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36000 Guanajuato, GTO, Mexico
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We study the fixed point property (FPP) in the Banach space c0 with the equivalent norm ‖ · ‖D.
The space c0 with this norm has the weak fixed point property. We prove that every infinite-di-
mensional subspace of (c0, ‖ · ‖D) contains a complemented asymptotically isometric copy of c0,
and thus does not have the FPP, but there exist nonempty closed convex and bounded subsets
of (c0, ‖ · ‖D) which are not ω-compact and do not contain asymptotically isometric c0—summing
basis sequences. Then we define a family of sequences which are asymptotically isometric to dif-
ferent bases equivalent to the summing basis in the space (c0, ‖ · ‖D), and we give some of its prop-
erties. We also prove that the dual space of (c0, ‖ · ‖D) over the reals is the Bynum space l1∞ and that
every infinite-dimensional subspace of l1∞ does not have the fixed point property.

1. Introduction

We start with some notations and terminologies. Let K be a nonempty, convex, closed and
bounded subset of a Banach space (X, ‖·‖). A mapping T : K → K is said to be nonexpansive
if

∥
∥Tx − Ty

∥
∥ ≤ ∥∥x − y

∥
∥, x, y ∈ K. (1.1)

We say that K has the fixed point property for nonexpansive mappings (FPP) if every non-
expansive mapping T : K → K has a fixed point, that is, a point x ∈ K such that Tx = x.
We say that a Banach space (X, ‖ · ‖) has the fixed point property for nonexpansive mappings
(FPP) if every nonempty, convex, closed, and bounded subsetK of (X, ‖ · ‖) has the FPP, and
we say that the Banach space (X, ‖ · ‖) has the weak fixed point property for nonexpansive
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mappings (ω-FPP) if every nonempty, convex and weakly compact subset K of (X, ‖ · ‖) has
the FPP.

In this paper we study the FPP in the Banach space c0 with the equivalent norm ‖ · ‖D
defined by

‖x‖D = sup
i,j∈N

∣
∣xi − xj

∣
∣, x = {xi} ∈ c0. (1.2)

The norm ‖ · ‖D was used by Hagler in [1] to construct a separable Banach space X with non-
separable dual such that l1 does not embed in X and every normalized weakly null sequence
in X has a subsequence equivalent to the canonical basis of c0.

In [2], Dowling et al. gave a characterization of nonempty, convex, closed and bounded
subsets of c0 which are not ω-compact. Specifically, they proved that if K is a convex, closed
and bounded subset of c0, thenK is ω-compact if and only if every nonempty, convex, closed
and convex subset ofK has the FPP. To do that, the authors showed that every closed, convex
and bounded subset of c0 which is not ω-compact contains an asymptotically isometric
c0-summing basic sequence, aisbc0 sequence for short, that is, a sequence {yn}n ⊂ c0 such that
for all {tn}n ∈ l1,

sup
n∈N

(1 + εn)−1
∣
∣
∣
∣
∣

∞∑

i=n

ti

∣
∣
∣
∣
∣
≤
∥
∥
∥
∥
∥

∞∑

n=1

tnyn

∥
∥
∥
∥
∥
≤ sup

n∈N

(1 + εn)

∣
∣
∣
∣
∣

∞∑

i=n

ti

∣
∣
∣
∣
∣
, (1.3)

for some {εn}n ⊂ R with 0 ≤ εn+1 ≤ εn and limnεn = 0. They proved that if a convex, closed
and bounded subsetK of a Banach space contains an aisbc0 sequence, then there exists a non-
empty, convex, closed and bounded subset ofKwithout the FPP. The authors used this fact in
[3] as a tool to prove that a nonempty, closed, convex and bounded subset of c0 is ω-compact
if and only if it has the FPP.

It is easy to see that (c0, ‖ · ‖D) contains c0 isometrically, and then it contains aisbc0 se-
quences.

First we prove that every infinite-dimensional subspace Y of (c0, ‖ · ‖D) has a comple-
mented asymptotically isometric copy of c0 and hence by a result proved by Dowling et al.
in [4], Y does not have the FPP. Also, as an immediate consequence we obtain that Y has an
aisbc0 sequence. Nevertheless, we exhibit a nonempty closed, convex and bounded subset of
(c0, ‖ · ‖D), which is not ω-compact and does not contain aisbc0 sequences.

Then for every selection of signs Θ = {θi}, we define the Θ-basis of c0 which is
equivalent to the summing basis and define the corresponding asymptotically isometric Θ-
basic sequence, aiΘbc0D sequence for short. We prove that ifΘ1 /= ±Θ2, then the aiΘ1bc0D and
aiΘ2bc0D sequences are different in the sense that there exists a nonempty, closed, convex, and
bounded subset of (c0, ‖ · ‖D), which is not ω-compact, contains an aiΘ1bc0D sequence, and
does not contain aiΘ2bc0D sequences. We also show that the aisbc0 and aiΘbc0D sequences
are different in the last sense for allΘ. Hence, to give a similar result of Theorem 4 of [2] about
convex, closed and bounded sets in (c0, ‖ · ‖D)without the FPP, it is necessary to consider the
aiΘbc0D sequences.

Next we prove that if a convex and closed subsetK of a Banach space contains an asy-
mptotically isometric c0D-summing basic sequence, that is, an aiΘbc0D sequence, where Θ is
such that θi = 1 for all i, then there exists a nonempty, convex, closed and bounded subset of
K without the FPP.
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Finally, we show that the dual space of (c0, ‖ · ‖D), over the reals, is the Bynum [5]
space l1∞. Then, by a result of Dowling et al. in [6], the space l1∞ = (c0, ‖ · ‖D)∗ has “many”
subspaces and contains an asymptotically isometric copy of l1 and does not have the FPP.
In fact, we prove that every infinite dimensional subspace of l1∞ contains an asymptotically
isometric copy of l1 and does not have the FPP.

2. The Space (c0, ‖ · ‖D)
In the sequel, we will denote by {en} the canonical basis of c0 and by {ξn} the summing basis
of c0, that is, ξn =

∑n
i=1ei, n ∈ N.

Garcı́a Falset proved in [7] that a Banach space with strongly bimonotone basis and
with the weak Banach-Saks property has theω-FPP. It is easy to see that the canonical basis of
c0 is strongly bimonotone in (c0, ‖ · ‖D). On the other hand, since c0 has the weak Banach-Saks
property and ‖ · ‖D and ‖ · ‖∞ are equivalent, we get that (c0, ‖ · ‖D) has the weak Banach-Saks
property. Hence we have that (c0, ‖ · ‖D) has the ω-FPP.

To study the FPP in the space (c0, ‖ · ‖D) using aisbc0 sequences, we would expect that
nonempty, convex, closed and bounded subsets K of (c0, ‖ · ‖D), which are not ω-compact,
contain an aisbc0 sequence. This fact is true for some ω-compact sets in (c0, ‖ · ‖D), since the
space c0 embeds isometrically in (c0, ‖ · ‖D). In fact we have the following proposition.

