].

Theorem 4.1. Let 1 < p < ∞ and ϕ(x, r) satisfy conditions (3.4) and (3.5). Let T be a sublinear
operator satisfies the condition (1.5) and bounded on Lp(Rn). Then, the operator T is bounded onMp,ϕ.

The following statements, containing results obtained in [18, 19] was proved in [13]
(see also [14, 15]).

Theorem 4.2. Let 1 ≤ p <∞, and let (ϕ1, ϕ2) satisfy the condition

∫∞

t

ϕ1(x, r)
dr

r
≤ Cϕ2(x, t), (4.1)

where C does not depend on x and t. Then, the operatorsM and K are bounded fromMp,ϕ1 toMp,ϕ2

for p > 1 and fromM1,ϕ1 toWM1,ϕ2 .

In this section, we are going to use the following statement on the boundedness of the
Hardy operator:

(
Hg

)
(t) :=

1
t

∫ t

0
g(r)dr, 0 < t <∞. (4.2)

Theorem 4.3 (see [27]). The inequality

ess sup
t>0

w(t)Hg(t) ≤ c ess sup
t>0

v(t)g(t) (4.3)

holds for all nonnegative and nonincreasing g on (0,∞) if and only if

A := sup
t>0

w(t)
t

∫ t

0

dr

ess sup0<s<rv(s)
<∞, (4.4)

and c ≈ A.

Lemma 4.4. Let 1 ≤ p < ∞, T be a sublinear operator which satisfies the condition (1.5) bounded on
Lp(Rn) for p > 1 and bounded from L1(Rn) toWL1(Rn).

Then, for 1 < p <∞,

∥∥Tf∥∥Lp(B) � rn/p
∫∞

2r
t−n/p−1

∥∥f∥∥Lp(B(x0,t))dt (4.5)

holds for any ball B = B(x0, r) and for all f ∈ Lloc
p (Rn).
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Moreover, for p = 1,

∥∥Tf∥∥WL1(B)
� rn

∫∞

2r
t−n−1

∥∥f∥∥L1(B(x0,t))
dt (4.6)

holds for any ball B = B(x0, r) and for all f ∈ Lloc
1 (Rn).

Proof. Let p ∈ (1,∞). For arbitrary x0 ∈ R
n, set B = B(x0, r) for the ball centered at x0 and of

radius r, 2B = B(x0, 2r). We represent f as

f = f1 + f2, f1
(
y
)
= f

(
y
)
χ2B

(
y
)
, f2

(
y
)
= f

(
y
)
χ c(2B)

(
y
)
, r > 0, (4.7)

and have

∥∥Tf∥∥Lp(B) ≤
∥∥Tf1∥∥Lp(B) +

∥∥Tf2∥∥Lp(B). (4.8)

Since f1 ∈ Lp(Rn), Tf1 ∈ Lp(Rn) and from the boundedness of T in Lp(Rn), it follows
that

∥∥Tf1∥∥Lp(B) ≤
∥∥Tf1∥∥Lp(Rn) ≤ C

∥∥f1∥∥Lp(Rn) = C
∥∥f∥∥Lp(2B), (4.9)

where constant C > 0 is independent of f .
It is clear that x ∈ B, y ∈ c(2B) implies (1/2)|x0 − y| ≤ |x − y| ≤ (3/2)|x0 − y|. We get

∣∣Tf2(x)∣∣ ≤ 2nc0

∫
c(2B)

∣∣f(y)∣∣∣∣x0 − y∣∣n dy. (4.10)

By Fubini’s theorem, we have

∫
c(2B)

∣∣f(y)∣∣∣∣x0 − y∣∣n dy ≈
∫

c(2B)

∣∣f(y)∣∣
∫∞

|x0−y|
dt

tn+1
dy

≈
∫∞

2r

∫
2r≤|x0−y|<t

∣∣f(y)∣∣dy dt

tn+1

�
∫∞

2r

∫
B(x0,t)

∣∣f(y)∣∣dy dt

tn+1
.

(4.11)

Applying Hölder’s inequality, we get

∫
c(2B)

∣∣f(y)∣∣∣∣x0 − y∣∣n dy �
∫∞

2r

∥∥f∥∥Lp(B(x0,t)) dt

tn/p+1
. (4.12)
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Moreover, for all p ∈ [1,∞),

∥∥Tf2∥∥Lp(B) � rn/p
∫∞

2r

∥∥f∥∥Lp(B(x0,t)) dt

tn/p+1
(4.13)

is valid. Thus,

∥∥Tf∥∥Lp(B) �
∥∥f∥∥Lp(2B) + rn/p

∫∞

2r

∥∥f∥∥Lp(B(x0,t)) dt

tn/p+1
. (4.14)

On the other hand,

∥∥f∥∥Lp(2B) ≈ rn/p
∥∥f∥∥Lp(2B)

∫∞

2r

dt

tn/p+1

� rn/p
∫∞

2r

∥∥f∥∥Lp(B(x0,t)) dt

tn/p+1
.

