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We solve the inhomogeneous Chebyshev’s differential equation and apply this result for
approximating analytic functions by the Chebyshev functions.

1. Introduction

Let X be a normed space over a scalar field K, and let I ⊂ R be an open interval, where
K denotes either R or C. Assume that a0, a1, . . . , an : I → K, and g : I → X are given
continuous functions and that y : I → X is an n times continuously differentiable function
satisfying the inequality

∥
∥
∥an(t)y(n)(t) + an−1(t)y(n−1)(t) + · · · + a1(t)y′(t) + a0(t)y(t) + g(t)

∥
∥
∥ ≤ ε (1.1)

for all t ∈ I and for a given ε > 0. If there exists an n times continuously differentiable function
y0 : I → X satisfying

an(t)y
(n)
0 (t) + an−1(t)y

(n−1)
0 (t) + · · · + a1(t)y′

0(t) + a0(t)y0(t) + g(t) = 0 (1.2)

and ‖y(t) − y0(t)‖ ≤ K(ε) for any t ∈ I, where K(ε) is an expression of ε with limε→ 0K(ε) =
0, then we say that the above differential equation has the Hyers-Ulam stability. For more
detailed definitions of the Hyers-Ulam stability, we refer the reader to [1–7].
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Obłoza seems to be the first author who has investigated the Hyers-Ulam stability
of linear differential equations (see [8, 9]). Here, we will introduce a result of Alsina and
Ger [10]. They proved that if a differentiable function f : I → R satisfies the inequality
|y′(t) − y(t)| ≤ ε, where I is an open subinterval of R, then there exists a constant c such
that |f(t) − cet| ≤ 3ε for any t ∈ I. Their result was generalized by Takahasi et al. Indeed,
it was proved in [11] that the Hyers-Ulam stability holds true for the Banach space valued
differential equation y′(t) = λy(t) (see also [12, 13]).

Moreover, Miura et al. [14] investigated the Hyers-Ulam stability of nth order linear
differential equation with complex coefficients. They [15] also proved the Hyers-Ulam
stability of linear differential equations of first order, y′(t) + g(t)y(t) = 0, where g(t) is a
continuous function.

Jung also proved the Hyers-Ulam stability of various linear differential equations of
first order [16–19]. Moreover, he applied the power series method to the study of the Hyers-
Ulam stability of Legendre’s differential equation (see [20, 21]). Recently, Jung and Kim tried
to prove the Hyers-Ulam stability of the Chebyshev’s differential equation

(

1 − x2
)

y′′(x) − xy′(x) + n2y(x) = 0 (1.3)

for all x ∈ (−1, 1). However, the obtained theorem unfortunately does not describe the Hyers-
Ulam stability of the Chebyshev’s differential equation in a strict sense (see [22]).

In Section 2 of this paper, by using the ideas from [20–26], we investigate the general
solution of the inhomogeneous Chebyshev’s differential equation of the form

(

1 − x2
)

y′′(x) − xy′(x) + n2y(x) =
∞∑

m=0

amx
m, (1.4)

where n is a given positive integer. Section 3 will be devoted to the investigation of the Hyers-
Ulam stability and an approximation property of the Chebyshev functions.

2. Inhomogeneous Chebyshev’s Equation

Every solution of the Chebyshev’s differential equation (1.3) is called a Chebyshev function.
The Chebyshev’s differential equation has regular singular points at −1, 1, and∞, and it plays
a great role in physics and engineering. In particular, this equation is most useful for treating
the boundary value problems exhibiting certain symmetries.

In this section, we set c0 = c1 = 0 and define, for allm ∈ N,

c2m =
1
2m

m−1∑

i=0

a2i

2i + 1

m−1∏

j=i+1

(

2j
)2 − n2

2j
(

2j + 1
) ,

c2m+1 =
1

2m + 1

m−1∑

i=0

a2i+1

2i + 2

m−1∏

j=i+1

(

2j + 1
)2 − n2

(

2j + 1
)(

2j + 2
) ,

(2.1)
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where we refer to (1.4) for the am’s and we follow the convention
∏m−1

j=m[· · · ] = 1. We can
easily check that cm’s satisfy the following relation:

(m + 2)(m + 1)cm+2 −
(

m2 − n2
)

cm = am (2.2)

for any m ∈ {0, 1, 2, . . .}.