Proposition 1. Let {uk}k ⊂ (c0, ‖ · ‖D) be a block basis of {en} with uk =
∑qk

i=pk
aiei, 1 ≤ p1 ≤ q1 <

p2 ≤ q2 < · · · . If ‖uk‖∞ = 1 = aik , for some pk ≤ ik ≤ qk, and yk = (1/2)(u2k −u2k−1), then the space
span{yk} is isometric to (c0, ‖ · ‖∞).

Proof. Since ‖uk‖∞ = 1 = aik for every k ∈ N, then |aj | ≤ 1 for all j ∈ N and

max
p2k−1≤i≤q2k−1,p2k≤j≤q2k

∣
∣ai + aj

∣
∣ = ai2k−1 + ai2k = 2. (2.1)

Hence, it is straightforward to see that ‖∑n
k=1tkyk‖D = ‖∑n

k=1tkek‖∞.

In the following theorem, we will show, using some results proved by Dowling et al.
[4, 8], that every infinite-dimensional subspace Y of c0D fails to have the FPP.

Theorem 2. Let Y be an infinite-dimensional subspace of c0D. Then Y has a complemented asymp-
totically isometric copy of c0 and thus Y does not have the FPP.

Proof. Let {εk}k ⊂ (0, 1) be a sequence such that εk+1 < εk, k ∈ N and εk → 0. As in [9] we
construct sequences {nk} ⊂ N and {yk}k ⊂ Y such that nk < nk+1, yk =

∑∞
i=nk

αk
i ei, ‖yk‖∞ = 1,

and

sup
i≥nk+1

∣
∣
∣α

j

i

∣
∣
∣ <

εk+2
4k

∀j = 1, . . . , k, and every k ∈ N. (2.2)

Since ‖yk‖∞ = 1, taking −yk instead of yk, if necessary, we can suppose that there exists
nk ≤ rk < nk+1 such that

αk
rk

= 1. (2.3)
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Define xk = (y2k−1 − y2k)/2. Then, by (2.3) and (2.2), we get that 1 − (εk/2) < ‖xk‖D <
1 + (εk/2) and

∞∑

k=1

tkxk =
1
2

∞∑

k=1

tk

( ∞∑

i=n2k−1

α2k−1
i ei −

∞∑

i=n2k

α2k
i ei

)

=
1
2

∞∑

k=1

tk

( ∞∑

i=n2k−1

(

α2k−1
i − α2k

i

)

ei

)

=
1
2

∞∑

k=1

⎛

⎝

n2k+1−1∑

i=n2k−1

⎛

⎝

k∑

j=1

tj
(

α
2j−1
i − α

2j
i

)

ei

⎞

⎠

⎞

⎠,

(2.4)

where α2k
i = 0 for i = n2k−1, . . . n2k − 1, k ∈ N. Then by (2.3) and (2.2), if k > 1, we get

∥
∥
∥
∥
∥

∞∑

n=1

tnxn

∥
∥
∥
∥
∥
D

≥ 1
2

max
n2k−1≤r<n2k,n2k≤s<n2k+1

∣
∣
∣
∣
∣
∣

k∑

j=1

tj
(

α
2j−1
r − α

2j
r − α

2j−1
s + α

2j
s

)

∣
∣
∣
∣
∣
∣

≥ 1
2

∣
∣
∣
∣
∣
∣

k∑

j=1

tj
(

α
2j−1
r2k−1 − α

2j
r2k−1 − α

2j−1
r2k

+ α
2j
r2k

)

∣
∣
∣
∣
∣
∣

≥ 1
2
|tk|
∣
∣
∣α2k−1

r2k−1 − α2k−1
r2k

+ α2k
r2k

∣
∣
∣ − 1

2

k−1∑

j=1

∣
∣tj
∣
∣

∣
∣
∣α

2j−1
r2k−1 − α

2j
r2k−1 − α

2j−1
r2k

+ α
2j
r2k

∣
∣
∣

≥ 1
2
|tk|
(∣
∣
∣α2k−1

r2k−1 + α2k
r2k

∣
∣
∣ −
∣
∣
∣α2k−1

r2k

∣
∣
∣

)

− 1
2

k−1∑

j=1

∣
∣tj
∣
∣

(∣
∣
∣α

2j−1
r2k−1

∣
∣
∣ +
∣
∣
∣α

2j
r2k−1

∣
∣
∣ +
∣
∣
∣α

2j−1
r2k

∣
∣
∣ +
∣
∣
∣α

2j
r2k

∣
∣
∣

)

≥ 1
2
|tk|(2 − εk) − 1

2

k−1∑

j=1

∣
∣tj
∣
∣
εk
k

≥ |tk|
(

1 − εk
2

)

−max
1≤j≤k

∣
∣tj
∣
∣
εk
2
.

(2.5)

On the other hand, if n2k−1 ≤ r < n2k+1, n2m−1 ≤ s < n2m+1, k ≤ m, using (2.2), we get

1
2

∣
∣
∣
∣
∣
∣

k∑

j=1

tj
(

α
2j−1
r − α

2j
r

)

−
m∑

j=1

tj
(

α
2j−1
s − α

2j
s

)

∣
∣
∣
∣
∣
∣

≤ 1
2

[

|tk|
(∣
∣
∣α2k−1

r

∣
∣
∣ +
∣
∣
∣α2k

r

∣
∣
∣

)

+ |tm|
(∣
∣
∣α2m−1

s

∣
∣
∣ +
∣
∣
∣α2m

s

∣
∣
∣

)]

+
1
2

⎡

⎣

k−1∑

j=1

∣
∣tj
∣
∣

(∣
∣
∣α

2j−1
r

∣
∣
∣ +
∣
∣
∣α

2j
r

∣
∣
∣

)

+
m−1∑

j=1

∣
∣tj
∣
∣

(∣
∣
∣α

2j−1
s

∣
∣
∣ +
∣
∣
∣α

2j
s

∣
∣
∣

)

⎤

⎦
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≤ 1
2

⎡

⎣|tk|(1 + εk) + |tm|(1 + εm) +
k−1∑

j=1

∣
∣tj
∣
∣

εk
k − 1

+
m−1∑

j=1

∣
∣tj
∣
∣

εm
m − 1

⎤

⎦

≤ 1
2

[

|tk|(1 + εk) + |tm|(1 + εm) +max
1≤j<k

∣
∣tj
∣
∣εk + max

1≤j<m

∣
∣tj
∣
∣εm

]

≤ 1
2

[

max
1≤j≤k

∣
∣tj
∣
∣(1 + εk) + max

1≤j≤m

∣
∣tj
∣
∣(1 + εm)

]

≤ sup
n∈N

(

(1 + εn)max
1≤j≤n

∣
∣tj
∣
∣

)

≤ sup
n∈N

(1 + εn)|tn|.

(2.6)

Then we obtain

sup
n∈N

(

|tn|
(

1 − εn
2

)

−max
1≤j≤n

∣
∣tj
∣
∣
εn
2

)

≤
∥
∥
∥
∥
∥

∞∑

n=1

tnxn

∥
∥
∥
∥
∥
D

≤ sup
n∈N

(1 + εn)|tn|. (2.7)

Now, define zn = xn/(1 + εn) and m = (1 − ε1)/(1 + ε1); then (1 − εn)/(1 + εn) ≤ ‖zn‖D and
limn‖zn‖D = 1. On the other hand,

(1 + ε1)m sup
n∈N

|tn| = (1 − ε1)sup
n∈N

|tn| =
(

1 − ε1
2

)

sup
n∈N

|tn| − ε1
2
sup
n∈N

|tn|

≤ sup
n∈N

(

|tn|
(

1 − εn
2

)

−max
1≤j≤n

∣
∣tj
∣
∣
εn
2

)

.