(4.15)

Thus,

∥∥Tf∥∥Lp(B) � rn/p
∫∞

2r

∥∥f∥∥Lp(B(x0,t)) dt

tn/p+1
. (4.16)

Let p = 1. From the weak (1,1) boundedness of T and (4.15), it follows that

∥∥Tf1∥∥WL1(B)
≤ ∥∥Tf1∥∥WL1(Rn) �

∥∥f1∥∥L1(Rn)

=
∥∥f∥∥L1(2B)

� rn
∫∞

2r

∫
B(x0,t)

∣∣f(y)∣∣dy dt

tn+1
.

(4.17)

Then, by (4.13) and (4.17), we get (4.6).

Theorem 4.5. Let 1 ≤ p <∞, and let (ϕ1, ϕ2) satisfy the condition

∫∞

r

ess inft<s<∞ϕ1(x, s)sn/p

tn/p+1
dt ≤ Cϕ2(x, r), (4.18)

where C does not depend on x and r. Let T be a sublinear operator which satisfies the condition (1.5)
bounded on Lp(Rn) for p > 1 and bounded from L1(Rn) toWL1(Rn). Then, the operator T is bounded
fromMp,ϕ1 toMp,ϕ2 for p > 1 and fromM1,ϕ1 toWM1,ϕ2 . Moreover, for p > 1

∥∥Tf∥∥Mp,ϕ2
�

∥∥f∥∥Mp,ϕ1
, (4.19)

and for p = 1

∥∥Tf∥∥WM1,ϕ2
�

∥∥f∥∥M1,ϕ1
. (4.20)
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Proof. By Lemma 4.4 and Theorem 4.3, we have for p > 1

∥∥Tf∥∥Mp,ϕ2
� sup

x∈Rn, r>0
ϕ2(x, r)−1

∫∞

r

∥∥f∥∥Lp(B(x,t)) dt

tn/p+1

≈ sup
x∈Rn, r>0

ϕ2(x, r)−1
∫ r−n/p

0

∥∥f∥∥Lp(B(x,t−p/n))dt

= sup
x∈Rn, r>0

ϕ2

(
x, r−p/n

)−1 ∫ r

0

∥∥f∥∥Lp(B(x,t−p/n))dt

� sup
x∈Rn, r>0

ϕ1

(
x, r−p/n

)−1
r
∥∥f∥∥Lp(B(x,t)) =

∥∥f∥∥Mp,ϕ1
,

(4.21)

and for p = 1

∥∥Tf∥∥WM1,ϕ2
� sup

x∈Rn, r>0
ϕ2(x, r)−1

∫∞

r

∥∥f∥∥L1(B(x,t))
dt

tn+1

≈ sup
x∈Rn, r>0

ϕ2(x, r)−1
∫ r−n

0

∥∥f∥∥L1(B(x,t−1/n))
dt

= sup
x∈Rn, r>0

ϕ2

(
x, r−1/n

)−1 ∫ r

0

∥∥f∥∥L1(B(x,t−1/n))
dt

� sup
x∈Rn, r>0

ϕ1

(
x, r−1/n

)−1
r
∥∥f∥∥L1(B(x,r−1/n))

=
∥∥f∥∥M1,ϕ1

.

(4.22)

Corollary 4.6. Let 1 ≤ p <∞, and (ϕ1, ϕ2) satisfies the condition (4.18). Then, the operatorsM and
K are bounded fromMp,ϕ1 toMp,ϕ2 for p > 1 and bounded fromM1,ϕ1 toWM1,ϕ2 .

Note that Corollary 4.6 was proved in [28].

5. Commutators of Sublinear Operators Generated by
Calderón-Zygmund Operators in the Spaces Mp,ϕ

Let T be a Calderón-Zygmund singular integral operator and a ∈ BMO(Rn). A well-known
result of Coifman et al. [29] states that the commutator operator [a, T]f = T(af) − a Tf is
bounded on Lp(Rn) for 1 < p <∞. The commutator of Calderón-Zygmund operators plays an
important role in studying the regularity of solutions of elliptic partial differential equations
of second order (see, e.g., [12, 30, 31]).
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First, we introduce the definition of the space of BMO(Rn).

