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Berinde and Borcut (2011), introduced the concept of tripled fixed point for singlemappings in par-
tially ordered metric spaces. Samet and Vetro (2011) established some coupled fixed point theo-
rems formultivalued nonlinear contractionmappings in partially orderedmetric spaces. In this pa-
per, we obtain existence of tripled fixed point ofmultivalued nonlinear contractionmappings in the
framework of partially ordered metric spaces. Also, we give an example.

1. Introduction and Preliminaries

Let (X, d) be a metric space. Consistent with [1], we denote by CB(X) the family of all non-
empty closed bounded and nonempty closed subsets of X. Let CL(X) = {A ⊂ X : A/= ∅
and A = A}, where A denotes the closure of A in X. For A,B ∈ CB(X), and x ∈ X, set
D(x,A) := inf{d(x, a) : a ∈ A}. We define a Hausdorff metric H on CB(X) by

H(A,B) := max

{
sup
a∈A

D(a, B), sup
b∈B

D(b,A)

}
. (1.1)

A point x ∈ K is called a fixed point of T if x ∈ Tx.
The study of fixed points for multivalued contractions and nonexpansive maps using

the Hausdorff metric was initiated by Markin [2]. Later, an interesting and rich fixed point
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theory for such maps was developed. Several authors studied the problem of existence of
fixed point of multivalued mappings satisfying different contractive conditions (see, e.g., [3–
10]). The theory of multivalued maps has application in control theory, convex optimization,
differential equations, and economics.

Existence of fixed points in ordered metric spaces has been initiated in 2004 by Ran
and Reurings [11], further studied by Nieto and Rodrı́guez-López [12]. Samet and Vetro
[13] introduced the notion of fixed point of N order in case of single-valued mappings. In
particular forN = 3 (tripled case), we have the following definition.

Definition 1.1 (see, e.g., [13]). An element (x, y, z) ∈ X3 is called a tripled fixed point of amap-
ping F : X3 → X if and only if

x = F
(
x, y, z

)
, y = F

(
y, z, x

)
, z = F

(
z, x, y

)
. (1.2)

Recently, Berinde and Borcut [14] established the existence of tripled fixed point of
single-valued mappings in partially ordered metric spaces. The aim of this paper is to initiate
the study of tripled fixed point of multivalued mappings in the framework of partially orde-
red metric spaces which in turn extend and strengthen various known results [5, 15].

2. Tripled Fixed Point Results for Multivalued Mappings

First, we introduce the following concepts.

Definition 2.1. An element (x, y, z) ∈ X3 is called a tripled fixed point of F : X3 → CL(X) if

x ∈ F
(
x, y, z

)
, y ∈ F

(
y, z, x

)
, z ∈ F

(
z, x, y

)
. (2.1)

Definition 2.2. A mapping f : X3 → R is called lower semicontinuous if, for any sequences
{xn}, {yn}, {zn} in X and (x, y, z) ∈ X3, one has

lim
n→∞

(
xn, yn, zn

)
=

(
x, y, z

)
=⇒ f

(
x, y, z

) ≤ lim inf
n→∞

(
xn, yn, zn

)
. (2.2)

Let (X, d) be a metric space endowed with a partial order 	 and T : X → X. Define
the set Ψ ⊂ X3 by

Ψ =
{(

x, y, z
) ∈ X3 : T(x) 	 T

(
y
) 	 T(z)

}
. (2.3)

Definition 2.3. A mapping F : X3 → X is said to have a Ψ-property if

(
x, y, z

) ∈ Ψ =⇒ F
(
x, y, z

) × F
(
y, z, x

) × F
(
z, y, x

) ⊂ Ψ. (2.4)
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We give some examples to illustrate Definition 2.3.

Example 2.4. Let X = R be endowed with the usual order ≤, and T : X → X. Define F : X3 →
CL(X) by

F
(
x, y, z

)
= {x} ∀x, y, z ∈ R. (2.5)

Obviously, F has the Ψ-property.

Example 2.5. Let X = R
+ be endowed with the usual order ≤, and let T : X → X be defined

by Tx = exp(x). Define F : X3 → CL(X) by

F
(
x, y, z

)
= {x + z} ∀x, y, z ∈ R

+. (2.6)

We have Ψ = {(x, y, z) ∈ X3, exp(x) ≤ exp(y) ≤ exp(z)}. Moreover, F has the Ψ-property.