(2.8)

Thus

m sup
n∈N

|tn| ≤ sup
n∈N

(

|tn|
(

1 − εn
2

)

−max
1≤j≤n

∣
∣tj
∣
∣
εn
2

)

≤
∥
∥
∥
∥
∥

∞∑

n=1

tnzn

∥
∥
∥
∥
∥
D

≤ sup
n∈N

|tn|. (2.9)

Then by Theorem 2 of [8] Y contains an asymptotically isometric copy of c0 and since Y does
not contain a copy of l1, by Corollary 11 of [8] it contains a complemented asymptotically
isometric copy of c0. Finally by Proposition 11 of [4], Y does not have the FPP.

As a consequence of the last theorem, we get that every infinite-dimensional subspace
of (c0, ‖ · ‖D) contains an aisbc0 sequence. Nevertheless, the following result gives an example
of a nonempty, convex, closed and bounded subset of (c0, ‖ · ‖D)which is not weakly compact
and without aisbc0 sequences.

Proposition 3. Let {ξn} be the c0 summing basis. Then

C =

{ ∞∑

n=1

λnξn : λn ≥ 0,
∞∑

n=1

λn = 1

}

(2.10)

does not have aisbc0 sequences with the norm ‖ · ‖D.
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Proof. Suppose that {yn} is an aisbc0 sequence in C with ‖ · ‖D for some sequence {εn}. Then
yn =

∑∞
i=1λ

n
i ξi for some sequence {λni } such that λni ≥ 0 and

∑∞
i=1λ

n
i = 1. Fix 0 < ε < 1/4.

Passing to a subsequence we can suppose that εn+1 ≤ εn < (1/2)−2ε and 1/(1+εn) > 1−ε, n ∈
N.

Assume first that there exists M ∈ N such that for every n ≥ M,
∑∞

i=M+1λ
n
i ≤ (1/2) − ε.

Let un =
∑M

i=1λ
n
i ξi and vn =

∑∞
i=M+1λ

n
i ξi; then yn = un + vn. Since {un} ⊂ [ξi]

M
i=1 is bounded

and dim [ξi]
M
i=1 = M, passing to another subsequence we can suppose that un → u for some

u ∈ C. Then, there exist n1, n2 ∈ N withM ≤ n1 < n2 such that

‖un1 − un2‖D < ε. (2.11)

Since
∑∞

i=M+1λ
n
i ≤ (1/2) − ε, n ≥ M, we also get

‖vn1 − vn2‖D = max
M+1≤r≤k<∞

∣
∣
∣
∣
∣

k∑

i=r

λn1
i −

k∑

i=r

λn2
i

∣
∣
∣
∣
∣

≤
∞∑

i=M+1

λn1
i +

∞∑

i=M+1

λn2
i ≤ 1 − 2ε.

(2.12)

Hence ‖yn1 − yn2‖D ≤ 1 − ε. On the other hand, since {yn} is an aisbc0 sequence, we have that
‖yn1 − yn2‖D ≥ 1/(1 + εn2), which contradicts the fact that 1/(1 + εn2) > 1 − ε.

Assume now that for all M ∈ N, there exist n ≥ M such that
∑∞

i=M+1λ
n
i > (1/2) − ε.

Denote each yn by {αn
i } =

∑∞
i=1α

n
i en, where {en} is the canonical basis of c0. Then αn

i =
∑∞

j=iλ
n
j .

Since y1, y2 ∈ c0, there exists M ∈ N such that

α1
i , α

2
i <

ε

2
, i ≥ M. (2.13)

By hypothesis, there exists n0 ∈ N such that
∑∞

i=M+1λ
n0
i > (1/2) − ε. Then

3
2
− 2ε ≤ ∥∥y1 + y2 − yn0

∥
∥
D. (2.14)

On the other hand, since {yn} is an aisbc0 sequence, we have that ‖y1 + y2 − yn0‖D ≤ 1 + ε1,
which contradicts the fact that ε1 < (1/2) − 2ε.

In view of the last proposition and motivated by the behavior of the c0 summing basic
sequence with the norm ‖ · ‖D, wewill define the asymptotically isometric c0D-summing basic
sequence. First we consider the following definition.

Definition 4. Let {xn} be a bounded basic sequence in a Banach space X. We say that {xn} is a
convexly closed sequence if the set

C =

{ ∞∑

n=1

tnxn : tn ≥ 0,
∞∑

n=1

tn = 1

}

(2.15)

is closed, that is, if conv{xn} = C.
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Note that subsequences of convexly closed sequences are again convexly closed and
that every basic sequence equivalent to a convexly closed sequence is convexly closed.

It is easy to see that the c0 summing basis, the canonical basis of l1, and aisbc0 se-
quences are convexly closed. Moreover, a weakly null basic sequence in a Banach space is
not a convexly closed sequence. Hence the canonical basis of c0 and the canonical basis of lp,
1 < p < ∞, are not convexly closed.

Definition 5. Let {xn} be a sequence in a Banach spaceX. We say that {xn} is an asymptotically
isometric c0D-summing basic sequence, aisbc0D sequence for short, if {xn} is convexly closed
and there exists {εn} ⊂ (0,∞) such that εn ↘ 0 and

sup
1≤n≤m<∞

(1 + εm)−1
∣
∣
∣
∣
∣

m∑

k=n

tk

∣
∣
∣
∣
∣
≤
∥
∥
∥
∥
∥

∞∑

n=1

tnxn

∥
∥
∥
∥
∥
≤ sup

1≤n≤m<∞
(1 + εm)

∣
∣
∣
∣
∣

m∑

k=n

tk

∣
∣
∣
∣
∣
, ∀{tn} ∈ l1. (2.16)

Now, we prove that the analogous of the operator defined in [2] is still contractive and
then Banach spaces containing aisbc0D sequences does not have the FPP.

Proposition 6. Let K be a nonempty, convex, closed and bounded subset of a Banach space X. Let
{εn} ⊂ (0,∞) be a sequence such that εn → 0 and εn < 2−14−n, n ≥ 2. If K contains an aisbc0D
sequence with this {εn}, then there exists a nonempty, convex and closed subsetC ofK and T : C → C
affine, nonexpansive, and fixed-point-free. Moreover, T is contractive.

Proof. Let {xn} be an aisbc0D sequence in K with {εn} ⊂ (0,∞) such that εn < 2−14−n, n ≥ 2.
Set

C = conv{xn} =

{ ∞∑

n=1

tnxn : tn ≥ 0, n ∈ N y
∞∑

n=1

tn = 1

}

⊂ K. (2.17)

Thus C is nonempty, convex, closed and bounded. Define Txn =
∑∞

j=1((xn+j)/2j), n ∈ N, and
extend T linearly to C, that is, if x =

∑∞
n=1tnxn ∈ C then define T(

∑∞
n=1tnxn) =

∑∞
n=1tnTxn.

