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We study the fixed point property (FPP) in the Banach space ¢y with the equivalent norm || - || 5.
The space ¢y with this norm has the weak fixed point property. We prove that every infinite-di-
mensional subspace of (cy, || - ||p) contains a complemented asymptotically isometric copy of ¢,
and thus does not have the FPP, but there exist nonempty closed convex and bounded subsets
of (co, || - ||p) which are not w-compact and do not contain asymptotically isometric cop—summing
basis sequences. Then we define a family of sequences which are asymptotically isometric to dif-
ferent bases equivalent to the summing basis in the space (co, || - || p), and we give some of its prop-
erties. We also prove that the dual space of (co, || - || p) over the reals is the Bynum space /1, and that
every infinite-dimensional subspace of I1,, does not have the fixed point property.

1. Introduction

We start with some notations and terminologies. Let K be a nonempty, convex, closed and
bounded subset of a Banach space (X, ||-||). Amapping T : K — K is said to be nonexpansive
if

ITx =Tyl < [lx -y

, x,y€EK (1.1)

We say that K has the fixed point property for nonexpansive mappings (FPP) if every non-
expansive mapping T : K — K has a fixed point, that is, a point x € K such that Tx = x.
We say that a Banach space (X, || - ||) has the fixed point property for nonexpansive mappings
(FPP) if every nonempty, convex, closed, and bounded subset K of (X, || - ||) has the FPP, and
we say that the Banach space (X, || - ||) has the weak fixed point property for nonexpansive
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mappings (w-FPP) if every nonempty, convex and weakly compact subset K of (X, || - ||) has
the FPP.

In this paper we study the FPP in the Banach space ¢y with the equivalent norm || - ||,
defined by

Ixllp = sup|x; — xj|, x={xi} €co. (1.2)
i jeN

The norm || - ||, was used by Hagler in [1] to construct a separable Banach space X with non-
separable dual such that [; does not embed in X and every normalized weakly null sequence
in X has a subsequence equivalent to the canonical basis of cy.

In [2], Dowling et al. gave a characterization of nonempty, convex, closed and bounded
subsets of ¢y which are not w-compact. Specifically, they proved that if K is a convex, closed
and bounded subset of ¢y, then K is w-compact if and only if every nonempty, convex, closed
and convex subset of K has the FPP. To do that, the authors showed that every closed, convex
and bounded subset of ¢y which is not w-compact contains an asymptotically isometric
co-summing basic sequence, aisbcy sequence for short, that is, a sequence {y, }, C co such that
forall {t,}, €L,

< , (1.3)

> tan

n=1

S

=n

sup(1 +e,) "

<sup(l +¢€,)
neN eN

n

2t
i=n

for some {¢g,}, C Rwith 0 < €441 < &, and lim, ¢, = 0. They proved that if a convex, closed
and bounded subset K of a Banach space contains an aisbcy sequence, then there exists a non-
empty, convex, closed and bounded subset of K without the FPP. The authors used this fact in
[3] as a tool to prove that a nonempty, closed, convex and bounded subset of ¢ is w-compact
if and only if it has the FPP.

It is easy to see that (co, || - [|p) contains ¢y isometrically, and then it contains aisbcy se-
quences.

First we prove that every infinite-dimensional subspace Y of (cy, || - ||p) has a comple-
mented asymptotically isometric copy of ¢y and hence by a result proved by Dowling et al.
in [4], Y does not have the FPP. Also, as an immediate consequence we obtain that Y has an
aisbcy sequence. Nevertheless, we exhibit a nonempty closed, convex and bounded subset of
(co, || - IIp), which is not w-compact and does not contain aisbcy sequences.

Then for every selection of signs © = {6;}, we define the ©-basis of ¢y which is
equivalent to the summing basis and define the corresponding asymptotically isometric ©-
basic sequence, ai®@bcyp sequence for short. We prove that if ©; # £0,, then the ai®,bcop and
ai©,bcop sequences are different in the sense that there exists a nonempty, closed, convex, and
bounded subset of (cy, || - ||p), which is not w-compact, contains an ai©bcop sequence, and
does not contain ai@,bcop sequences. We also show that the aisbcy and ai©bcyp sequences
are different in the last sense for all ©. Hence, to give a similar result of Theorem 4 of [2] about
convex, closed and bounded sets in (cy, || - | p) without the FPP, it is necessary to consider the
ai®bcyp sequences.

Next we prove that if a convex and closed subset K of a Banach space contains an asy-
mptotically isometric cop-summing basic sequence, that is, an ai®bcyp sequence, where © is
such that 6; = 1 for all i, then there exists a nonempty, convex, closed and bounded subset of
K without the FPP.



Abstract and Applied Analysis 3

Finally, we show that the dual space of (c, || - ||p), over the reals, is the Bynum [5]
space li5. Then, by a result of Dowling et al. in [6], the space l1,, = (co, || - ||p)* has “many”
subspaces and contains an asymptotically isometric copy of I; and does not have the FPP.
In fact, we prove that every infinite dimensional subspace of I, contains an asymptotically
isometric copy of /; and does not have the FPP.

2. The Space (co, || - [|p)

In the sequel, we will denote by {e,,} the canonical basis of ¢y and by {¢,} the summing basis
of ¢y, thatis, &, = > e;, neN.