Definition 5.1. Suppose that f ∈ Lloc
1 (Rn), and let

∥∥f∥∥∗ = sup
x∈Rn, r>0

1
|B(x, r)|

∫
B(x,r)

∣∣f(y) − fB(x,r)∣∣dy <∞, (5.1)

where

fB(x,r) =
1

|B(x, r)|
∫
B(x,r)

f
(
y
)
dy. (5.2)

Define

BMO(Rn) =
{
f ∈ Lloc

1 (Rn) :
∥∥f∥∥∗ <∞

}
. (5.3)

If one regards two functions whose difference is a constant as one, then space
BMO(Rn) is a Banach space with respect to norm ‖ · ‖∗.

Remark 5.2. (1) The John-Nirenberg inequality: there are constants C1, C2 > 0 such that for all
f ∈ BMO(Rn) and β > 0,

∣∣{x ∈ B :
∣∣f(x) − fB∣∣ > β}∣∣ ≤ C1|B|e−C2β/‖f‖∗ , ∀B ⊂ R

n. (5.4)

(2) The John-Nirenberg inequality implies that

∥∥f∥∥∗ ≈ sup
x∈Rn, r>0

(
1

|B(x, r)|
∫
B(x,r)

∣∣f(y) − fB(x,r)∣∣pdy
)1/p

, (5.5)

for 1 < p <∞.
(3) Let f ∈ BMO(Rn). Then, there is a constant C > 0 such that

∣∣fB(x,r) − fB(x,t)∣∣ ≤ C∥∥f∥∥∗ ln
t

r
for 0 < 2r < t, (5.6)

where C is independent of f , x, r, and t.

In [24], the following statement was proved for the commutators of sublinear opera-
tors, containing the result in [18, 19].

Theorem 5.3. Let 1 < p < ∞, ϕ(x, r) which satisfies the conditions (3.4) and (3.5) and a ∈
BMO(Rn). Suppose that T is a linear operator and satisfies the condition (1.5). If the operator [a, T]
is bounded on Lp(Rn), then the operator [a, T] is bounded onMp,ϕ.

Remark 5.4. Note that Theorem 5.3 in the following form is also valid. Let 1 < p < ∞, ϕ(x, r)
satisfy the conditions (3.4) and (3.5) and a ∈ BMO(Rn). Suppose that Ta is a sublinear
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operator satisfies the condition (1.6) and bounded on Lp(Rn), then the operator Ta is bounded
onMp,ϕ.

Lemma 5.5. Let 1 < p < ∞, a ∈ BMO(Rn), and a sublinear operator Ta satisfies the condition (1.6)
and bounded on Lp(Rn).

Then,

∥∥Taf∥∥Lp(B) � ‖a‖∗rn/p
∫∞

2r

(
1 + ln

t

r

)
t−(n/p)−1

∥∥f∥∥Lp(B(x0,t))dt (5.7)

holds for any ball B = B(x0, r) and for all f ∈ Lloc
p (Rn).

Proof. 1 < p < ∞, a ∈ BMO(Rn), and a sublinear operator Ta satisfies the condition (1.6). For
arbitrary x0 ∈ R

n, set B = B(x0, r) for the ball centered at x0 and of radius r. Write f = f1 + f2
with f1 = fχ2B and f2 = fχ c(2B). Hence,

∥∥Taf∥∥Lp(B) ≤
∥∥Taf1∥∥Lp(B) +

∥∥Taf2∥∥Lp(B). (5.8)

From the boundedness of Ta in Lp(Rn), it follows that

∥∥Taf1∥∥Lp(B) ≤
∥∥Taf1∥∥Lp(Rn)

� ‖a‖∗
∥∥f1∥∥Lp(Rn) = ‖a‖∗

∥∥f∥∥Lp(2B).
(5.9)

For x ∈ B, we have

∣∣Taf2(x)∣∣ �
∫

Rn

∣∣a(y) − a(x)∣∣∣∣x − y∣∣n
∣∣f2(y)∣∣dy

≈
∫

c(2B)

∣∣a(y) − a(x)∣∣∣∣x0 − y∣∣n
∣∣f(y)∣∣dy.

(5.10)

Then,

∥∥Taf2∥∥Lp(B)�
(∫

B

(∫
c(2B)

∣∣a(y) − a(x)∣∣∣∣x0 − y∣∣n
∣∣f(y)∣∣dy

)p

dx

)1/p

�
(∫

B

(∫
c(2B)

∣∣a(y) − aB∣∣∣∣x0 − y∣∣n
∣∣f(y)∣∣dy

)p

dx

)1/p

+

(∫
B

(∫
c(2B)

|a(x) − aB|∣∣x0 − y∣∣n
∣∣f(y)∣∣dy

)p

dx

)1/p

= I1 + I2.