It is easy to see that T(C) ⊂ C and that T is affine and fixed-point-free, see [2]. We only
need to show that T is a contractive mapping. Let x, y ∈ C, with x /=y. Then x =

∑∞
n=1tnxn

and y =
∑∞

n=1snxn, with tn, sn ≥ 0, and
∑∞

n=1tn =
∑∞

n=1sn = 1. Let βn = tn − sn, n ∈ N, such
that

∑∞
n=1βn = 0. As in [2] we have

T(x) − T
(

y
)

=
∞∑

n=1

Bnxn, (2.18)

where B1 = 0 and Bn = (β1/2n−1) + (β2/2n−2) + · · · + (βn−1/2), n ≥ 2. Consequently,

∥
∥T(x) − T

(

y
)∥
∥ =

∥
∥
∥
∥
∥

∞∑

n=1

Bnxn

∥
∥
∥
∥
∥
≤ sup

1≤n≤m<∞
(1 + εm)

∣
∣
∣
∣
∣

m∑

k=n

Bk

∣
∣
∣
∣
∣
. (2.19)
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Take n,m ∈ N with n ≤ m. Since

m∑

k=n

Bk =
β1

2n−1
+

β2

2n−2
+ · · · + βn−1

2

+
β1
2n

+
β2

2n−1
+ · · · + βn−1

22
+
βn
2

+ · · ·

+
β1

2m−1 +
β2

2m−2 + · · · + βn−1
2m−(n−1) +

βn
2m−n +

βn+1

2m−(n+1) + · · · + βm−1
2

=
1
2
(

βn−1 + βn + · · · + βm−1
)

+
1
22
(

βn−2 + βn−1 + · · · + βm−2
)

+ · · ·

+
1

2n−1
(

β1 + β2 + · · · + βm−(n−1)
)

+ · · ·

+
1

2m−2
(

β1 + β2
)

+
1

2m−1
(

β1
)

,

(2.20)

we have

(1 + εm)

∣
∣
∣
∣
∣

m∑

k=n

Bk

∣
∣
∣
∣
∣
≤ (1 + εm)

(
1 + 2εm−1

2
1

1 + 2εm−1

∣
∣βn−1 + βn + · · · + βm−1

∣
∣

+
1 + 2εm−2

22
1

1 + 2εm−2

∣
∣βn−2 + βn−1 + · · · + βm−2

∣
∣ + · · ·

+
1 + 2εm−(n−1)

2n−1
1

1 + 2εm−(n−1)

∣
∣β1 + β2 + · · · + βm−(n−1)

∣
∣ + · · ·

+
1 + 2ε2
2m−2

1
1 + 2ε2

∣
∣β1 + β2

∣
∣ +

1 + 2ε1
2m−1

1
1 + 2ε1

∣
∣β1
∣
∣

)

≤
(

sup
1≤i≤j≤m

(

1 + 2εj
)−1
∣
∣
∣
∣
∣

j
∑

k=i

βk

∣
∣
∣
∣
∣

)

Qnm,

(2.21)

where

Qnm = (1 + εm)
(
1 + 2εm−1

2
+
1 + 2εm−2

22
+ · · ·+

+
1 + 2εm−(n−1)

2n−1
+
1 + 2εm−n

2n
+ · · · + 1 + 2ε2

2m−2 +
1 + 2ε1
2m−1

)

≤
(

1 +
1

2 · 4m
)[(

1
2
+

1
22

+ · · · + 1
2m−1

)

+
(

1
2 · 4m−1 + · · · + 1

2m−1 · 41
)]
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=
(

1 +
1

2 · 4m
)[(

1 − 1
2m−1

)

+
(

1
22m−1 +

1
22m−2 + · · · + 1

2m+1

)]

<

(

1 +
1
4m

)[(

1 − 1
2m−1

)

+
1
2m

]

< 1.

(2.22)

Then we get

sup
1≤n≤m<∞

(1 + εm)

∣
∣
∣
∣
∣

m∑

k=n

Bk

∣
∣
∣
∣
∣
≤ sup

1≤n≤m<∞
(1 + 2εm)−1

∣
∣
∣
∣
∣

m∑

k=n

βk

∣
∣
∣
∣
∣
< sup

1≤n≤m<∞
(1 + εm)−1

∣
∣
∣
∣
∣

m∑

k=n

βk

∣
∣
∣
∣
∣

≤
∥
∥
∥
∥
∥

∞∑

n=1

βnxn

∥
∥
∥
∥
∥
=
∥
∥x − y

∥
∥.

(2.23)

Thus T is contractive.

Next for any sequence of signs we will define a basis in c0 equivalent to {ξn}, the sum-
ming basis of c0, and a sequence asymptotically isometric to it.

Let {en} be the canonical basis of c0 and for any selection of signs Θ = {θi}i, that is,
θi ∈ {−1, 1}, i ∈ N, let {ζΘn }n be the sequence defined by

ζΘn =
n∑

k=1

θkek, n ∈ N. (2.24)

Since ‖∑m
n=1tnξn‖∞ = ‖∑m

n=1tnζ
Θ
n ‖∞ for all {tn}mn=1 ⊂ K, we get that {ζΘn } is a basis of c0 equiv-

alent to the c0 summing basis. The sequence {ζΘn } is called the Θ-basis of c0. Let Θ0 = {θi},
where θi = 1, i ∈ N. Then the Θ0-basis of c0 is the c0 summing basis. If we define C =
{∑∞

n=1tnζ
Θ
n : tn ≥ 0 and

∑∞
n=1tn = 1}, then C is nonempty, convex and bounded. Since ‖ · ‖∞

and ‖ · ‖D are equivalent, we have that {ζΘn } is convexly closed in (c0, ‖ · ‖D).
The setC = {∑∞

n=1tnζ
Θ
n : tn ≥ 0 and

∑∞
n=1tn = 1} is notω-compact. The following result

shows that the set C contains neither aisbc0D sequences nor aisbc0 sequences with the norm
‖ · ‖D if Θ/= ±Θ0.

Proposition 7. For Θ/= ±Θ0, let {ζΘn } be the Θ-basis of c0 considered in (c0, ‖ · ‖D). If

C =

{ ∞∑

n=1

tnζ
Θ
n : tn ≥ 0,

∞∑

n=1

tn = 1

}

, (2.25)

then the set C contains neither aisbc0D sequences nor aisbc0 sequences with the norm ‖ · ‖D.

Proof. Let {yk} ⊂ C. Then yk =
∑∞

n=1λ
k
nζ

Θ
n for some λkn ≥ 0 and

∑∞
n=1λ

k
n = 1. Suppose that

{yk} is an aisbc0D sequence (resp. an aisbc0 sequence) with the norm ‖ · ‖D. Let n0 = min{n :
θn /= θ1}. If there exists 0 < ρ < 1 such that

∑n0−1
i=1 λki ≤ 1 − ρ for all k ≥ 1, then for all k ≥ 1,

∥
∥yk

∥
∥
D ≥

∞∑

n=1

λkn +
∞∑

n=n0

λkn ≥ 1 + ρ. (2.26)



10 Abstract and Applied Analysis

Since {yk} is an aisbc0D sequence (resp. an aisbc0 sequence) with the norm ‖ · ‖D, then
‖yk‖D ≤ 1 + εk → 1 and this is impossible. Now, if lim supk

∑n0−1
i=1 λki = 1, as in the proof

of Proposition 3, we obtain a subsequence {yki} of {yk} with ‖yki − yki+1‖D → 0. Since
{yn} is an aisbc0D with the norm ‖ · ‖D, then (1 + εki)

−1 ≤ ‖yki − yki+1‖D (resp. (1 + εki+1)
−1 ≤

‖yki − yki+1‖D) and making i → ∞we get that 1 ≤ 0. This contradiction proves the result.