Now, we prove the following theorem.

Theorem 2.6. Let (X, d) be a complete metric space endowed with a partial order 	 and Ψ/= ∅; that
is, there exists (x0, y0, z0) ∈ Ψ. Suppose that F : X3 → CL(X) has aΨ-property such that f : X3 →
[0,∞) given by

f
(
x, y, z

)
= D

(
x, F

(
x, y, z

))
+D

(
y, F

(
y, z, x

))
+D

(
z, F

(
z, x, y

)) ∀x, y, z ∈ X (2.7)

is lower semicontinuous and there exists a function φ : [0,∞) → [M, 1), 0 < M < 1, satisfying

lim sup
r→ t+

φ(r) < 1 for each t ∈ [0,∞). (2.8)

If for any (x, y, z) ∈ Ψ there exist u ∈ F(x, y, z), v ∈ F(y, z, x), and w ∈ F(z, y, x) with

√
φ
(
f
(
x, y, z

))[
d(x, u) + d

(
y, v

)
+ d(z,w)

] ≤ f
(
x, y, z

)
(2.9)

such that

f(u, v,w) ≤ φ
(
f
(
x, y, z

))[
d(x, u) + d

(
y, v

)
+ d(z,w)

]
, (2.10)

then F has a tripled fixed point.

Proof. By our assumption, φ(f(x, y, z)) < 1 for each (x, y, z) ∈ X3. Hence, for any (x, y, z) ∈
X3, there exist u ∈ F(x, y, z), v ∈ F(y, z, x), and w ∈ F(z, x, y) satisfying

√
φ
(
f
(
x, y, z

))
d(x, u) ≤ D

(
x, F

(
x, y, z

))
,√

φ
(
f
(
x, y, z

))
d
(
y, v

) ≤ D
(
y, F

(
y, z, x

))
,√

φ
(
f
(
x, y, z

))
d(z, w) ≤ D

(
z, F

(
z, x, y

))
.

(2.11)
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Let (x0, y0, z0) be an arbitrary point inΨ. By (2.9) and (2.10), we can choose x1 ∈ F(x0, y0, z0),
y1 ∈ F(y0, z0, x0), and z1 ∈ F(z0, x0, y0) satisfying

√
φ
(
f
(
x0, y0, z0

))[
d(x0, x1) + d

(
y0, y1

)
+ d(z0, z1)

] ≤ f
(
x0, y0, z0

)
(2.12)

such that

f
(
x1, y1, z1

) ≤ φ
(
f
(
x0, y0, z0

))[
d(x0, x1) + d

(
y0, y1

)
+ d(z0, z1)

]
. (2.13)

By (2.12) and (2.13), we obtain

f
(
x1, y1, z1

) ≤ φ
(
f
(
x0, y0, z0

))[
d(x0, x1) + d

(
y0, y1

)
+ d(z0, z1)

]
≤

√
φ
(
f
(
x0, y0, z0

))(√
φ
(
f
(
x0, y0, z0

))[
d(x0, x1) + d

(
y0, y1

)
+ d(z0, z1)

])

≤
√
φ
(
f
(
x0, y0, z0

))
f
(
x0, y0, z0

)
.

(2.14)

Thus,

f
(
x1, y1, z1

) ≤
√
φ
(
f
(
x0, y0, z0

))
f
(
x0, y0, z0

)
. (2.15)

Since F has a Ψ-property and (x0, y0, z0) ∈ Ψ, so we have

F
(
x0, y0, z0

) × F
(
y0, z0, x0

) × F
(
z0, x0, y0

) ⊂ Ψ (2.16)

which implies that (x1, y1, z1) ∈ Ψ.
Again by (2.9) and (2.10), we can choose x2 ∈ F(x1, y1, z1), y2 ∈ F(y1, z1, x1), and

z2 ∈ F(z1, x1, y1) satisfying

√
φ
(
f
(
x1, y1, z1

))[
d(x1, x2) + d

(
y1, y2

)
+ d(z1, z2)

] ≤ f
(
x1, y1, z1

)
(2.17)

such that

f
(
x2, y2, z2

) ≤ φ
(
f
(
x1, y1, z1

))[
d(x1, x2) + d

(
y1, y2

)
+ d(z1, z2)

]
. (2.18)