Theorem 2.1. Assume that n is a positive integer and the radius of convergence of the power series
∑∞

m=0 amx
m is ρ > 0. Let ρ0 = min{1, ρ}. Then, every solution y : (−ρ0, ρ0) → C of the Chebyshev’s

differential equation (1.4) can be expressed by

y(x) = yh(x) +
∞∑

m=2

cmx
m, (2.3)

where yh(x) is a Chebyshev function and the cm’s are given in (2.1).

Proof. It is not difficult to see that, if j ∈ N and |(2j)2 − n2| > 2j(2j + 1), then

j <
−1 +

√
1 + 8n2

8
<

√
8n2

8
(

for 2j < n
)

. (2.4)

Hence, we have 1 ≤ j ≤ ne with ne = [n/
√
8]. Ifm > ne, then it follows from (2.1) that

|c2m| ≤ 1
2m

ne−1∑

i=0

|a2i|
2i + 1

⎛

⎝

ne∏

j=i+1

∣
∣
∣

(

2j
)2 − n2

∣
∣
∣

2j
(

2j + 1
)

⎞

⎠

⎛

⎝

m−1∏

j=ne+1

∣
∣
∣

(

2j
)2 − n2

∣
∣
∣

2j
(

2j + 1
)

⎞

⎠

+
1
2m

m−1∑

i=ne

|a2i|
2i + 1

m−1∏

j=i+1

∣
∣
∣

(

2j
)2 − n2

∣
∣
∣

2j
(

2j + 1
)

≤ 1
2m

ne−1∑

i=0

|a2i|
2i + 1

ne∏

j=i+1

n2 − 4
2j
(

2j + 1
) +

1
2m

m−1∑

i=ne

|a2i|
2i + 1

≤ 1
2m

ne−1∑

i=0

(2i)!
(

n2 − 4
)ne−i

(2ne + 1)!
|a2i| + 1

2m

m−1∑

i=ne

|a2i|
2ne + 1

≤ max0≤i≤ne((2i)!/(2ne + 1)!)
(

n2 − 4
)ne−i

2m

m−1∑

i=0
|a2i|.

(2.5)
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We now suppose 1 ≤ m ≤ ne. Then it holds true that n ≥ 3, and we have

|c2m| ≤ 1
2m

m−1∑

i=0

|a2i|
2i + 1

m−1∏

j=i+1

∣
∣
∣

(

2j
)2 − n2

∣
∣
∣

2j
(

2j + 1
)

≤ 1
2m

m−1∑

i=0

|a2i|
2i + 1

m−1∏

j=i+1

n2 − 4
2j
(

2j + 1
)

=
1
2m

m−1∑

i=0

(2i)!
(

n2 − 4
)m−1−i

(2m − 1)!
|a2i|

≤ max0≤i≤m−1((2i)!/(2m − 1)!)
(

n2 − 4
)m−1−i

2m

m−1∑

i=0
|a2i|.

(2.6)

Hence, we conclude from the above two inequalities that

|c2m| ≤ Me

2m

m−1∑

i=0
|a2i| (2.7)

for all m ∈ N, where we set

Me = max
0≤i≤�≤ne

(2i)!
(2� + 1)!