Garcia Falset proved in [7] that a Banach space with strongly bimonotone basis and
with the weak Banach-Saks property has the w-FPP. It is easy to see that the canonical basis of
¢o is strongly bimonotone in (cy, || - ||p). On the other hand, since ¢y has the weak Banach-Saks
property and || - ||p and || - ||, are equivalent, we get that (co, || - || p) has the weak Banach-Saks
property. Hence we have that (cy, || - ||p) has the w-FPP.

To study the FPP in the space (cy, || - ||p) using aisbcy sequences, we would expect that
nonempty, convex, closed and bounded subsets K of (co, || - ||p), which are not w-compact,
contain an aisbcy sequence. This fact is true for some w-compact sets in (cy, || - | p), since the
space ¢y embeds isometrically in (cy, || - ||p). In fact we have the following proposition.
Proposition 1. Let {ux}, C (co, || - ||p) be a block basis of {e,} with uy = Z?ipk
P2 < qp < Aflluklly, =1 = ag, for some pi < ik < qi, and yx = (1/2) (uak — uzk-1), then the space
span{yx} is isometric to (co, || - ||o)-

aie;,, 1 <p1 <q1 <

Proof. Since ||uk|,, = 1 = ax for every k € N, then |a;| < 1forall j € Nand

_max _|a;j+aj| = apr + ape=2. (2.1)
P2k-1<1<q2k-1,P2k <j<q2k

Hence, it is straightforward to see that | 3¢ txvillp = 1 X5 teell,, - O

In the following theorem, we will show, using some results proved by Dowling et al.
[4, 8], that every infinite-dimensional subspace Y of cop fails to have the FPP.

Theorem 2. Let Y be an infinite-dimensional subspace of cop. Then Y has a complemented asymp-
totically isometric copy of co and thus'Y does not have the FPP.

Proof. Let {ex}, C (0,1) be a sequence such that €x.1 < &k, k € Nand ex — 0. Asin [9] we
construct sequences {nx} C Nand {yx}, C Y such that ny < ny,1, y, = Zznkafei, lyill, =1,
and

sup |a{| < i];;;z Vj=1,...,k, and every k € N. (2.2)
12Nk

Since ||ykll, = 1, taking -y instead of yy, if necessary, we can suppose that there exists
1y < ¥ < ny,q such that

ak =1. (2.3)
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Define xi = (y2k-1 — ¥2k) /2. Then, by (2.3) and (2.2), we get that 1 — (€x/2) < ||xk||p <
1+ (ex/2) and

ithk = %itk< Z a2k 1 Z (X2k61>
k=1 k=1

1=N2k-1 i=npk
1 [o.0)
= szk< > (" -a >€l> (2.4)
k=1 i=Mpk_1

1& Nogs1—1

k
_ 2j-1 _ 2j
= EZ Z th]<le —ai )ei P
_ j=
where u?k =0fori=mnok_1,...1mx —1, k € N. Then by (2.3) and (2.2), if k > 1, we get

1 2j-1  2j  2j-1 2
> — max ti < /- —al " ta ]>
T 2mpasr< Z s s

Mok Mok SS<M2k+1 -1

(o)
2.t
n=1

D

k
1 2j-1  2j 2j-1 | 2j
] ] ] ]
25 Zt]' <ar2k71 T — A T ar2k>

2313

> Shel|odt - a2+ o 2z|t| ERETNEY RV,

> iel(fo + a2 - o)) 22
22|t |(|“2£k11 |“2£k1 +|“ng + a31k>

> Sl - &) - 2Z|t|€"

Ek Ek
> |t <1——> —max|ti|—.
2 | k| 2 | ]| 2
On the other hand, if nox_1 < 7 < Moks1, Mom-1 < S < Nome1, k < m, using (2.2), we get
2j-1 & 2i-1
£ (zxr] ) Zt]< = ag >

< 5 [1(| )+ ltul(|a2
3 [ S0l )+ S

j

N —
M-

2k

+ +

2k—1'

a2m-1 '

3

2j-1 2j
"+ fa)

IN
—_
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IN
N[ —

k-1 £k m-1 Em
|tk|(1 +Ek) + ItTI’I|(1 +Em) + ];ltjlm + ];ltAm

IN

il 1+ €5 + [t (1 + ) + max| g e + maxltjlsm]
| <j<k 1<j<m

IN
Nl— NI

{Isljag>1§|t]-|(l +&x) + 1I?j.aé>n<1|if]~|(l +Em)

<sup( (1+e,)max|t;| ) <sup(l+ey)|tl.
1gj<n neN

neN
(2.6)
Then we obtain
En En O
sup{ fa[(1 -5 ‘maXf'—)S bual| < sup(l + )|l 2.7)
n€§<| nl( 2> 1SiSn| 7| 2 7; " D nel]sl( n)| nl

Now, define z,, = x,/(1 +¢,) and m = (1 —&1)/(1 + €1); then (1 —&,)/(1 + &,) < ||znllp and
lim,||z,||p = 1. On the other hand,

€ €
(1 + &1)msuplt,| = (1 - &1)sup|t,| = (1 - —1>sup|tn| - —1sup|tn|
neN neN 2 neN 2 neN
(2.8)
&n £n
< _ )y i
<sup(i(1-3) -l 3)
Thus
En En &
msupl|t,| <sup| |ty|(1—- =) — max]|t; —)S t,z < suplty|. 2.9
uptod < (0101 -3) -ppltl ) < [So| <suel @9

Then by Theorem 2 of [8] Y contains an asymptotically isometric copy of ¢y and since Y does
not contain a copy of I;, by Corollary 11 of [8] it contains a complemented asymptotically
isometric copy of cy. Finally by Proposition 11 of [4], Y does not have the FPP. O

As a consequence of the last theorem, we get that every infinite-dimensional subspace
of (co, || - ||p) contains an aisbcy sequence. Nevertheless, the following result gives an example
of a nonempty, convex, closed and bounded subset of (cy, || - || ) which is not weakly compact
and without aisbcy sequences.