Although the set C of the last proposition has neither aisbc0D sequences nor aisbc0
sequences, for some Θ it does not have the FPP.

ForΘ = {θi}, let Fn be the set such that if i, j ∈ Fn, then θi = θj , and if i ∈ Fn+1 and j ∈ Fn,
then θi /= θj . Denote by rn the cardinality of Fn. If rn < ∞, define p0 = 0, pn−1 = minFn − 1, and
pn = maxFn.

Proposition 8. Let Θ/= ±Θ0. Then

C =

{ ∞∑

n=1

tnζ
Θ
n : tn ≥ 0,

∞∑

n=1

tn = 1

}

(2.27)

does not have the FPP in the following cases.

(1) There exists k ≥ 1 such that rn ≤ rn+k < ∞, n ∈ N.

(2) r1 = 1 and r2 = ∞.

(3) There exists {in}, with i1 > 1, such that for any k, l ∈ N with ik−1 < l < ik we have θl = θik
and also θk /= θik for all k ≥ 2 or θk = θik for all k ≥ 2.

Proof. Let Θ/= ±Θ0.
(1) If there exists k ≥ 1 such that rn ≤ rn+k < ∞, n ∈ N, define qn =

∑n+1
j=n−(k−2)rj , n ≥ k

and T : C → C by

T
∞∑

n=1

tnζ
Θ
n = T

∞∑

n=1

pn∑

i=pn−1+1

tiζ
Θ
i =

∞∑

n=k

pn+1∑

i=wn

ti−qnζ
Θ
i , (2.28)

wherewn = pn+rn+1−rn+1−k+1. The idea is to translate the coefficients of
∑∞

n=1tnζ
Θ
n in the block

Fn into the last rn terms of the block Fn+k. Then it is easy to see that T does not have fixed
points. To prove that T is nonexpansive first observe that if k is even the signs of the θi and
θj with i ∈ Fn and j ∈ Fn+k are the same and are different if k is odd. Now let x =

∑∞
n=1tnζ

Θ
n ,

y =
∑∞

n=1snζ
Θ
n , and x − y =

∑∞
n=1αnζ

Θ
n . Then αn = tn − sn and

∑∞
n=1αn = 0. Hence

x − y =
∞∑

n=1

pn∑

i=pn−1+2

θpn

( ∞∑

n=i

αn

)

ei, (2.29)

T
(

x − y
)

=
∞∑

n=k

⎛

⎝θpn+1

∞∑

n=i−qn
αn

⎞

⎠

⎛

⎝

wn∑

i=pn+1

ei

⎞

⎠

pn+1∑

i=wn+1

θpn+1

⎛

⎝

∞∑

n=i−qn
αn

⎞

⎠ei (2.30)

are the expressions of x − y and T(x − y) with respect to the canonical basis. Since the
coefficients in (2.29) and (2.30) are the same, or the same with opposite signs, with perhaps
some repetitions in (2.30), T is an isometry.
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(2) Suppose now that r1 = 1 and r2 = ∞. In this case, define T
∑∞

n=1tnζ
Θ
n =

∑∞
n=1tnζ

Θ
n+1.

Clearly T is nonexpansive and fixed-point-free.
(3) In this case it is straightforward to see that the operator T : C → C defined by

T
∑∞

n=1tnζ
Θ
n =
∑∞

n=1tnζ
Θ
in
is nonexpansive and does not have fixed points.

Proposition 9. LetΘ/= ±Θ0. SupposeΘ does not satisfy the hypotheses of the above proposition, and
let {in} be a sequence with i1 > 1. Then the operator T : C → C defined by T

∑∞
n=1tnζ

Θ
n =
∑∞

n=1tnζ
Θ
in

is expansive.

Proof. Since Θ does not satisfy the hypotheses (1) and (2) of the above proposition, there are
three possibilities.

(I) rn < ∞ for every n ≥ 2; then for every k there exists n such that rn+k < rn.

(II) r2 = ∞; then r1 > 1.

(III) There exists k > 2 such that rk = ∞.

Let {in} be fixed with i1 > 1 and denote i0 = 0. Since Θ does not satisfy the hypotheses
(3) of the above proposition, there exist k and l with ik−1 < l < ik such that θl /= θik or there
exists k1 ≥ 2 with θk1 = θik1 and there exists k2 ≥ 2 with θk2 /= θik2 .

Case 1. For every k there exists n such that rn+k < rn.

There are two subcases.

Subcase 1.1. There are k and l with ik−1 < l < ik such that θl /= θik .
Let x = (1/8)ζΘ1 + (3/8)ζΘk−1 + (1/2)ζΘk and y = (1/16)ζΘ1 + (3/16)ζΘk−1 + (3/4)ζΘk . Then

x − y = (1/16)ζΘ1 + (3/16)ζΘk−1 − (1/4)ζΘk = −(1/16)∑k−1
i=2 θiei − (1/4)θkek and ‖x − y‖D ≤

5/16. On the other hand, Tx − Ty = (1/16)ζΘi1 + (3/16)ζΘik−1 − (1/4)ζΘik = −(1/16)∑ik−1
j=i1+1

θjej −
(1/4)

∑ik
j=ik−1+1

θjej and ‖Tx − Ty‖D = 1/2.

Subcase 1.2. For any k ∈ N and l with ik−1 < l < ik, we have θl = θik .

There are two subsubcases. (1) θ1 = θi1 and (2) θ1 /= θi1 .

(1) θ1 = θi1

If θk = θik for every k; then we would have F1 = N, which implies Θ = ±Θ0. Then there is k
such that θk /= θik . Let s = min{l : θl /= θil}. Then s > 1.

There are two possibilities: (A) there exists r > s such that θr = θir and (B) θk /= θik for
all k ≥ s.

(A) Let k + 1 = min{r > s : θr = θir}. We need to consider the following cases.

(a) θk = θk+1.

Let x = (1/2)ζΘ
k−1 + (1/2)ζΘ

k+1 and y = (3/4)ζΘ
k−1 + (1/4)ζΘ

k+1. Then x − y =
−(1/4) ζΘk−1 + (1/4)ζΘk+1 = θk+1((1/4)ek + (1/4)ek+1) and ‖x − y‖D = 1/4. On
the other hand, Tx − Ty = −(1/4) ζΘik−1 + (1/4) ζΘik+1 = (1/4)

∑ik
j=ik−1+1

θjej +

(1/4)
∑ik+1

j=ik+1
θjej = −(1/4)θk+1

∑ik
j=ik−1+1

ej + (1/4)θk+1
∑ik+1

j=ik+1
ej and ‖Tx − Ty‖D

= 1/2.
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(b) θk /= θk+1.