Thus, we have

f
(
x2, y2, z2

) ≤
√
φ
(
f
(
x1, y1, z1

))
f
(
x1, y1, z1

)
(2.19)

and (x2, y2, z2) ∈ Ψ.
Continuing this process, we can choose sequences {xn}, {yn}, {zn} in X such that for

each n ∈ N with (xn, yn, zn) ∈ Ψ.
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xn+1 ∈ F(xn, yn, zn), yn+1 ∈ F(yn, zn, xn) and zn+1 ∈ F(zn, xn, yn) satisfying

√
φ
(
f
(
xn, yn, zn

))[
d(xn, xn+1) + d

(
yn, yn+1

)
+ d(zn, zn+1)

] ≤ f
(
xn, yn, zn

)
(2.20)

such that

f
(
xn+1, yn+1, zn+1

) ≤ φ
(
f
(
xn, yn, zn

))[
d(xn, xn+1) + d

(
yn, yn+1

)
+ d(zn, zn+1)

]
. (2.21)

Hence, we obtain

f
(
xn+1, yn+1, zn+1

) ≤
√
φ
(
f
(
xn, yn, zn

))
f
(
xn, yn, zn

)
(2.22)

with (xn+1, yn+1, zn+1) ∈ Ψ. We claim that f(xn, yn, zn) → 0 as n → ∞. If f(xn, yn, zn) = 0
for some n ∈ N, then D(xn, F(xn, yn, zn)) = 0 implies that xn ∈ F(xn, yn, zn) = F(xn, yn,
zn). Analogously, D(yn, F(yn, zn, xn)) = 0 implies that yn ∈ F(yn, zn, xn) and D(zn,
F(zn, yn, xn)) = 0 implies that zn ∈ F(zn, yn, xn). Hence, (xn, yn, zn) becomes a tripled fixed
point of F for such n and the result follows. Suppose that f(xn, yn, zn) > 0 for all n ∈ N.

Using (2.22) and φ(t) < 1, we conclude that {f(xn, yn, zn)} is a decreasing sequence of
positive real numbers. Thus, there exists a δ ≥ 0 such that

lim
n→∞

f
(
xn, yn, zn

)
= δ. (2.23)

We will show that δ = 0. Assume on contrary that δ > 0. Letting n → ∞ in (2.22) and by as-
sumption (2.8), we obtain

δ ≤ lim sup
f(xn,yn,zn)→ δ+

√
φ
(
f
(
xn, yn, zn

))
δ < δ, (2.24)

a contradiction. Hence,

lim
n→∞

f
(
xn, yn, zn

)
= 0+. (2.25)

Now, we prove that {xn}, {yn}, {zn} ⊂ X are Cauchy sequences in (X, d). Assume that

α = lim sup
f(xn,yn,zn)→ 0+

√
φ
(
f
(
xn, yn, zn

))
. (2.26)

By (2.8), we conclude that α < 1. Let k be a real number such that α < k < 1. Thus, there exists
n0 ∈ N such that

√
φ
(
f
(
xn, yn, zn

))
< k for each n ≥ n0. (2.27)
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Using (2.22), we obtain

f
(
xn+1, yn+1, zn+1

)
< kf

(
xn, yn, zn

)
for each n ≥ n0. (2.28)

By mathematical induction,

f
(
xn+1, yn+1, zn+1

)
< kn+1−n0f

(
xn0 , yn0 , zn0

)
for each n ≥ n0. (2.29)

Since φ(t) ≥ M > 0 for all t ≥ 0 so (2.20), and (2.29) gives that

[
d(xn, xn+1) + d

(
yn, yn+1

)
+ d(zn, zn+1)

]
<

kn−n0

√
M

f
(
xn0 , yn0 , zn0

)
for each n ≥ n0 (2.30)

which yields that {xn}, {yn}, {zn} ⊂ X are Cauchy sequences in X. Since X is complete, there
exists (a, b, c) ∈ X3 such that

lim
n→∞

xn = a, lim
n→∞

yn = b, lim
n→∞

zn = c. (2.31)

Finally, we show that (a, b, c) ∈ X3 is tripled fixed point of F. As f is lower semicontinuous,
(2.25) implies that

0 ≤ f(a, b, c) = D(a, F(a, b, c)) +D(b, F(b, c, a)) +D(c, F(c, a, b)) ≤ lim inf
n→∞

f
(
xn, yn, zn

)
= 0.

(2.32)

Hence, D(a, F(a, b, c)) = D(b, F(b, c, a)) = D(c, F(c, a, b)) = 0 gives that (a, b, c) is a tripled
fixed point of F.