Proposition 3. Let {¢&,} be the cy summing basis. Then

C= {angn S Ay 20, an = 1} (2.10)

does not have aisbcg sequences with the norm || - ||p.
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Proof. Suppose that {y,} is an aisbcy sequence in C with || - || for some sequence {&,}. Then
Yn = oA for some sequence {1} such that A! > 0 and > A" = 1. Fix 0 < ¢ < 1/4.
Passing to a subsequence we can suppose that €,,,1 <&, < (1/2)-2eand 1/(1+&,) >1-¢, n €
N.

Assume first that there exists M € N such that for every n > M, >z M+1.A,? <(1/2) -e.
Let u,, = Zf.fl)qig,» and v, = X2 then vy, = uy, + vy, Since {u,} C [gi]f‘fl is bounded
and dim [&]M, = M, passing to another subsequence we can suppose that u,, — u for some
u € C. Then, there exist ny,n, € N with M < ny < ny such that

ltn, = un, llp <& (2.11)

Since X2y Al < (1/2) —¢, n> M, we also get

k k
Vp, — 0 = max AT\
” m nZHD M+1<r<k<oo ; ! ; !
(2.12)
[ee] [ee]
< D AT D AR <T-2e
i=M+1 i=M+1

Hence (| y/n, = Yn, |l < 1—¢€. On the other hand, since {y,} is an aisbcy sequence, we have that
1Yn, = Yn,llp > 1/ (1 + €,,), which contradicts the fact that 1/(1 + &,,) > 1 —«.

Assume now that for all M € N, there exist n > M such that 3}, ;A" > (1/2) - &.
Denote each y, by {a}'} = 3 a'e,, where {ey} is the canonical basis of ¢y. Then af = 372 i
Since y1, 2 € co, there exists M € N such that

al,a? <=, i>M. (2.13)
By hypothesis, there exists ng € N such that 32,11 > (1/2) — . Then

3
2 -2e< v+ 2 yml 14)

On the other hand, since {y,} is an aisbcy sequence, we have that ||y, + v2 — ynllp < 1+ €1,
which contradicts the fact that ¢y < (1/2) —2e¢. O

In view of the last proposition and motivated by the behavior of the ¢y summing basic
sequence with the norm || - || p, we will define the asymptotically isometric cop-summing basic
sequence. First we consider the following definition.

Definition 4. Let {x,} be a bounded basic sequence in a Banach space X. We say that {x,} isa
convexly closed sequence if the set

C= {itnxn 11, >0, it" = 1} (2.15)
n=1

B
1]
—_

is closed, that is, if conv{x,} = C.
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Note that subsequences of convexly closed sequences are again convexly closed and
that every basic sequence equivalent to a convexly closed sequence is convexly closed.

It is easy to see that the ¢y summing basis, the canonical basis of I;, and aisbc, se-
quences are convexly closed. Moreover, a weakly null basic sequence in a Banach space is
not a convexly closed sequence. Hence the canonical basis of ¢y and the canonical basis of I,,
1 < p < oo, are not convexly closed.

Definition 5. Let {x,} be a sequence in a Banach space X. We say that {x,} is an asymptotically
isometric cop-summing basic sequence, aisbcop sequence for short, if {x,} is convexly closed
and there exists {¢,} C (0, o0) such that ¢, \, 0 and

m
2t

k=n

<

sup (1+¢&y,)" . Y{t.) €. (2.16)

1<n<m<oo

< sup (1+éem)

1<n<m<oo

m
2t
k=n

[ee)
2t
n=1

Now, we prove that the analogous of the operator defined in [2] is still contractive and
then Banach spaces containing aisbcop sequences does not have the FPP.

Proposition 6. Let K be a nonempty, convex, closed and bounded subset of a Banach space X. Let
{en} C (0,00) be a sequence such that €, — 0and &, < 2714 >0, If K contains an aisbcop
sequence with this {e,}, then there exists a nonempty, convex and closed subset Cof K andT : C — C
affine, nonexpansive, and fixed-point-free. Moreover, T is contractive.