Let x = (1/2)ζΘk−1 + (1/2)ζΘk+1 and y = (3/4)ζΘk + (1/4)ζΘk+1. Then x − y =
(1/2) ζΘ

k−1− (3/4) ζΘk +(1/4)ζΘ
k+1 = −(1/2)θkek +(1/4)θk+1ek+1 = θk+1((1/2)ek +

(1/4)ek+1) and ‖x − y‖D = 1/2. On the other hand, Tx − Ty = (1/2) ζΘik−1 −
(3/4) ζΘik + (1/4) ζΘik+1 = −(1/2)∑ik

j=ik−1+1
θjej + (1/4)

∑ik+1
j=ik+1

θjej = −(1/2)
θk
∑ik

j=ik−1+1
ej + (1/4)θk

∑ik+1
j=ik+1

ej and ‖Tx − Ty‖D = 3/4.

(B) θk /= θik for all k ≥ s. By hypothesis we have that s > 2. There are two cases.

(a) θs−1 = θs. Then θis−1 /= θis . Let x = (1/4)ζΘs−2 + (1/2)ζΘs−1 + (1/4)ζΘs and y =
(1/4)ζΘs−1+(3/4)ζ

Θ
s . Then x−y = (1/4)ζΘs−2+(1/4)ζ

Θ
s−1−(1/2)ζΘs = −θs((1/4)es−1

+ (1/2)es) and ‖x − y‖D = 1/2. On the other hand, Tx − Ty = (1/4) ζΘis−2 +

(1/4) ζΘis−1 − (1/2) ζΘis = −(1/4)θs
∑is−1

j=is−2+1
ej +(1/2)θs

∑is
j=is−1+1

ej and ‖Tx − Ty‖D
= 3/4.

(b) θs−1 /= θs. Then θis−1 = θis . Let x = (1/4)ζΘs−2 + (1/4)ζΘs−1 + (1/2)ζΘs and y =
(3/4)ζΘs−1+(1/4)ζ

Θ
s . Then x−y = (1/4)ζΘs−2−(1/2)ζΘs−1+(1/4)ζΘs = −(1/4)θs−1es−1

+ (1/4)θses = θs((1/4)es−1 + (1/4)es) and ‖x − y‖D = 1/4. On the other hand,
Tx − Ty = (1/4) ζΘis−2 − (1/2) ζΘis−1 + (1/4) ζΘis = −(1/4)θis−1

∑is−1
j=is−2+1

ej + (1/4)

θis
∑is

j=is−1+1
ej = θs−1(−(1/4)

∑is−1
j=is−2+1

ej+(1/4)
∑is

j=is−1+1
ej) and ‖Tx − Ty‖D = 1/2.

(2) θ1 /= θi1

In this case there exists k such that θk = θik . If s = min{l : θl = θil}, then s > 1.
Hence consider the cases: (A) there exists r > s such that θr /= θir and (B) θk = θik for

all k ≥ s and proceed as in the Case (1).

Case 2. r2 = ∞ and r1 > 1.
Then θp1 /= θip1 with 1 < p1. Hence we can proceed as in Subcase 1.2(1)(A) above

taking k = p1.

Case 3. There is s > 1 such that rs+1 = ∞.
Then θps /= θips with 1 < ps. Hencewe can proceed as in Subcase 1.2(1)(A) above taking

k = ps.

Next, for every selection of signs Θ/= ±Θ0, we will define the asymptotically isometric
c0D-Θ-basic sequences. To this end, let us consider the following notation.

Let

SΘ = {(n,m) : θn = θm},

DΘ = {(n,m) : θn /= θm}.
(2.31)

Definition 10. Let {xn} be a sequence in a Banach space X. We say that {xn} is an asymptoti-
cally isometric c0D-Θ-basic sequence (aiΘbc0D sequence for short) if {xn} is convexly closed
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and there exists {εΘn } ⊂ (0, (1/2)) such that εΘn ↘ 0, and

L
({

εΘn

}

, {tn},SΘ

)

∨ L
({

εΘn

}

, {tn},DΘ

)

≤
∥
∥
∥
∥
∥

∞∑

n=1

tnxn

∥
∥
∥
∥
∥

≤ R
({

εΘn

}

, {tn},SΘ

)

∨ R
({

εΘn

}

, {tn},DΘ

)

(2.32)

holds for all {tn} ∈ l1, where

L
({

εΘn

}

, {tn},SΘ

)

=

(

sup
n<l,(n,l)∈SΘ

(

1 + εΘl−1
)−1
∣
∣
∣
∣
∣

l−1∑

k=n

tk

∣
∣
∣
∣
∣

)

,

L
({

εΘn

}

, {tn},DΘ

)

=

(

sup
n<l,(n,l)∈DΘ

(

1 + εΘl−1
)−1
∣
∣
∣
∣
∣

l−1∑

k=n

tk + 2
∞∑

k=l

tk

∣
∣
∣
∣
∣

)

,

R
({

εΘn

}

, {tn},SΘ

)

=

(

sup
n<l,(n,l)∈SΘ

(

1 + εΘl−1
)
∣
∣
∣
∣
∣

l−1∑

k=n

tk

∣
∣
∣
∣
∣

)

,

R
({

εΘn

}

, {tn},DΘ

)

=

(

sup
n<l,(n,l)∈DΘ

(

1 + εΘl−1
)
∣
∣
∣
∣
∣

l−1∑

k=n

tk + 2
∞∑

k=l

tk

∣
∣
∣
∣
∣

)

.

(2.33)

We are interested in aiΘbc0D sequences for which the numbers εΘn of Definition 10 are
small. We are taking {εΘn } ⊂ (0, (1/2)).

We know that the set C of Proposition 3 does not have aisbc0 sequences. Now we also
prove that C does not contain aiΘbc0D sequences with the norm ‖ · ‖D if Θ/= ±Θ0.

Proposition 11. Let Θ/= ± Θ0. The set C = {∑∞
n=1tnξn : tn ≥ 0 and

∑∞
n=1tn = 1} does not contain

aiΘbc0D sequences with the norm ‖ · ‖D.

Proof. Let {yk} ⊂ C. Then yk =
∑∞

n=1λ
k
nξn for some λkn ≥ 0 with

∑∞
n=1λ

k
n = 1. Suppose that

{yk} is an aiΘbc0D with ‖ · ‖D. Since Θ/= ±Θ0, there exist m ∈ N and {nk} ⊂ N with n1 < n2

< · · · , such that for all k ∈ N, m < nk and θnk /= θm. Let tn = 0 for n/=m,nk and tm = tnk = 1.
Thus

(

1 + εΘnk−1
)−1

3 ≤ L
({

εΘn

}

, {tn},SΘ

)

∨ L
({

εΘn

}

, {tn},DΘ

)

≤
∥
∥
∥
∥
∥

∞∑

n=1

tnyn

∥
∥
∥
∥
∥
D

=
∥
∥ym + ynk

∥
∥
D = 2.