(

n2 − 4
)�−i

. (2.8)

On the other hand, if j ∈ N and |(2j + 1)2 − n2| > (2j + 1)(2j + 2), then

j <

√
8n2 + 1 − 5

8
<

√
8n2 − 4
8

<
n

2
− 1
2
(

for 2j + 1 < n
)

. (2.9)

Hence, we get 1 ≤ j ≤ no with no = [n/
√
8 − 1/2]. If m > no, then it follows from (2.1) that

|c2m+1| ≤ 1
2m + 1

no−1∑

i=0

|a2i+1|
2i + 2

⎛

⎝

no∏

j=i+1

∣
∣
∣

(

2j + 1
)2 − n2

∣
∣
∣

(

2j + 1
)(

2j + 2
)

⎞

⎠

⎛

⎝

m−1∏

j=no+1

∣
∣
∣

(

2j + 1
)2 − n2

∣
∣
∣

(

2j + 1
)(

2j + 2
)

⎞

⎠

+
1

2m + 1

m−1∑

i=no

|a2i+1|
2i + 2

m−1∏

j=i+1

∣
∣
∣

(

2j + 1
)2 − n2

∣
∣
∣

(

2j + 1
)(

2j + 2
)

≤ 1
2m + 1

no−1∑

i=0

|a2i+1|
2i + 2

no∏

j=i+1

n2 − 9
(

2j + 1
)(

2j + 2
) +

1
2m + 1

m−1∑

i=no

|a2i+1|
2i + 2

≤ 1
2m + 1

no−1∑

i=0

(2i + 1)!
(

n2 − 9
)no−i

(2no + 2)!
|a2i+1| + 1

2m + 1

m−1∑

i=no

|a2i+1|
2no + 2

≤ max0≤i≤no((2i + 1)!/(2no + 2)!)
(

n2 − 9
)no−i

2m + 1

m−1∑

i=0
|a2i+1|. (2.10)
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If 1 ≤ m ≤ no, then we have n ≥ 5, and it follows from (2.1) that

|c2m+1| ≤ 1
2m + 1

m−1∑

i=0

|a2i+1|
2i + 2

m−1∏

j=i+1

∣
∣
∣

(

2j + 1
)2 − n2

∣
∣
∣

(

2j + 1
)(

2j + 2
)

≤ 1
2m + 1

m−1∑

i=0

|a2i+1|
2i + 2

m−1∏

j=i+1

n2 − 9
(

2j + 1
)(

2j + 2
)

(2.11)

since j < no and hence 2j + 1 < 2n/
√
8 < n. Furthermore, we have

|c2m+1| ≤ 1
2m + 1

m−1∑

i=0

(2i + 1)!
(

n2 − 9
)m−1−i

(2m)!
|a2i+1|

≤ max0≤i≤m−1((2i + 1)!/(2m)!)
(

n2 − 9
)m−1−i

2m + 1

m−1∑

i=0
|a2i+1|.

(2.12)

Thus, we may conclude from the last two inequalities that

|c2m+1| ≤ Mo

2m + 1

m−1∑

i=0
|a2i+1| (2.13)

for any m ∈ N, where

Mo = max
0≤i≤�≤no

(2i + 1)!
(2� + 2)!

(

n2 − 9
)�−i

. (2.14)

Let ρ1 be an arbitrary positive number less than ρ0. Then it follows from (2.7) and (2.13) that

∣
∣
∣
∣
∣

∞∑

m=2

cmx
m

∣
∣
∣
∣
∣
≤

∞∑

m=1

|c2m||x|2m +
∞∑

m=1

|c2m+1||x|2m+1

≤ Me

∞∑

m=1

|x|2m
2m

m−1∑

i=0
|a2i| +Mo

∞∑

m=1

|x|2m+1

2m + 1

m−1∑

i=0
|a2i+1|

= Me|a0|
(

|x|2
2

+
|x|4
4

+
|x|6
6

+
|x|8
8

+
|x|10
10

+ · · ·
)

+Me|a2||x|2
(

|x|2
4

+
|x|4
6

+
|x|6
8

+
|x|8
10

+
|x|10
12

+ · · ·
)
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+Me|a4||x|4
(

|x|2
6

+
|x|4
8

+
|x|6
10

+
|x|8
12

+
|x|10
14

+ · · ·
)