(5.11)
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Let us estimate I1

I1 ≈ rn/p
∫

c(2B)

∣∣a(y) − aB∣∣∣∣x0 − y∣∣n
∣∣f(y)∣∣dy

≈ rn/p
∫

c(2B)

∣∣a(y) − aB∣∣∣∣f(y)∣∣
∫∞

|x0−y|
dt

tn+1
dy

≈ rn/p
∫∞

2r

∫
2r≤|x0−y|≤t

∣∣a(y) − aB∣∣∣∣f(y)∣∣dy dt

tn+1

� rn/p
∫∞

2r

∫
B(x0,t)

∣∣a(y) − aB∣∣∣∣f(y)∣∣dy dt

tn+1
.

(5.12)

Applying Hölder’s inequality and by (5.5), (5.6), we get

I1 � rn/p
∫∞

2r

∫
B(x0,t)

∣∣a(y) − aB(x0,t)∣∣∣∣f(y)∣∣dy dt

tn+1

+ rn/p
∫∞

2r

∣∣aB(x0,r) − aB(x0,t)∣∣
∫
B(x0,t)

∣∣f(y)∣∣dy dt

tn+1

� rn/p
∫∞

2r

(∫
B(x0,t)

∣∣a(y) − aB(x0,t)∣∣p′dy
)1/p′∥∥f∥∥Lp(B(x0,t)) dttn+1

+ rn/p
∫∞

2r

∣∣aB(x0,r) − aB(x0,t)∣∣∥∥f∥∥Lp(B(x0,t)) dt

tn/p+1

� ‖a‖∗rn/p
∫∞

2r

(
1 + ln

t

r

)∥∥f∥∥Lp(B(x0,t)) dt

tn/p+1
.

(5.13)

In order to estimate I2, note that

I2 =
(∫

B

|a(x) − aB|pdx
)1/p ∫

c(2B)

∣∣f(y)∣∣∣∣x0 − y∣∣n dy. (5.14)

By (5.5), we get

I2 � ‖a‖∗rn/p
∫

c(2B)

∣∣f(y)∣∣∣∣x0 − y∣∣n dy. (5.15)

Thus, by (4.12),

I2 � ‖a‖∗rn/p
∫∞

2r

∥∥f∥∥Lp(B(x0,t)) dt

tn/p+1
. (5.16)
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Summing up I1 and I2, for all p ∈ [1,∞), we get

∥∥Taf2∥∥Lp(B) � ‖a‖∗rn/p
∫∞

2r

(
1 + ln

t

r

)∥∥f∥∥Lp(B(x0,t)) dt

tn/p+1
. (5.17)

Finally,

∥∥Taf∥∥Lp(B) � ‖a‖∗
∥∥f∥∥Lp(2B) + ‖a‖∗rn/p

∫∞

2r

(
1 + ln

t

r

)∥∥f∥∥Lp(B(x0,t)) dt

tn/p+1
, (5.18)

and statement of Lemma 5.5 follows by (4.15).

The following theorem is true.

Theorem 5.6. Let 1 < p <∞, a ∈ BMO(Rn) and (ϕ1, ϕ2) satisfy the condition

∫∞

r

(
1 + ln

t

r

)
ess inft<s<∞ϕ1(x, s)sn/p

tn/p+1
dt ≤ Cϕ2(x, r), (5.19)

where C does not depend on x and r. Suppose that Ta is a sublinear operator which satisfies the con-
dition (1.6) and bounded on Lp(Rn).

Then, the operator Ta is bounded fromMp,ϕ1 toMp,ϕ2 . Moreover,

∥∥Taf∥∥Mp,ϕ2
� ‖a‖∗

∥∥f∥∥Mp,ϕ1
. (5.20)

Proof. The statement of Theorem 5.6 is followed by Lemma 5.5 and Theorem 4.3 in the same
manner as in the proof of Theorem 4.5.

For the sublinear commutator of the maximal operator

Ma

(
f
)
(x) = sup

t>0
|B(x, t)|−1

∫
B(x,t)

∣∣a(x) − a(y)∣∣∣∣f(y)∣∣dy, (5.21)

and for the linear commutator of the Calderón-Zygmund operator [a,K] from Theorem 5.6,
we get the following new results.