(2.34)

Since (2.34) holds for all k ∈ N, making k → ∞ in (2.34), we get that 3 ≤ 2, which is a con-
tradiction.
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Proposition 12. Let Θ1 = {θ1
i }i and Θ2 = {θ2

i }i such that Θ1 /= ±Θ2 and Θ1,Θ2 /= ±Θ0. Let {ζΘ1
n }

be the Θ1-basis of c0 considered in (c0, ‖ · ‖D) and let

C(Θ1) =

{ ∞∑

n=1

tnζ
Θ1
n : tn ≥ 0,

∞∑

n=1

tn = 1

}

. (2.35)

The set C(Θ1) does not contain aiΘ2bc0D sequences with the norm ‖ · ‖D.

Proof. Let {yk} ⊂ C. Then yk =
∑∞

n=1λ
k
nζ

Θ1
n for some λkn ≥ 0 with

∑∞
n=1λ

k
n = 1. Suppose that

{yk} is an aiΘ2bc0D with the norm ‖ · ‖D.
Suppose first θ1

1 = θ2
1; since Θ1 /=Θ2, there exists m > 1 such that θ1

m /= θ2
m.

There are two cases.

Case 1. (1, m) ∈ SΘ1 . In this case (1, m) ∈ DΘ2 . Let tn = 0 for n/= 1, m and t1 = tm = 1. Thus

(

1 + εΘ2
m−1
)−1

3 ≤ L
({

εΘ2
n

}

, {tn},SΘ2

)

∨ L
({

εΘ2
n

}

, {tn},DΘ2

)

≤
∥
∥
∥
∥
∥

∞∑

n=1

tnyn

∥
∥
∥
∥
∥
D

=
∥
∥y1 + ym

∥
∥
D ≤ 2.

(2.36)

Since εΘ2
m−1 < 1/2, we get a contradiction.

Case 2. (1, m) ∈ DΘ1 . In this case (1, m) ∈ SΘ2 . Let tn = 0 for n/= 1, m and t1 = tm = 1. Thus

2 ≤
∞∑

n=1

λ1n +
∞∑

n=1

λmn +
∞∑

n=m
λ1n +

∞∑

n=m
λmn ≤

∥
∥
∥
∥
∥

∞∑

n=1

tnyn

∥
∥
∥
∥
∥
D

=
∥
∥y1 + ym

∥
∥
D

≤ R
({

εΘ2
n

}

, {tn},SΘ2

)

∨ R
({

εΘ2
n

}

, {tn},DΘ2

)

≤
(

1 + εΘ2
m−1
)

.

(2.37)

Since εΘ2
m−1 < 1/2, we get a contradiction.

Suppose now θ1
1 /= θ2

1; since Θ1 /= −Θ2, there exists m such that θ1
m = θ2

m.
There are two cases.

Case 1. (1, m) ∈ SΘ1 ; in this case (1, m) ∈ DΘ2 . Let tn = 0 for n/= 1, m and t1 = tm = 1. Thus

(

1 + εΘ2
m−1
)−1

3 ≤ L
({

εΘ2
n

}

, {tn},SΘ2

)

∨ L
({

εΘ2
n

}

, {tn},DΘ2

)

≤
∥
∥
∥
∥
∥

∞∑

n=1

tnyn

∥
∥
∥
∥
∥
D

=
∥
∥y1 + ym

∥
∥
D ≤ 2.

(2.38)

Since εΘ2
m−1 < 1/2, we get a contradiction.
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Case 2. (1, m) ∈ DΘ1 . In this case (1, m) ∈ SΘ2 . Let tn = 0 for n/= 1, m and t1 = tm = 1. Thus

2 ≤
∞∑

n=1

λ1n +
∞∑

n=1

λmn +
∞∑

n=m
λ1n +

∞∑

n=m
λmn ≤

∥
∥
∥
∥
∥

∞∑

n=1

tnyn

∥
∥
∥
∥
∥
D

=
∥
∥y1 + ym

∥
∥
D

≤ R
({

εΘ2
n

}

, {tn},SΘ2

)

∨ R
({

εΘ2
n

}

, {tn},DΘ2

)

≤
(

1 + εΘ2
m−1
)

.

(2.39)

Since εΘ2
m−1 < 1/2, we get a contradiction.

Propositions 3, 7, and 11 show that, in contrast with Theorem 4 of the Dowling et al.
paper [2] for aisbc0 sequences in c0, in the space (c0, ‖ · ‖D) we need an infinite number of
sequences (at least aisbc0 and aiΘbc0D sequences) to have a similar result.

3. The Space (c0, ‖ · ‖D)∗

It is known that the dual of the Bynum space c01 is the Bynum space l1∞. Below we prove that
the dual space of (c0, ‖ · ‖D)when the scalar field is the set of real numbers is also the Bynum
space l1∞. Let us suppose then that K = R. First we calculate the extreme points of the unit
ball of (c0, ‖ · ‖D).

Lemma 13. Let X = (c0, ‖ · ‖D). Then we have

E(BX) = {{xn} ∈ SX : xn ∈ {1, 0}, n ∈ N} ∪ {{xn} ∈ SX : xn ∈ {−1, 0}, n ∈ N}. (3.1)

Proof. First note that if {xn} ∈ SX then |xn − xm| ≤ 1, n,m ∈ N and |xn| ≤ 1, n ∈ N. Con-
sequently, if {xn} ∈ SX with xn0 = 1 for some n0 ∈ N, then 0 ≤ xn ≤ 1, for all n ∈ N. Anal-
ogously if {xn} ∈ SX with xn0 = −1 for some n0 ∈ N, then −1 ≤ xn ≤ 0, for all n ∈ N. Let
A = {{xn} ∈ SX : xn ∈ {1, 0}, n ∈ N} and B = {{xn} ∈ SX : xn ∈ {−1, 0}, n ∈ N}. Thus
A,B ⊂ SX .

Take x = {xn} ∈ A and suppose that x = (y + z)/2 with y, z ∈ SX . Also suppose that
y = {yn} and z = {zn}. Since x ∈ A, there exists n0 ∈ N such that xn0 = 1. Since xn = (yn+zn)/2
and yn, zn ≤ 1, if xn = 1 for some n ∈ N, we have that xn = yn = zn. Thus xn0 = yn0 = zn0 = 1.
On the other hand, if xn = 0 for some n ∈ N, we also have that xn = yn = zn, because if
yn < 0 we get that |yn − yn0 | > 1, which contradicts that |yn − ym| ≤ 1, n,m ∈ N and if yn > 0
then zn < 0 and we also have a contradiction. Therefore, x = y = z. Hence x ∈ E(BX). Thus
A ⊂ E(BX). Analogously B ⊂ E(BX).