Proof. Let {x,} be an aisbcop sequence in K with {¢,} C (0,0) such that ¢, < 27147, n > 2.
Set

C =conv{x,} = {Ztnxn t, >0, neN thn = 1} Cc K. (2.17)
n=1

n=1

Thus C is nonempty, convex, closed and bounded. Define Tx,, = Z]?’Zl ((xn4j)/ 2/), n €N, and
extend T linearly to C, that is, if x = X7 t,x, € C then define T(3,21tyxXn) = DoitnTXn.
It is easy to see that T(C) C C and that T is affine and fixed-point-free, see [2]. We only
need to show that T is a contractive mapping. Let x,y € C, with x #y. Then x = >,;7 X,
and y = > 5,x,, witht,,s, >0, and > t, = X215, = 1. Let f, = t, — sp, n € N, such
that >, , = 0. As in [2] we have

T(x)-T(y) = iann, (2.18)
n=1

where B; = 0and B, = ($1/2"1) + (f2/2"72) + -+ + (Bn-1/2), n > 2. Consequently,

m

2 B

k=n

IT(x)-T(y)| = . (2.19)

[0}
Zan,,
n=1

< sup (1+éem)

1<n<m<co
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Take n,m € N with n < m. Since

i B, - B P2 Pn

= 2n—1 + 2n—2 tooot 2
pl ﬂz ﬁn—l ﬁn
+2_n+2n—1 +~'-+?+7+-“
pl ﬂ ﬁn—l ﬂn pn+1 ﬂm—l
+W+2m_—2+“'+ 2m—(n-1) + om-n + m—(n+1) toot 2
1
= E(ﬁn_l + ﬂ?l e o ﬂm—l) (2.20)

1
+?(ﬂn—2+ﬂn—l+"'+ﬂm—2)+"'
1
+F(ﬂ1+ﬁ2+“'+ﬁm—(n—1))+"'

bz (B o) + 5 (),

we have
L 1+ 2¢,,_ 1
(L) 23] < () (52 gl + e+
1+2¢,2 1
+ 22m 1+26m_2|‘3n_2+ﬁn_1+...+ﬂm_2|+...
1+2¢ —(n-1) 1
2nrf1 —17 Zem ) it Pott P |+ (221)
1+2¢ 1 1+2¢ 1
i TPl e g 1)
-1 ]
< < sup (1+2¢)) Zﬂk Qum,
1<i<j<m k=i
where

1+2e,1 1+2e,
+ + et
2 22

Qun = (1420 (

. 1+ 2em_(n-1) N 1+ 26 - 1+ 2¢ . 1+2£1>
on-1 on m-2 om-1

<(1 1 1 1 1 1 1
sUrrw)|Grzrre) g s
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(1.1 L 1 1 1
=\t Tomt ) T\ 2wt T am T S

1 1 1
<<1+4_m>[<1_ﬁ>+2_m <1

(2.22)

Then we get

sup (1+é&m) ZBk < sup (1+2ep)” Zﬂk < sup (I+em)” Zﬁk
1<n<m<co k=n 1<n<m<co k=n 1<n<m<co k=n
(2.23)
<[ 2 Buxal| = [l = yll.
n=1
Thus T is contractive. O

Next for any sequence of signs we will define a basis in ¢y equivalent to {¢,}, the sum-
ming basis of ¢y, and a sequence asymptotically isometric to it.

Let {e,} be the canonical basis of ¢y and for any selection of signs © = {6;};, that is,
0; € {-1,1}, i e N, let {Q,(?}n be the sequence defined by

8= 0er, neN. (2.24)
k=1

Since |30 tnénll,, = | Smeital@ll, for all {t,}ie; C K, we get that {{} is a basis of ¢y equiv-
alent to the ¢y summing basis. The sequence {¢9} is called the ©-basis of cy. Let ©y = {6},
where 0; = 1, i € N. Then the ©y-basis of ¢y is the ¢p summing basis. If we define C =
(S8 1ty >0 and X2 t, = 1}, then C is nonempty, convex and bounded. Since || - ||,
and | - ||p are equivalent, we have that {¢9} is convexly closed in (co, || - ||p)-

ThesetC = {324,491 t, >0 and X°,t, = 1} is not w-compact. The following result
shows that the set C contains neither aisbcyp sequences nor aisbcy sequences with the norm
I-llp if © £6x.

Proposition 7. For © # 0y, let {(&} be the ©-basis of c considered in (co, || - ||p)- If

C= {Ztng,? Tty 20, Dty = 1}, (2.25)
n=1 n=1

then the set C contains neither aisbcop sequences nor aisbcy sequences with the norm || - || p.

Proof. Let {yx} C C. Then yx = 32,159 for some Ak > 0 and 37,0k = 1. Suppose that
{y«} is an aisbcyp sequence (resp. an aisbcy sequence) with the norm || - || 5. Let np = min{n :
0, #0601 }. If there exists 0 < p < 1 such that Z?:Ol_l)ti-( <1-pforallk >1,thenforallk >1,

lvellp 2 D0+ D A2 1+p. (2.26)
n=1

n=np
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Since {yx} is an aisbcop sequence (resp. an aisbcy sequence) with the norm || -||p, then
lykllp £ 1+ & — 1 and this is impossible. Now, if lim supkzzlzol_llf = 1, as in the proof
of Proposition 3, we obtain a subsequence {yx,} of {yx} with ||y, — vk, ll[p — 0. Since
{yn} is an aisbcop with the norm || - ||p, then (1 + ski)_1 < lyk = Yk llp (resp. (1 + ng)_l <

lyk, = Yk llp) and making i — oo we get that 1 < 0. This contradiction proves the result. [J

Although the set C of the last proposition has neither aisbcop sequences nor aisbcy
sequences, for some O it does not have the FPP.