Corollary 5.7. Let 1 < p < ∞, (ϕ1, ϕ2) satisfy the condition (5.19) and a ∈ BMO(Rn). Then, the
sublinear commutator operatorMa is bounded fromMp,ϕ1 toMp,ϕ2 .

Corollary 5.8. Let 1 < p < ∞, (ϕ1, ϕ2) satisfy the condition (5.19) and a ∈ BMO(Rn). Then,
Calderón-Zygmund singular integralKf(x) exists for a.e. x ∈ R

n and the operator [a,K] is bounded
fromMp,ϕ1 toMp,ϕ2 .

Note that when the conditions of Corollary 5.8 are satisfied, the existence ofKf(x) for
a.e. x ∈ R

n was proved in [28].
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6. Some Applications

In this section, we will apply Theorems 4.5 and 5.6 to several particular operators such as
the pseudodifferential operators, Littlewood-Paley operator, Marcinkiewicz operator, and
Bochner-Riesz operator.

6.1. Pseudodifferential Operators

Pseudodifferential operators are generalizations of differential operators and singular inte-
grals. Let m be real number, 0 ≤ δ < 1 and 0 ≤ ρ < 1. Following [32, 33], a symbol in Sm

ρ,δ

is a smooth function σ(x, ξ) defined on R
n × R

n such that for all multi-indices α and β the
following estimate holds:

∣∣∣Dα
xD

β

ξ σ(x, ξ)
∣∣∣ ≤ Cαβ(1 + |ξ|)m−ρ|β|+δ|α|, (6.1)

where Cαβ > 0 is independent of x and ξ. A symbol in S−∞
ρ,δ is one which satisfies the above

estimates for each real numberm.
The operator A given by

Af(x) =
∫

Rn

σ(x, ξ)e2πixξf̂(ξ)dξ (6.2)

is called a pseudodifferential operator with symbol σ(x, ξ) ∈ Sm
ρ,δ

, where f is a Schwartz

function and f̂ denotes the Fourier transform of f . As usual, Lm
ρ,δ

will denote the class of
pseudodifferential operators with symbols in Smρ,δ.

Miller [34] showed the boundedness of L0
1,0 pseudodifferential operators on weighted

Lp(1 < p < ∞) spaces whenever the weight function belongs to Muckenhoupt’s class Ap. In
[1], it is shown that pseudodifferential operators in L0

1,0 are Calderón-Zygmund operators,
then from Corollary 5.8, we get the following new results.

Corollary 6.1. Let 1 ≤ p <∞, and let (ϕ1, ϕ2) satisfy the condition (4.18). IfA is a pseudodifferential
operator of the Hörmander class L0

1,0, then the operator A is bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1
and bounded fromM1,ϕ1 toWM1,ϕ2 .

Corollary 6.2. Let 1 < p < ∞, (ϕ1, ϕ2) satisfy the condition (5.19) and a ∈ BMO(Rn). Let also A
be a pseudodifferential operator of the Hörmander class L0

1,0. Then, the commutator operator [a,A] is
bounded fromMp,ϕ1 toMp,ϕ2 .

6.2. Littlewood-Paley Operator

The Littlewood-Paley functions play an important role in classical harmonic analysis, for
example, in the study of nontangential convergence of Fatou type and boundedness of Riesz
transforms and multipliers [4–6, 35]. The Littlewood-Paley operator (see [6, 36]) is defined
as follows.
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Definition 6.3. Suppose that ψ ∈ L1(Rn) satisfies
∫

Rn

ψ(x)dx = 0. (6.3)

Then, the generalized Littlewood-Paley g function gψ is defined by

gψ
(
f
)
(x) =

(∫∞

0

∣∣Ft(f)(x)∣∣2dt
t

)1/2

, (6.4)

where ψt(x) = t−nψ(x/t) for t > 0 and Ft(f) = ψt ∗ f .
The sublinear commutator of the operator gψ is defined by

[
a, gψ

](
f
)
(x) =

(∫∞

0

∣∣Fat (f)(x)∣∣2dtt
)1/2

, (6.5)

where

Fat
(
f
)
(x) =

∫
Rn

[
a(x) − a(y)]ψt(x − y)f(y)dy. (6.6)

The following theorem is valid (see [3, Theorem 5.1.2]).

Theorem 6.4. Suppose that ψ ∈ L1(Rn) satisfies (6.3) and the following properties:

∣∣ψ(x)∣∣ ≤ C

(1 + |x|)n+α , x ∈ R
n,

∫
Rn

∣∣ψ(x + h) − ψ(x)∣∣dx ≤ C|h|α, h ∈ R
n,

(6.7)

where C and α > 0 are both independent of x and h. Then, gψ is bounded on Lp(Rn) for all 1 < p <∞,
and bounded from L1(Rn) toWL1(Rn).