Take now x = {xn} ∈ SX \ {A ∪ B}. Then there exists n0 ∈ N such that 0 < |xn0 | < 1. Let
a = infnxn and b = supnxn. If xn0 ∈ (a, b), define c = min(|xn0 − a|, |xn0 − b|), yn = zn =
xn, n /=n0, yn0 = xn0−c, and zn0 = xn0+c. Thus, xn = (y+z)/2with y, z ∈ SX and x /=y, x /= z.
Therefore, x ∈ SX \ E(BX). Suppose now that xn0 = a or xn0 = b. Since 0 < |xn0 | < 1 and
supn,m∈N

|xn − xm| = 1, we have that 0 ∈ (a, b). Since xn → 0, there exists n1 > n0 such that
xn1 ∈ (a, b), which implies that x ∈ SX \ E(BX). Consequently, E(BX) ⊂ A ∪ B.
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Theorem 14. Let f ∈ (c0, ‖ · ‖D)∗. There exists a unique sequence {cn} ∈ l1 such that f =
∑∞

n=1cne
∗
n

and

∥
∥f
∥
∥
D = max

( ∞∑

n=1

c+n,
∞∑

n=1

c−n

)

, (3.2)

where c+n = max(cn, 0) and c−n = −min(cn, 0).

Proof. Let f ∈ (c0, ‖ · ‖D)∗. Since {en} is a shrinking basis of (c0, ‖ · ‖D), there exists a unique
sequence {cn} ⊂ K such that f =

∑∞
n=1cne

∗
n. As sets (c0, ‖ · ‖D)∗ = (c0)

∗ and hence f ∈ (c0)
∗.

Thus f = R{an}where R : l1 → c∗0 is the Riesz representation. Consequently,

cn = f(en) = R{an}(en) = an. (3.3)

Therefore, {cn} = {an} ∈ l1. Thus

∥
∥f
∥
∥
D = sup

x∈BX

∣
∣f(x)

∣
∣ = sup

x∈E(BX)

∣
∣f(x)

∣
∣

= sup

{∣
∣
∣
∣
∣

∑

n∈F
cn

∣
∣
∣
∣
∣
: F ⊂ N, F finite

}

= max

( ∞∑

n=1

c+n,
∞∑

n=1

c−n

)

,

(3.4)

where c+n = max(cn, 0) and c−n = −min(cn, 0).

Corollary 15. (c0, ‖ · ‖D)∗ is the Bynum space l1∞ and it has the ω-FPP.

Remark 16. It is well known that l1(c0)
∗ has the ω∗ fixed point property for left reversible

semigroups, that is, whenever S is a semigroup such that aS ∩ bS/= ∅ for any a, b ∈ S,
and S = {Ts : s ∈ S} is a representation of S as nonexpansive mappings on a nonempty
ω∗-compact convex subsetK of l1, there is a common fixed point inK for S. (see [10–12]). In
particular, l1 has the ω∗ fixed point property. Is this the case for (c0, ‖ · ‖D)∗?

Next we will see that every infinite-dimensional subspace of l1∞ contains an asymp-
totically isometric copy of l1 and then, by a result of Dowling and Lennard [13], it does not
have the FPP.

First recall that a Banach space (X, ‖ · ‖) contains an asymptotically isometric copy of l1
if there exists {xn}n ⊂ X and {εn} ⊂ (0, 1), εn → 0 such that for every k ∈ N and every scalars
b1, . . . , bk,

k∑

i=1

(1 − εi)|bi| ≤
∥
∥
∥
∥
∥

k∑

i=1

bixi

∥
∥
∥
∥
∥
≤

k∑

i=1

(1 + εi)|bi|. (3.5)

In this case we say that {xn}n is an asymptotically isometric l1-sequence (ail1-sequence for
short).
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Observe that if {yn}n is another sequence in X such that ‖yn −xn‖ < δn for all n, where
{εn + δn} ⊂ (0, 1) and δn → 0, then for every k and every scalars b1, . . . , bk,

k∑

i=1

(1 − εi − δi)|bi| ≤
∥
∥
∥
∥
∥

k∑

i=1

biyi

∥
∥
∥
∥
∥
≤

k∑

i=1

(1 + εi + δi)|bi| (3.6)

and {yn} is also an ail1-sequence.

Proposition 17. Let {ui}i ⊂ l1∞, and let {ni} be a strictly increasing sequence in N such that ui =
∑ni+1

j=ni+1
ai
jej . If

∑ni+1
j=ni+1

(ai
j)

+ =
∑ni+1

j=ni+1
(ai

j)
−
, then {ui}i is isometrically equivalent to the canonical

basis in l1, that is, for every k ∈ N and every scalars b1, . . . , bk, we have that ‖
∑k

i=1biui‖ =
∑k

i=1|bi|.

Proof. Let b1, . . . , bk be scalars; then

k∑

i=1

|bi| ≤
k∑

i=1

b+i

ni+1∑

j=ni+1

(

ai
j

)+
+

k∑

i=1

b−i
ni+1∑

j=ni+1

(

ai
j

)−

=
k∑

i=1

ni+1∑

j=ni+1

(

bia
i
j

)+

≤
∥
∥
∥
∥
∥

k∑

i=1

biui

∥
∥
∥
∥
∥
1∞

≤
k∑

i=1

|bi|.

(3.7)

Theorem 18. Every infinite-dimensional subspace of l1∞ contains an asymptotically isometric copy of
l1 and hence it does not have the FPP.

Proof. Let Y be an infinite-dimensional subspace of l1∞, {εn} ⊂ (0, (1/2)), εn ↘ 0 and {xn}
a sequence in SY such that xi =

∑∞
j=mi+1a

i
jej , where 0 = m0 < m1 < · · · and

∑∞
j=mi+1+1|ai

j | <
εi/8. Define

wi =
mi+1∑

j=mi+1

ai
jej ,

c+i =
1

‖wi‖1∞
mi+1∑

j=mi+1

(

ai
j

)+ ≤ 1,

c−i =
1

‖wi‖1∞
mi+1∑

j=mi+1

(

ai
j

)− ≤ 1.

(3.8)

Changing wi by −wi, if necessary, we can assume that c+i = 1, n ∈ N. If there is a sequence
{ki} such that c−ki = 1, then by Proposition 17, {wki/‖wki‖1∞} is isometrically equivalent to the
canonical basis of l1. It is straightforward to see that ‖xki − (wki/‖wki‖1∞)‖1∞ < (1/4)εki . Then
by the above remark, {xki} is an ail1-sequence.
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Suppose that c−i /= 1 for all i and let

αi =
1 − c−2i

1 − c−2ic
−
2i−1

, βi =
1 − c−2i−1

1 − c−2i−1c
−
2i
. (3.9)

Then 0 ≤ αi < 1, 0 ≤ βi < 1 and

αic
+
2i−1 + βic

−
2i = αic

−
2i−1 + βic

+
2i = 1. (3.10)

Now let

vi = αi
w2i−1

‖w2i−1‖1∞
− βi

w2i

‖w2i‖1∞
. (3.11)

Suppose that vi =
∑m2i+1

j=m2i−1+1
bijej . It is easy to check, using (3.10), that

m2i+1∑

j=m2i−1+1

(

bij

)+
=

m2i+1∑

j=m2i−1+1

(

bij

)−
= 1. (3.12)

Hence, by Proposition 17, {vi} is isometrically equivalent to the canonical basis of l1.
Now, if we define yn = αnx2n−1−βnx2n ∈ Y , it is straightforward to see that ‖yn − vn‖1∞

< εn and by the above remark, {yn} is an ail1-sequence.
Finally in [13]Dowling and Lennard proved that if a Banach space contains an ail1-se-

quence, then it does not have the FPP. Hence Y does not have the FPP.
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