For © = {0;}, let F,, be the set such thatifi, j € F,, then 0; = 0;,and ifi € F,,;; and j € F,
then 0; # 0. Denote by r, the cardinality of F,. If 7, < co, define pg = 0, p,-1 = minF,, -1, and
Pn = max Fy,.

Proposition 8. Let O # +O. Then

C= {Ztng,? Tty 20, Dty = 1} (2.27)
n=1 n=1

does not have the FPP in the following cases.
(1) There exists k > 1 such that r, < 1 < oo, n €N,
(2) rn=1 and Ty = oo.

(3) There exists {i,}, with iy > 1, such that for any k,l € N with ix_1 <1 < iy we have 0; = 0;,
and also Ok #6;, forall k > 2 or O = 0, forall k > 2.

Proof. Let © # £0y.
(1) If there exists k > 1 such that r,, < 1k < 00, n € N, define g, = Z;’:if(kfz)r]-, n>k
andT:C — Cby

[e’e] o) Pn oo Pn+l
TXtnbn =T, 2 ti6) = 3 Dt lis (228)
n=1 n=1li=p,_1+1 n=ki=wy

where w,, = pp+7pe1—Tns1-k+1. The idea is to translate the coefficients of Z;’f’zltngf? in the block
F, into the last r,, terms of the block F,.x. Then it is easy to see that T does not have fixed
points. To prove that T is nonexpansive first observe that if k is even the signs of the 6; and
0; withi € F, and j € Fyk are the same and are different if k is odd. Now let x = Z;“;ltng,?,
y=3215.49, and x —y = 37 ,a,9. Then a, = t, — s, and 32, a, = 0. Hence

X-y= i ,pZ Op, (i%)ei, (2.29)

n=1li=p,1+2

o) o) Wy Pn+1 o
Tx-y) =2 0ps Doan J[ De) D O D au)e (2.30)
n=k n=i-qn i=pu+1 i=wy+1 n=i—q,

are the expressions of x — y and T(x — y) with respect to the canonical basis. Since the
coefficients in (2.29) and (2.30) are the same, or the same with opposite signs, with perhaps
some repetitions in (2.30), T is an isometry.



Abstract and Applied Analysis 11

(2) Suppose now that r; = 1 and r, = co. In this case, define T 3521 £,(9 = 371,02 .
Clearly T is nonexpansive and fixed-point-free.

(3) In this case it is straightforward to see that the operator T : C — C defined by
TS 4,9 = Z;’;ltngg is nonexpansive and does not have fixed points. O

Proposition 9. Let © # 0. Suppose © does not satisfy the hypotheses of the above proposition, and
let {i,} be a sequence with iy > 1. Then the operator T : C — C defined by TY % 1,9 = Z;’;ltngg
is expansive.

Proof. Since © does not satisfy the hypotheses (1) and (2) of the above proposition, there are
three possibilities.

(I) 7, < oo for every n > 2; then for every k there exists n such that 7,k < 7.
(I) r, = oo; then ry > 1.
(II) There exists k > 2 such that ry = co.

Let {i,} be fixed with i; > 1 and denote iy = 0. Since © does not satisfy the hypotheses
(3) of the above proposition, there exist k and [ with ix_; < I < i such that 6;#6;, or there
exists k1 > 2 with 6y, = 6,-k1 and there exists ky > 2 with 6y, # Gikz'

Case 1. For every k there exists n such that 7. < 7.
There are two subcases.

Subcase 1.1. There are k and [ with ix_; < I < iy such that 6, #6,,.

Letx = (1/8)¢7 + (3/8)§?_1 + (1/2)@? and y = (1/16)¢9 + (3/16)@?_1 + (3/4)@?. Then
x -y = (1/16)50 + (3/16)¢¢ ) - (1/4)50 = ~(1/16) X5 6iei = (1/4)6kex and x ~ yllp <
5/16. Qn the other hand, Tx - Ty = (1/16)@? + (3/16)§i1 - (1/4)§g = —(1/16)2;":’;%9}-@ -
(1/4)3* Ojej and [|[Tx - Ty|, = 1/2.

]=ik,1+1
Subcase 1.2. For any k € N and [ with i1 <[ <iy, we have 8, = 0;,.

There are two subsubcases. (1) 81 = 6;, and (2) 61 #6;,.

(1) 61 = 91'1

If Ok = 0;, for every k; then we would have F; = N, which implies © = +0,. Then there is k
such that O #6;,. Let s = min{/ : 6, #6;,}. Then s > 1.

There are two possibilities: (A) there exists r > s such that 0, = 6;, and (B) 6, #6;, for
all k > s.

(A) Let k + 1 = min{r > 5 : 8, = 6; }. We need to consider the following cases.