Let H be the space H = {h : ‖h‖ = (
∫∞
0 |h(t)|2dt/t)1/2 < ∞}, then for each fixed

x ∈ R
n, Ft(f)(x)may be viewed as a mapping from [0,∞) toH, and it is clear that gψ(f)(x) =

‖Ft(f)(x)‖. In fact, by Minkowski inequality and the conditions on ψ, we get

gψ
(
f
)
(x) ≤

∫
Rn

∣∣f(y)∣∣
(∫∞

0

∣∣ψt(x − y)∣∣2dt
t

)1/2

dy

≤ C
∫

Rn

∣∣f(y)∣∣
(∫∞

0

t−2n(
1 +

∣∣x − y∣∣/t)2(n+1)
dt

t

)1/2

dy

= C
∫

Rn

∣∣f(y)∣∣∣∣x − y∣∣n dy.

(6.8)

Thus, we get the following.
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Corollary 6.5. Let 1 ≤ p < ∞, (ϕ1, ϕ2) satisfies the condition (4.18) and ψ ∈ L1(Rn) satisfies (6.3)
and (6.7). Then the operator gψ is bounded fromMp,ϕ1 toMp,ϕ2 for p > 1 and bounded fromM1,ϕ1 to
WM1,ϕ2 .

Corollary 6.6. Let 1 < p <∞, (ϕ1, ϕ2) satisfies the condition (5.19), a ∈ BMO(Rn) and ψ ∈ L1(Rn)
satisfies (6.3) and (6.7). Then the operator [a, gψ] is bounded fromMp,ϕ1 toMp,ϕ2 .

6.3. Marcinkiewicz Operator

Let Sn−1 = {x ∈ R
n : |x| = 1} be the unit sphere in R

n equipped with the Lebesgue measure
dσ. Suppose that Ω satisfies the following conditions.

(a) Ω is the homogeneous function of degree zero on R
n \ {0}; that is,

Ω(tx) = Ω(x), for any t > 0, x ∈ R
n \ {0}. (6.9)

(b) Ω has mean zero on Sn−1; that is,

∫
Sn−1

Ω
(
x′)dσ(x′) = 0. (6.10)

(c) Ω ∈ Lipγ(S
n−1), 0 < γ ≤ 1, that is there exists a constantM > 0 such that

∣∣Ω(
x′) −Ω

(
y′)∣∣ ≤M∣∣x′ − y′∣∣γ for any x′, y′ ∈ Sn−1. (6.11)

In 1958, Stein [35] defined the Marcinkiewicz integral of higher dimension μΩ as

μΩ
(
f
)
(x) =

(∫∞

0

∣∣FΩ,t
(
f
)
(x)

∣∣2dt
t3

)1/2

, (6.12)

where

FΩ,t
(
f
)
(x) =

∫
|x−y|≤t

Ω
(
x − y)∣∣x − y∣∣n−1 f

(
y
)
dy. (6.13)

Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been exten-
sively studied as a research topic and also provides useful tools in harmonic analysis [3–6].

The sublinear commutator of the operator μΩ is defined by

[
a, μΩ

](
f
)
(x) =

(∫∞

0

∣∣FΩ,t,a
(
f
)
(x)

∣∣2dt
t3

)1/2

, (6.14)
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where

FΩ,t,a
(
f
)
(x) =

∫
|x−y|≤t

Ω
(
x − y)∣∣x − y∣∣n−1

[
a(x) − a(y)]f(y)dy. (6.15)

Let H be the space H = {h : ‖h‖ = (
∫∞
0 |h(t)|2dt/t3)1/2 < ∞}. Then, it is clear that

μΩ(f)(x) = ‖FΩ,t(f)(x)‖.
By Minkowski inequality and the conditions on Ω, we get

μΩ
(
f
)
(x) ≤

∫
Rn

∣∣Ω(
x − y)∣∣∣∣x − y∣∣n−1

∣∣f(y)∣∣
(∫∞

|x−y|
dt

t3

)1/2

dy ≤ C
∫

Rn

∣∣f(y)∣∣∣∣x − y∣∣n dy. (6.16)

Thus, μΩ satisfies the condition (1.5). It is known that μΩ is bounded on Lp(Rn) for p > 1 and
bounded from L1(Rn) to WL1(Rn) (see [37]), then from Theorems 4.5 and 5.6, we get the
following collory.