+ · · ·

+Mo|a1||x|
(

|x|2
3

+
|x|4
5

+
|x|6
7

+
|x|8
9

+
|x|10
11

+ · · ·
)

+Mo|a3||x|3
(

|x|2
5

+
|x|4
7

+
|x|6
9

+
|x|8
11

+
|x|10
13

+ · · ·
)

+Mo|a5||x|5
(

|x|2
7

+
|x|4
9

+
|x|6
11

+
|x|8
13

+
|x|10
15

+ · · ·
)

+ · · ·

= Me

∞∑

m=0
|a2m||x|2m

∞∑

i=1

|x|2i
2(m + i)

+Mo

∞∑

m=0
|a2m+1||x|2m+1

∞∑

i=1

|x|2i
2(m + i) + 1

(2.15)

for any x ∈ [−ρ1, ρ1].
Because of 0 < ρ1 < ρ0 ≤ 1, we obtain

∞∑

i=1

|x|2i
2(m + i)

≤ 1
2m + 2

|x|2
1 − |x|2

,
∞∑

i=1

|x|2i
2(m + i) + 1

≤ 1
2m + 3

|x|2
1 − |x|2

(2.16)

for all x ∈ [−ρ1, ρ1]. Thus, we have

∣
∣
∣
∣
∣

∞∑

m=2

cmx
m

∣
∣
∣
∣
∣
≤ Me

∞∑

m=0

∣
∣a2mx

2m
∣
∣

2m + 2
|x|2

1 − |x|2
+Mo

∞∑

m=0

∣
∣a2m+1x

2m+1
∣
∣

2m + 3
|x|2

1 − |x|2

≤ Me
|x|2

1 − |x|2
∞∑

m=0

|amx
m|

m + 2

(2.17)

for all x ∈ [−ρ1, ρ1]. Since ρ1 is arbitrarily given with 0 < ρ1 < ρ0, inequality (2.17) holds
true for all x ∈ (−ρ0, ρ0). Moreover, the power series

∑∞
m=0 amx

m is absolutely convergent on
(−ρ, ρ). Hence, we conclude that

∣
∣
∣
∣
∣

∞∑

m=2

cmx
m

∣
∣
∣
∣
∣
< ∞ (2.18)

for all x ∈ (−ρ0, ρ0). That is, the power series
∑∞

m=2 cmx
m is convergent for each x ∈ (−ρ0, ρ0).
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We will now prove that
∑∞

m=2 cmx
m satisfies the inhomogeneous Chebyshev’s

differential equation (1.4) for all x ∈ (−ρ0, ρ0). If we substitute
∑∞

m=2 cmx
m =

∑∞
m=1 c2mx

2m +
∑∞

m=1 c2m+1x
2m+1 for y(x) in (1.4), then it follows from (2.2) that

(

1 − x2
)

y′′(x) − xy′(x) + n2y(x)

=
∞∑

m=0
(2m + 2)(2m + 1)c2m+2x

2m +
∞∑

m=0
(2m + 3)(2m + 2)c2m+3x

2m+1

−
∞∑

m=1

2m(2m − 1)c2mx2m −
∞∑

m=1

(2m + 1)(2m)c2m+1x
2m+1

−
∞∑

m=1

2mc2mx
2m −

∞∑

m=1

(2m + 1)c2m+1x
2m+1

+
∞∑

m=1

n2c2mx
2m +

∞∑

m=1

n2c2m+1x
2m+1

= 2c2 + 6c3x +
∞∑

m=1

[

(2m + 2)(2m + 1)c2m+2 +
(

n2 − (2m)2
)

c2m
]

x2m

+
∞∑

m=1

[

(2m + 3)(2m + 2)c2m+3 +
(

n2 − (2m + 1)2
)

c2m+1

]

x2m+1

= 2c2 + 6c3x +
∞∑

m=1

a2mx
2m +

∞∑

m=1

a2m+1x
2m+1

=
∞∑

m=0

amx
m

(2.19)

for all x ∈ (−ρ0, ρ0). That is,
∑∞

m=2 cmx
m is a particular solution of the inhomogeneous

Chebyshev’s differential equation (1.4), and hence every solution y : (−ρ0, ρ0) → C of (1.4)
can be expressed by

y(x) = yh(x) +
∞∑

m=2

cmx
m, (2.20)

where yh(x) is a Chebyshev function.