(a) 6k = 6k+1-
Let x = (1/2)¢2, + (1/2)¢2, and y = (3/4)¢7 , + (1/4)¢2 . Then x — y =
—(1/4) &2, + (1/4)82 | = O ((1/4)ex + (1/4)ex) and ||lx - yll, = 1/4. On
the other hand, Tx - Ty = —(1/4) ¢© + (1/4) & = (1/4)3%, .0jej +

ik-1 ik+1 j=ik-1+1

(1/4) 3k 1056 = —(1/ D)0 I qej + (1/4)0ka X ej and | Tx - Tyl
=1/2.
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(b) 6« #6k+1.
Let x = (1/2)¢2, + (1/2)¢2, and y = (3/4)¢2 + (1/4)¢2,,. Then x — y =
(1/2) &2 = (3/4) &2 +(1/4)5p,; = —(1/2)6kex + (1/4)0ks1ex1 = Orar ((1/2)ex +
(1/4)exs1) and ||[x = y|l, = 1/2. On the other hand, Tx - Ty = (1/2) ggﬁl -
G/4) &)+ (/4 = -1/, ,0ie; + (1/H)ZH], 0ie; = —(1/2)

ik+1 ]=ik—1 +1 j=ik+1

O zj.k: o€+ (1/4)6k z;iz;k+lej and ||Tx - Tyl|,, = 3/4.
(B) 0k #£0;, for all k > s. By hypothesis we have that s > 2. There are two cases.

(@) 651 = O5. Then 6;,_, #6;,. Let x = (1/4)(;22 + (1/2)«;59_1 +(1/4)¢9 and y =
(1/4)82 1+ (3/4)¢2. Then x—y = (1/4)¢2,+(1/4)¢2 - (1/2)¢9 = —05((1/4)es
+(1/2)es) and ||x - y||, = 1/2. On the other hand, Tx - Ty = (1/4) QS_Z +
(1/4) &2 - (1/2) & = ~(1/4)0, 3 16+ (1/2)0: 3, 5 and [Tx - Tyl
=3/4.

(b) 05-1#6,. Then 0, , = 6;. Let x = (1/4)¢2, + (1/4)¢2, + (1/2)¢2 and y =
(3/4)¢2 ,+(1/4)¢9. Then x—y = (1/4)¢2 ,—(1/2)¢2 ,+(1/4)¢9 = —(1/4)0s-1€5-1
+(1/4)0ses = 05((1/4)es1 + (1/4)es) and ||lx — y||, = 1/4. On_the other hand,
Tx-Ty = (1/4) &7, - (1/2) & + (1/4) & = -(1/4)6i, X} e5 + (1/4)

j:i5_2+1

0.5 € =01 (~(I/H T e+ (/43 ep)and [Tx - Tyl =1/2.

(2) 61706,

In this case there exists k such that 6k = 6;,. If s = min{l: 6; = 6; }, then s > 1.
Hence consider the cases: (A) there exists r > s such that 6, #6;, and (B) 6x = 0;, for
all k > s and proceed as in the Case (1).

Case?2. rp =occand rq > 1.
Then 6, #6;, with 1 < p;. Hence we can proceed as in Subcase 1.2(1)(A) above
taking k = p1.

Case 3. There is s > 1 such that 75,1 = oo.
Then 6, #6;, with1 < p;. Hence we can proceed as in Subcase 1.2(1) (A) above taking

k =ps. O

Next, for every selection of signs © # +0y, we will define the asymptotically isometric
cop-O-basic sequences. To this end, let us consider the following notation.
Let

Go ={(n,m): 6, =0,},
(2.31)
Do ={(n,m):0,#0,}.

Definition 10. Let {x,} be a sequence in a Banach space X. We say that {x,} is an asymptoti-
cally isometric cop-©-basic sequence (ai®@bcyp sequence for short) if {x,} is convexly closed
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and there exists {9} C (0, (1/2)) such that €9 \ 0, and

L({e?} tta),80) VL({eR}, (ta), Do) < || Sotux
(2.32)
<R({e}, ta), 6) v R({£2}, 1t} 90)
holds for all {t,} € [;, where
| =
L<{£"(?}’{t"}’6®> ) <n<1(sr}1£)€6@ 1+gl(?l> 1 kz—iltk >,
4]
L<{g§},{tn},©@> = <n<l(s:11§)€% 1 +£El> 2 >,
(2.33)
1-1
R<{s§},{tn},6@> = <n<l(sr:1£>€be 1 +£El> kgntk >,

R({SS},{tn},@@> = < sup (1"'531) itk+2§:tk
k=n k=1

n<l,(nl)eDeo

>.

We are interested in ai©bcyp sequences for which the numbers £ of Definition 10 are
small. We are taking {¢9} c (0, (1/2)).

We know that the set C of Proposition 3 does not have aisbcy sequences. Now we also
prove that C does not contain ai®bcop sequences with the norm || - || if © # £Oy.

Proposition 11. Let © # £ ©y. The set C = {> 5o tnéy : tn > 0 and 3,574t = 1} does not contain
ai®bcp sequences with the norm || - || .

Proof. Let {yx} C C. Then yx = 3% ,1k¢, for some Ak > 0 with 32,1k = 1. Suppose that
{yx} is an ai®bcyp with || - ||p. Since © # +0Oy, there exist m € N and {nx} ¢ N with ny < np
< ---,such that forall k € N, m < ny and 6, #6,,. Lett, = 0 for n#m,ni and t,,, = t,, = 1.
Thus

(1 + 55171)_13 < L({ES}, {tn},69> v L<{5S}, {tn},©@>

=y + Yn |l p =2
D

(2.34)

nYn
=1

Since (2.34) holds for all k € N, making k — oo in (2.34), we get that 3 < 2, which is a con-
tradiction. O
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Proposition 12. Let ©; = {0}}, and ©, = {67}, such that ©1 # +©, and ©1,0, # + ©y. Let { o1y
be the ©1-basis of cy considered in (co, || - ||p) and let

C(©,) = {itngfl 1, >0, itn = 1}. (2.35)
n=1 n=1

The set C(©1) does not contain ai©,bcop sequences with the norm || - || p.