Corollary 6.7. Let 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfy the condition (4.18), and let Ω satisfy the
conditions (a)–(c). Then, μΩ is bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1 and bounded from M1,ϕ1

toWM1,ϕ2 .

Corollary 6.8. Let 1 < p < ∞, (ϕ1, ϕ2) satisfy the condition (5.19), a ∈ BMO(Rn), and Ω satisfy
the conditions (a)–(c). Then, [a, μΩ] is bounded fromMp,ϕ1 toMp,ϕ2 .

6.4. Bochner-Riesz Operator

Let δ > (n − 1)/2, Bδt (f̂)(ξ) = (1 − t2|ξ|2)δ+f̂(ξ) and Bδt (x) = t−nBδ(x/t) for t > 0. The maximal
Bochner-Riesz operator is defined by (see [38, 39])

Bδ∗
(
f
)
(x) = sup

t>0

∣∣∣Bδt (f)(x)
∣∣∣. (6.17)

Let H be the space H = {h : ‖h‖ = supt>0|h(t)| < ∞}, then it is clear that Bδ∗ (f)(x) =
‖Bδt (f)(x)‖.

By the condition on Bδr (see [2]), we have

∣∣∣Bδr (x − y)∣∣∣ ≤ Cr−n(1 + ∣∣x − y∣∣/r)−(δ+(n+1)/2)

= C

(
r

r +
∣∣x − y∣∣

)δ−(n−1)/2
1(

r +
∣∣x − y∣∣)n

≤ ∣∣x − y∣∣−n,

Bδ∗
(
f
)
(x) ≤ C

∫
Rn

∣∣f(y)∣∣∣∣x − y∣∣n dy.

(6.18)
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Thus, Bδ∗ satisfies the condition (1.5). It is known that Bδ∗ is bounded on Lp(Rn) for p > 1,
and bounded from L1(Rn) toWL1(Rn), then from Theorems 4.5 and 5.6, we get the following
corollary.

Corollary 6.9. Let 1 ≤ p < ∞, (ϕ1, ϕ2) satisfy the condition (4.18) and δ > (n − 1)/2. Then, the
operator Bδ∗ is bounded fromMp,ϕ1 toMp,ϕ2 for p > 1 and bounded fromM1,ϕ1 toWM1,ϕ2 .

Corollary 6.10. Let 1 < p < ∞, (ϕ1, ϕ2) satisfy the condition (5.19), δ > (n − 1)/2 and a ∈
BMO(Rn). Then, the operator [a, Bδt ] is bounded fromMp,ϕ1 toMp,ϕ2 .

Remark 6.11. Recall that under the assumption that ϕ(x, r) satisfies the conditions (3.4) and
(3.5), the Corollaries 6.9 and 6.10 were proved in [38].
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Mathématique de France, Paris, France, 1978.

[2] J. Garcı́a-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, vol. 116 of
North-Holland Mathematics Studies, North-Holland, Amsterdam, The Netherlands, 1985.

[3] S. Lu, Y. Ding, and D. Yan, Singular Integrals and Related Topics, World Scientific Publishing, Hacken-
sack, NJ, USA, 2007.

[4] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, PrincetonMathematical Series,
No. 30, Princeton University Press, Princeton, NJ, USA, 1970.

[5] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43 of
Princeton Mathematical Series, Princeton University Press, Princeton, NJ, USA, 1993.

[6] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, vol. 123 of Pure and Applied Mathematics,
Academic Press, Orlando, Fla, USA, 1986.

[7] F. Soria and G. Weiss, “A remark on singular integrals and power weights,” Indiana University Mathe-
matics Journal, vol. 43, no. 1, pp. 187–204, 1994.

[8] G. Lu, S. Lu, and D. Yang, “Singular integrals and commutators on homogeneous groups,” Analysis
Mathematica, vol. 28, no. 2, pp. 103–134, 2002.

[9] C. B. Morrey, Jr., “On the solutions of quasi-linear elliptic partial differential equations,” Transactions
of the American Mathematical Society, vol. 43, no. 1, pp. 126–166, 1938.

[10] J. Peetre, “On the theory ofMp,λ,” The Journal of Functional Analysis, vol. 4, pp. 71–87, 1969.
[11] F. Chiarenza and M. Frasca, “Morrey spaces and Hardy-Littlewood maximal function,” Rendiconti di

Matematica e delle sue Applicazioni. Serie VII, vol. 7, no. 3-4, pp. 273–279, 1987.
[12] G. Di Fazio and M. A. Ragusa, “Interior estimates in Morrey spaces for strong solutions to non-

divergence form equations with discontinuous coefficients,” Journal of Functional Analysis, vol. 112,
no. 2, pp. 241–256, 1993.