Theorem 2.7. Let (X, d) be a complete metric space endowed with a partial order 	 and Ψ/= ∅; that
is, there exists (x0, y0, z0) ∈ Ψ. Suppose that F : X3 → CL(X) has a Ψ-property such that function
f : X3 → [0,∞) defined by

f
(
x, y, z

)
= D

(
x, F

(
x, y, z

))
+D

(
y, F

(
y, z, x

))
+D

(
z, F

(
z, x, y

)) ∀x, y, z ∈ X, (2.33)

is lower semicontinuous and there exists a function φ : [0,∞) → [M, 1), 0 < M < 1, satisfying

lim sup
r→ t+

φ(r) < 1 for each t ∈ [0,∞). (2.34)

If for any (x, y, z) ∈ Ψ there exist u ∈ F(x, y, z), v ∈ F(y, z, x), and w ∈ F(z, y, x) satisfying

√
φ(Δ)Δ ≤ D

(
x, f

(
x, y, z

))
+D

(
y, f

(
y, z, x

))
+D

(
z, f

(
z, x, y

))
(2.35)
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such that

D
(
u, f(u, v,w)

)
+D

(
v, f(v,w, u)

)
+D

(
w, f(w,u, v)

) ≤ φ(Δ)Δ, (2.36)

whereΔ = Δ((x, y, z), (u, v,w)) = [d(x, u)+d(y, v)+d(z,w)], then F admits a tripled fixed point.

Proof. By replacing φ(f(x, y, z)) with φ([d(x, u) + d(y, v) + d(z,w)]) in the proof of
Theorem 2.6, we obtain sequences {xn}, {yn}, {zn} ⊂ X such that for each n ∈ N with

(
xn, yn, zn

) ∈ Ψ, xn+1 ∈ F
(
xn, yn, zn

)
, yn+1 ∈ F

(
yn, zn, xn

)
, zn+1 ∈ F

(
zn, xn, yn

)
,

(2.37)

such that

√
φ(Δn)Δn ≤ D

(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+D

(
zn, F

(
zn, xn, yn

))
, (2.38)

D
(
xn+1, F

(
xn+1, yn+1, zn+1

))
+D

(
yn+1, F

(
yn+1, zn+1, xn+1

))
+D

(
zn+1, F

(
zn+1, xn+1, yn+1

))
≤

√
φ(Δn)

(
D

(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+D

(
zn, F

(
zn, xn, yn

)))
,

(2.39)

where

Δn = Δn

((
xn, yn, zn

)
,
(
xn+1, yn+1, zn+1

))
= d(xn, xn+1) + d

(
yn, yn+1

)
+ d(zn, zn+1). (2.40)

Again, following arguments similar to those given in the proof of Theorem 2.6, we deduce
that

{
D

(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+D

(
zn, F

(
zn, xn, yn

))}
(2.41)

is a decreasing sequence of real numbers. Thus, there exists a δ > 0 such that

lim
n→∞

D
(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+

(
zn, F

(
zn, xn, yn

))
= δ. (2.42)

Now, we need to prove that {Δn} admits a subsequence converging to certain η+ for some
η ≥ 0. Since φ(t) ≥ M > 0, using (2.38), we obtain

Δn ≤ 1√
a

(
D

(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+D

(
zn, F

(
zn, xn, yn

)))
. (2.43)

From (2.42) and (2.43), it is clear that the sequence

{
D

(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+D

(
zn, F

(
zn, xn, yn

))}
(2.44)
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is bounded. Therefore, there is some θ ≥ 0 such that

lim inf
n→+∞

Δn = θ. (2.45)

From (2.37), we have xn+1 ∈ F(xn, yn, zn), yn+1 ∈ F(yn, zn, xn), and zn+1 ∈ F(zn, xn, yn),

Δn ≥ D
(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+D

(
zn, F

(
zn, xn, yn

))
for each n ≥ 0.