Proof. Let {yx} C C. Then yx = 3%,45¢9" for some AX > 0 with 3% 0% = 1. Suppose that
{yx} is an ai®,bcop with the norm || - ||p.

Suppose first 0] = 62; since © #©,, there exists m > 1 such that 6}, #62,.
There are two cases.

Case 1. (1,m) € Sg,. In this case (1,m) € Dg,. Lett, =0forn#1,mand t; = t,, = 1. Thus

(1+69,) 3 L({e0], (), 0,) vL({e). (t), D))

=y +ymllp <2

(2.36)

(o)
nYn
n=1

Since 5?1{1 <1/2, we get a contradiction.

Case 2. (1,m) € Dg,. In this case (1,m) € Sg,. Lett, =0forn#1,mand t; = t,, = 1. Thus

2<ZA}1+ZA"m+Z +Z./\m nyn —||y1+yTﬂ||D
n=1 n=1 n=m n=m

(2.37)

<R({e}, (ta), 80, ) VR({e5}, {tn},CD@z) (1+€52).

(S}

Since ¢, *, < 1/2, we get a contradiction.

Suppose now 0] #03; since ©; # —O,, there exists m such that 0}, = 62,.
There are two cases.

Case 1. (1,m) € Gg,; in this case (1,m) € Dg,. Lett, =0forn#1,mand t; =t,, = 1. Thus

(1 + 522_1)_13 < L<{g§2}, {tn},6@2> v L({E,?z}, {tn},CsD@z)

= ly1 + ymllp <2
D

(2.38)

nYn
=1

(S}

Since ¢,?, <1/2, we get a contradiction.
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Case 2. (1,m) € Dg,. In this case (1,m) € Sg,. Lett, =0 forn#1,mand t; = t,, = 1. Thus

25 300 30+ Sk 347 < | S| =l vl
n=1 n=1 n=m n=m (2.39)
<R({e>} (1), 80,) vR({e ], {tn},©@2> (1+e52).
Since 522_ , <1/2, we get a contradiction. O

Propositions 3, 7, and 11 show that, in contrast with Theorem 4 of the Dowling et al.
paper [2] for aisbcy sequences in ¢y, in the space (cy, || - [|p) we need an infinite number of
sequences (at least aisbcy and ai®bcyp sequences) to have a similar result.

3. The Space (cy, || - [|p)”

It is known that the dual of the Bynum space cp; is the Bynum space ;.. Below we prove that
the dual space of (cy, || - ||p) when the scalar field is the set of real numbers is also the Bynum
space l1.,. Let us suppose then that K = R. First we calculate the extreme points of the unit
ball of (co, || - IIp)-

Lemma 13. Let X = (¢, || - ||p)- Then we have

E(Bx) = {{xn} €Sx :x,€{1,0}, neN}U{{x,} € Sx:x, € {-1,0}, ne N}. (3.1)

Proof. First note that if {x,} € Sx then |x, — x| < 1, n,m € Nand |x,| <1, n € N. Con-
sequently, if {x,} € Sx with x,,, = 1 for some ny € N, then 0 < x,, < 1, for all n € N. Anal-
ogously if {x,} € Sx with x,, = -1 for some ny € N, then -1 < x, < 0, for all n € N. Let
A= {{x,} € Sx : x, € {1,0}, n € N} and B = {{x,} € Sx : x, € {-1,0}, n € N}. Thus
A,B C Sx.

Take x = {x,} € A and suppose that x = (y + z) /2 with y, z € Sx. Also suppose that
y ={yn} and z = {z,}. Since x € A, there exists ny € N such that x,, = 1. Since x, = (Y, +z,)/2
and yn, z, < 1,if x, = 1 for some n € N, we have that x, = y, = z,. Thus x,,, = y,, = 2z, = 1.
On the other hand, if x, = 0 for some n € N, we also have that x, = y, = z,, because if
Yn < 0 we get that |y, — y,,| > 1, which contradicts that [y, — Y| <1, n,m € Nand if y, > 0
then z, < 0 and we also have a contradiction. Therefore, x = y = z. Hence x € £(Bx). Thus
A C &(Bx). Analogously B C £(Bx).

Take now x = {x,} € Sx \ {A U B}. Then there exists 1y € N such that 0 < |x,,| < 1. Let
a = inf,x, and b = sup,x,. If x,, € (a,b), define c = min(|x,, — al, [xn, = bl), Yn = zn =
Xn, NW#ENQ, Yny = Xn,—C,and z,, = x,,+c. Thus, x, = (y+z)/2withy,z € Sxand x#y, x#z.
Therefore, x € Sx \ £(Bx). Suppose now that x,, = a or x,, = b. Since 0 < |x,,| < 1 and
supnlm€N|xn — Xm| = 1, we have that 0 € (a,b). Since x,, — 0, there exists n; > ny such that
Xn, € (a,b), which implies that x € Sx \ £(Bx). Consequently, £(Bx) C AU B. O
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Theorem 14. Let f € (co, || - ||p)*. There exists a unique sequence {c,} € I such that f = 3,72 cqe
and

| fll o = max <§]CZ,§]C;>, (3.2)
n=1 n=1

where c;; = max(c,, 0) and ¢, = —min(cy, 0).
Proof. Let f € (co, || - |Ip)*. Since {e,} is a shrinking basis of (cy, || - |p), there exists a unique

sequence {c,} C K such that f = 377 cuer. As sets (co, || - |p)* = (co)* and hence f € (cp)*.
Thus f = R{a,} where R: I} — ¢ is the Riesz representation. Consequently,

cn = f(en) = R{an}(en) = an. (3.3)
Therefore, {c,} = {a,} € 1. Thus

[fllp = sup|f@x)| = sup |f(x)]

x€Bx xe€&(Bx)