3. Approximate Chebyshev Differential Equation

In this section, let K ≥ 0 and ρ > 0 be constants. We denote by CK the set of all functions
y : (−ρ, ρ) → C with the following properties:

(a) y(x) is expressible by a power series
∑∞

m=0 bmx
m whose radius of convergence is at

least ρ;
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(b)
∑∞

m=0 |amx
m| ≤ K|∑∞

m=0 amx
m| for any x ∈ (−ρ, ρ), where

am = (m + 2)(m + 1)bm+2 −
(

m2 − n2
)

bm (3.1)

for all m ∈ N0 and set b0 = b1 = 0.

We now investigate the (local) Hyers-Ulam stability problem of the Chebyshev
differential equation. More precisely, we try to answer the question, whether there exists a
Chebyshev function near any approximate Chebyshev function.

Theorem 3.1. Let n be a positive integer, and assume that a function y ∈ CK satisfies the differential
inequality

∣
∣
∣

(

1 − x2
)

y′′(x) − xy′(x) + n2y(x)
∣
∣
∣ ≤ ε (3.2)

for all x ∈ (−ρ, ρ) and for some ε > 0. Let ρ0 = min{1, ρ}. Then there exists a Chebyshev function
yh : (−ρ0, ρ0) → C such that

∣
∣y(x) − yh(x)

∣
∣ ≤ KMeε

2
x2

1 − x2
(3.3)

for all x ∈ (−ρ0, ρ0), where the constant Me is defined in (2.8).

Proof. It follows from (a) and (b) that

(

1 − x2
)

y′′(x) − xy′(x) + n2y(x) =
∞∑

m=0

amx
m (3.4)

for all x ∈ (−ρ, ρ) (cf. (2.19)). Moreover, by using (b) and (3.2), we get

∞∑

m=0
|amx

m| ≤ K

∣
∣
∣
∣
∣

∞∑

m=0

amx
m

∣
∣
∣
∣
∣
≤ Kε (3.5)

for any x ∈ (−ρ, ρ).
According to Theorem 2.1 and (3.4), y(x) can be written as yh(x) +

∑∞
m=2 cmx

m for all
x ∈ (−ρ0, ρ0), where yh is some Chebyshev function and cm’s are given in (2.1). It moreover
follows from (2.17) and (3.5) that

∣
∣y(x) − yh(x)

∣
∣ =

∣
∣
∣
∣
∣

∞∑

m=2

cmx
m

∣
∣
∣
∣
∣
≤ Me

x2

1 − x2

K

2
ε (3.6)

for all x ∈ (−ρ0, ρ0).

If ρ is assumed to be less than 1, then ρ0 = ρ < 1 and Theorem 3.1 implies the Hyers-
Ulam stability of the Chebyshev’s differential equation (1.3).
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Table 1

n ne no Me Mo

1 0 −1 1 −∞
2 0 0 1 1/2
3 1 0 1 1/2
4 1 0 2 1/2
5 1 1 7/2 2/3
6 2 1 128/15 9/8

Remark 3.2. We give some values for ne, no, Me, andMo in Table 1.

Corollary 3.3. Let n be a positive integer, and assume that a function y ∈ CK satisfies the differential
inequality (3.2) for all x ∈ (−ρ, ρ) and for some ε > 0. Let ρ0 = min{1, ρ}. Then there exists a
Chebyshev function yh : (−ρ0, ρ0) → C such that

∣
∣y(x) − yh(x)

∣
∣ = O

(

x2
)

(3.7)

as x → 0.
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