(2.46)

So comparing (2.42) to (2.45), we get that θ ≥ δ. Now, we shall show that θ = δ. If δ = 0, then,
by (2.42) and (2.43), we get θ =: lim infn→+∞Δn = 0 and consequently θ = δ = 0. Suppose that
δ > 0. Assume on contrary that θ > δ. From (2.42) and (2.45), there is a positive integer n0

such that

D
(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+D

(
zn, F

(
zn, xn, yn

))
< δ +

θ − δ

4
, (2.47)

δ − θ − δ

4
< Δn, (2.48)

for all n ≥ n0. We combine (2.38), (2.47) to (2.48) to obtain

√
φ(Δn)

(
δ − θ − δ

4

)
≤

√
φ(Δn)Δn

≤ D
(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+D

(
zn, F

(
zn, xn, yn

))
< δ +

θ − δ

4
,

(2.49)

for all n ≥ n0. It follows that

√
φ(Δn) ≤ θ + 3δ

3θ + δ
∀n ≥ n0. (2.50)

By (2.39) and (2.50), we have

D
(
xn+1, F

(
xn+1, yn+1, zn+1

))
+D

(
yn+1, F

(
yn+1, zn+1, xn+1

))
+D

(
zn+1, F

(
zn+1, xn+1, yn+1

))
≤ h

(
D

(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+D

(
zn, F

(
zn, xn, yn

))) ∀n ≥ n0,

(2.51)
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where h = (θ + 3δ)/(3θ + δ). Since θ > δ > 0, therefore h < 1, so proceeding by induction and
combining the above inequalities, it follows that

δ ≤ D
(
xn0+k0 , F

(
xn0+k0 , yn0+k0 , zn0+k0

))
+D

(
yn0+k0 , F

(
yn0+k0 , zn0+k0 , xn0+k0

))
+D

(
zn0+k0 , F

(
zn0+k0 , xn0+k0 , yn0+k0

))
≤ hk0

[
D

(
xn0 , F

(
xn0 , yn0 , zn0

))
+D

(
yn0 , F

(
yn0 , zn0 , xn0

))
+D

(
zn0 , F

(
zn0 , xn0 , yn0

))]
< δ,

(2.52)

for a positive integer k0. Then, we obtain a contradiction, so we must have θ = δ.
Now, we shall show that θ = 0. Since

θ = δ ≤ D
(
xn, F

(
xn, yn, zn

))
+D

(
yn, F

(
yn, zn, xn

))
+D

(
zn, F

(
zn, xn, yn

)) ≤ Δn, (2.53)

then we rewrite (2.45) as

lim inf
n→+∞

Δn = θ+. (2.54)

Hence, there exists a subsequence {Δnk} of {Δn} such that lim infk→+∞Δnk = θ+.
By (2.34), we have

lim sup
Δnk

→ θ+

√
φ(Δnk) < 1. (2.55)

From (2.39), we obtain

D
(
xnk+1, F

(
xnk+1, ynk+1, znk+1

))
+D

(
ynk+1, F

(
ynk+1, znk+1, xnk+1

))
+D

(
znk+1, F

(
znk+1, xnk+1, ynk+1

))
≤
√
φ(Δnk)

(
D

(
xnk , F

(
xnk , ynk , znk

))
+D

(
ynk , f

(
ynk , znk , xnk

))
+D

(
znk , F

(
znk , xnk , ynk

)))
.

(2.56)

Taking the limit as k → ∞ and using (2.42), we have

δ = lim sup
k→+∞

[
D

(
xnk+1, F

(
xnk+1, ynk+1, znk+1

))
+D

(
ynk+1, F

(
ynk+1, znk+1, xnk+1

))

+D
(
znk+1, f

(
znk+1, xnk+1, ynk+1

))]
≤ lim sup

k→+∞

[√
φ(Δnk)

]
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lim sup
k→+∞

(
D

(
xnk , F

(
xnk , ynk , znk

))
+D

(
ynk , F

(
ynk , znk , xnk

))
+D

(
znk , F

(
znk , xnk , ynk

)))

=

⎛
⎝lim sup

Δnk
→ θ+

√
φ(Δnk)

⎞
⎠δ.

(2.57)

Assume that δ > 0, then from (2.57) we get that

1 ≤ lim sup
Δnk

→ θ+

√
φ(Δnk), (2.58)

a contradiction with respect to (2.55), so δ = 0. Now, from (2.39), and (2.42) we have

α = lim sup
Δn → 0+

√
φ(Δn) < 1. (2.59)

The rest of the proof is similar to the proof of Theorem 2.6, so it is omitted.

We improved and corrected the example of Samet and Vetro [13].