_ sup{ S

neF
(o) oo}

— + -

= max ch, ch ,
n=1 n=1

:FCN, F ﬁnite} (34)

where ¢}, = max(c,, 0) and ¢, = —min(c,, 0). O
Corollary 15. (co, || - ||p)* is the Bynum space by, and it has the w-FPP.

Remark 16. 1t is well known that I1(co)* has the w* fixed point property for left reversible
semigroups, that is, whenever S is a semigroup such that aS N bS#0 for any a,b € S,
and S = {T; : s € S} is a representation of S as nonexpansive mappings on a nonempty
w*-compact convex subset K of [, there is a common fixed point in K for S. (see [10-12]). In
particular, I; has the w* fixed point property. Is this the case for (co, || - [|p)*?

Next we will see that every infinite-dimensional subspace of I, contains an asymp-
totically isometric copy of [; and then, by a result of Dowling and Lennard [13], it does not
have the FPP.

First recall that a Banach space (X, || -||) contains an asymptotically isometric copy of I;
if there exists {x,}, C X and {&,} C (0,1), &, — 0such that for every k € N and every scalars
bi,..., by,

K
> (1-&)lbil <
i1

k
Zbix,-
i=1

k
<> (1+&)bi. (3.5)
i=1

In this case we say that {x,}, is an asymptotically isometric /;-sequence (ail;-sequence for
short).
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Observe that if {1}, is another sequence in X such that ||y, — x,|| < 6, for all n, where
{en + 64} C(0,1) and 6, — 0, then for every k and every scalars by, ..., by,

k

> (1—ei—8)lbi| <

i=

k
< D (1+&+6)bil (36)

i=1

K
Zbiyi

i=1

and {y,} is also an ail;-sequence.

Prop051t10n 17. Let {ul} C leo, and let {nl} be a strictly increasing sequence in N such that u; =

Z;’”:l aae. If Z?“:l " Z;"*jl +1(a ), then {u;}; is isometrically equivalent to the canonical

basis in 1y, that is, for every k € N and every scalars by, . .., by, we have that ||Zf-‘=1b,-ui|| = Zlelbﬂ.

Proof. Let by, ..., by be scalars; then

Mit1 Niv1

Zlb|<2b*z (a)) L+ S (a})
i=1  j=nj+1 i=1  j=n;+1
_ zk; 3 (bia;>+ (3.7)
i=1 j=n;+1

k
< Zlbi|~

i=1
loo O

Theorem 18. Every infinite-dimensional subspace of l1, contains an asymptotically isometric copy of
11 and hence it does not have the FPP,

Proof. Let Y be an infinite-dimensional subspace of i, {ex} € (0,(1/2)), &, \, 0 and { xn}
a sequence in Sy such that x; = Z;‘Zmi+1a;ej, where 0 = my < m; < --- and Z]f'imi+l+1|a;.| <
&;/8. Define

Mi+1

Z aj.ej,

j=mi+1
1 M1

o 2 (a) <1 (3.8)

||100 j:mi+1

+
¢ =

1 Mi+1

c; = IIT Z <uj~>_51.

||1oo j=mi+1

Changing w; by —wj;, if necessary, we can assume that ¢/ = 1, n € N. If there is a sequence
{ki} such that ¢ =1, then by Proposition 17, {wy, / [wk,]l;,, } is isometrically equivalent to the
canonical basis of I;. It is straightforward to see that ||xx, — (wy, /[|wk, ll1,) |l < (1/4)ék,. Then
by the above remark, {xy,} is an ail;-sequence.
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Suppose that c; #1 for all i and let

o= 1-c; B = 1-cy (3.9)
1= - 7 1= — — .
1-c5654 1=cyq6
Then0<a; <1, 0< B <1land
aicy_y + Picy; = aicy; 4 + Picy; = 1. (3.10)
Now let
Woi-1 (O
v = — pi . 3.11
il P sl G
Suppose that v; = Z]."f;;;il +1b§e]~. It is easy to check, using (3.10), that
Miv1 N+ MmMoiv1 N =
1 —_ 1 —
D <b].> - (b].> = 1. (3.12)
]:mzl‘_1+1 ]:m2,~_1+1

Hence, by Proposition 17, {v;} is isometrically equivalent to the canonical basis of [;.

Now, if we define v, = a,x2,-1 — fnX2n € Y, itis straightforward to see that ||y, — v, ||,
< &, and by the above remark, {y,} is an ail;-sequence.

Finally in [13] Dowling and Lennard proved that if a Banach space contains an ail;-se-
quence, then it does not have the FPP. Hence Y does not have the FPP. O
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