[13] V. S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in Rn,
Doctor’s Degree Dissertation, Mathematical Institute, Moscow, Russia, 1994.

[14] V. S. Guliyev, Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups,
Some Applications, Baku, Azerbaijan, 1999.



18 Abstract and Applied Analysis

[15] V.S. Guliyev, “Boundedness of the maximal, potential and singular operators in the generalized Mor-
rey spaces,” Journal of Inequalities and Applications, vol. 2009, Article ID 503948, 20 pages, 2009.

[16] V. S. Guliyev, J. J. Hasanov, and S. G. Samko, “Boundedness of the maximal, potential and singular
operators in the generalized variable exponent Morrey spaces,” Mathematica Scandinavica, vol. 107,
no. 2, pp. 285–304, 2010.

[17] Y. Lin, “Strongly singular Calderón-Zygmund operator and commutator on Morrey type spaces,”
Acta Mathematica Sinica (English Series), vol. 23, no. 11, pp. 2097–2110, 2007.

[18] T. Mizuhara, “Boundedness of some classical operators on generalized Morrey spaces,” in Harmonic
Analysis (Sendai, 1990), S. Igari, Ed., ICM 90 Satellite Conference Proceedings, pp. 183–189, Springer,
Tokyo, Japan, 1991.

[19] E. Nakai, “Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials
on generalized Morrey spaces,” Mathematische Nachrichten, vol. 166, pp. 95–103, 1994.

[20] V. I. Burenkov, V. S. Guliev, andG. V. Guliev, “Necessary and sufficient conditions for the boundedness
of the fractional maximal operator in local Morrey-type spaces,” Doklady Akademii Nauk, vol. 409, no.
4, pp. 443–447, 2006.

[21] V. I. Burenkov, H. V. Guliyev, and V. S. Guliyev, “Necessary and sufficient conditions for the bounded-
ness of fractional maximal operators in local Morrey-type spaces,” Journal of Computational and Applied
Mathematics, vol. 208, no. 1, pp. 280–301, 2007.

[22] V. I. Burenkov, V. S. Guliyev, A. Serbetci, and T. V. Tararykova, “Necessary and sufficient conditions
for the boundedness of genuine singular integral operators in local Morrey-type spaces,” Eurasian
Mathematical Journal, vol. 1, no. 1, pp. 32–53, 2010.

[23] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, and R. Ch. Mustafayev, “Boundedness of the fractional
maximal operator in local Morrey-type spaces,” Complex Variables and Elliptic Equations. An Interna-
tional Journal of Elliptic Equations and Complex Analysis, vol. 55, no. 8-10, pp. 739–758, 2010.

[24] Y. Ding, D. Yang, and Z. Zhou, “Boundedness of sublinear operators and commutators on Lp,w(Rn),”
Yokohama Mathematical Journal, vol. 46, no. 1, pp. 15–27, 1998.

[25] D. Fan, S. Lu, and D. Yang, “Boundedness of operators in Morrey spaces on homogeneous spaces and
its applications,” Acta Mathematica Sinica. New Series, vol. 14, supplement, pp. 625–634, 1998.

[26] S. Lu, D. Yang, and Z. Zhou, “Sublinear operators with rough kernel on generalized Morrey spaces,”
Hokkaido Mathematical Journal, vol. 27, no. 1, pp. 219–232, 1998.

[27] M. Carro, L. Pick, J. Soria, and V. D. Stepanov, “On embeddings between classical Lorentz spaces,”
Mathematical Inequalities & Applications, vol. 4, no. 3, pp. 397–428, 2001.

[28] A. Akbulut, V. S. Guliyev, and R. Mustafayev, “Boundedness of the maximal operator and singular
integral operator in generalizedMorrey spaces,” Preprint, Institute of Mathematics, AS CR, Prague, 2010.

[29] R. R. Coifman, R. Rochberg, and G. Weiss, “Factorization theorems for Hardy spaces in several
variables,” Annals of Mathematics. Second Series, vol. 103, no. 3, pp. 611–635, 1976.

[30] F. Chiarenza, M. Frasca, and P. Longo, “Interior W2,p-estimates for nondivergence elliptic equations
with discontinuous coefficients,” Ricerche di Matematica, vol. 40, no. 1, pp. 149–168, 1991.

[31] F. Chiarenza, M. Frasca, and P. Longo, “W2,p-solvability of the Dirichlet problem for nondivergence
elliptic equations with VMO coefficients,” Transactions of the American Mathematical Society, vol. 336,
no. 2, pp. 841–853, 1993.
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