Example 2.8. Let X = [0, 1], and let d : X × X → [0,∞) be the usual metric. Suppose that
T(x) = M for all x ∈ [0, 1] where M is a constant in [0, 1], and F : X3 → CL(X) is defined,
for all y, z ∈ X as follow:

F
(
x, y, z

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
x2

4

}
if x ∈

[
0,

15
32

)
∪

(
15
32

, 1
]
,

{
15
96

,
1
5

}
if x =

15
32

.

(2.60)

Obviously, F has the Ψ-property. Set φ : [0,∞) → [0, 1):

φ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

11
12

t if t ∈
[
0,

2
3

]
,

10
16

if t ∈
(
2
3
,∞

)
.

(2.61)

Consider the function

f
(
x, y, z

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y + z − 1
4
(
x2 + y2 + z2

)
if x, y, z ∈

[
0,

15
32

)
∪

(
15
32

, 1
]
,

x + y − 1
4
(
x2 + y2) + 43

160
if x, y ∈

[
0,

15
32

)
∪

(
15
32

, 1
]
with z =

15
32

,

x − 1
4
x2 +

86
160

if x, y ∈
[
0,

15
32

)
∪

(
15
32

, 1
]
with y = z =

15
32

,

129
160

if x = y = z =
15
32

(2.62)
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which is lower semicontinuous. Thus, for all x, y, z ∈ X with x, y, z /= 15/32, there exist u ∈
F(x, y, z) = {x2/4}, v ∈ F(y, z, x) = {y2/4}, and w ∈ F(z, y, x) = {z2/4} such that

D(u, F(u, v,w)) +D(v, F(v,w, u)) +D(w,F(w,v, u))

=
x2

4
− x4

64
+
y2

4
− y4

64
+
z2

4
− z4

64

=
1
4

[(
x +

x2

4

)(
x − x2

4

)
+

(
y +

y2

4

)(
y − y2

4

)
+

(
z +

z2

4

)(
z − z2

4

)]

≤ 1
4

[(
x +

x2

4

)
d(x, u) +

(
y +

y2

4

)
d
(
y, v

)
+

(
z +

z2

4

)
d(z,w)

]

≤ 1
4
max

{(
x +

x2

4

)
,

(
y +

y2

4

)
,

(
z +

z2

4

)}[
d(x, u) + d

(
y, v

)
+ d(z,w)

]

<
10
12

max

{(
x − x2

4

)
,

(
y − y2

4

)
,

(
z − z2

4

)}[
d(x, u) + d

(
y, v

)
+ d(z,w)

]

≤ φ
(
d(x, u) + d

(
y, v

)
+ d(z,w)

)[
d(x, u) + d

(
y, v

)
+ d(z,w)

]
.

(2.63)

Hence, for all x, y, z ∈ X with x, y, z /= 15/32, the conditions (2.35) and (2.36) are satisfied.
Analogously, one can easily show that conditions (2.35) and (2.36) are satisfied for the cases
(x, y ∈ [0, 15/32) ∪ (15/32, 1] with z = 15/32) and (x ∈ [0, 15/32) ∪ (15/32, 1] and y = z =
15/32). For the last case, that is, x = y = z = 15/32, we assume that u = v = w = 15/96, so it
follows that

[
d(x, u) + d

(
y, v

)
+ d(z,w)

]
=

15
16

>
2
3
. (2.64)

As a consequence, we get that

√
φ
(
d(x, u) + d

(
y, v

)
+ d(z,w)

)[
d(x, u) + d

(
y, v

)
+ d(z,w)

]

=

√
10
16

15
16

<
129
160

= D
(
x, F

(
x, y, z

))
+D

(
y, F

(
y, z, x

))
+D

(
z, F

(
z, x, y

))
,

D(u, F(u, v,w)) +D(v, F(v,w, u)) +D(w,F(w,v, u)) = 3

∣∣∣∣∣1596 − 1
4

(
15
96

)2
∣∣∣∣∣

<
10
16

15
16

= φ
(
d(x, u) + d

(
y, v

)
+ d(z,w)

)[
d(x, u) + d

(
y, v

)
+ d(z,w)

]
.

(2.65)

Thus, we conclude that all the conditions of Theorem 2.7 are satisfied and F admits a tripled
fixed point a = (0, 0, 0).
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Remark 2.9. If we replace the function φ with the following, we get the results again:

φ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

7
12

t if t ∈
[
0,

3
4

]
,

7
16

if t ∈
(
3
4
,∞

)
.

(2.66)
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