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The lower bounds of the functional defined as the difference of the right-hand and the left-hand
side of the Jensen inequality are studied. Refinements of some previously known results are given
by applying results from the theory of majorization. Furthermore, some interesting special cases
are considered.

1. Introduction

The classical Jensen inequality states (see e.g., [1]).

Theorem 1.1 (see [2]). Let I be an interval in R, and let f : I → R be a convex function. Let n ≥ 2,
x = (x1, . . . , xn) ∈ In, and let p = (p1, . . . , pn) be a positive n-tuple, that is, such that pi > 0 for
i = 1, . . . , n, then

f

(
1
Pn

n∑
i=1

pixi

)
≤ 1

Pn

n∑
i=1

pif(xi), (1.1)

where Pn =
∑n

i=1 pi. If f is strictly convex, then inequality (1.1) is strict unless x1 = · · · = xn.



2 Abstract and Applied Analysis

In this work, the functional

J
(
x,p, f

)
=

1
Pn

n∑
i=1

pif(xi) − f

(
1
Pn

n∑
i=1

pixi

)
(1.2)

defined as the difference of the right-hand and the left-hand sides of the Jensen inequality
is studied. More precisely, its lower bounds are investigated, together with various sets of
assumptions under which they hold.

The lower bounds of J(x,p, f)were the topic of interest in many papers. For example,
the following results were proved in [3] (see also [1, page 717]). In what follows, I is an
interval in R.

Theorem 1.2. Let f : I → R be a convex function, x ∈ In, and let p be a positive n-tuple, then

Pn · J
(
x,p, f

) ≥ max
1≤j≤k≤n

{
pjf
(
xj

)
+ pkf(xk) −

(
pj + pk

)
f

(
pjxj + pkxk

pj + pk

)}
≥ 0. (1.3)

Theorem 1.3. Let f : I → R be a convex function and x ∈ In. Let p and r be positive n-tuples such
that p ≥ r, that is, pi ≥ ri, i = 1, . . . , n, then

Pn · J
(
x,p, f

) ≥ Rn · J
(
x, r, f

) ≥ 0, (1.4)

where Pn =
∑n

i=1 pi and Rn =
∑n

i=1 ri.

Further, in [4], the following theorem was given. An alternative proof of the same
result was given in [5].

Theorem 1.4. Let f : I → R be a convex function, n ≥ 2, and x ∈ In. Let p and q be positive
n-tuples such that

∑n
i=1 pi =

∑n
i=1 qi = 1, then

max
1≤j≤n

{
pj

qj

}
J
(
x,q, f

) ≥ J
(
x,p, f

) ≥ min
1≤j≤n

{
pj

qj

}
J
(
x,q, f

) ≥ 0. (1.5)

For more related results, see [6–8]. The motivation for the research in this work were
the following results presented in [9].

Lemma 1.5. Let f be a convex function on I, p a positive n-tuple such that Pn =
∑n

i=1 pi = 1
and x1, x2, . . . , xn ∈ I, n ≥ 3 such that x1 ≤ x2 ≤ · · · ≤ xn. For fixed xj , xj+1, . . . , xn, where
j = 2, 3, . . . , n − 1, the Jensen functional J(x,p, f) defined in (1.2) is minimal when x1 = x2 = · · · =
xj−1 = xj , that is,

J
(
x,p, f

) ≥ Pjf
(
xj

)
+

n∑
i=j+1

pif(xi) − f

⎛
⎝Pjxj +

n∑
i=j+1

pixi

⎞
⎠, (1.6)
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where

Pj =
j∑
i=1

pi, j = 1, . . . , n. (1.7)

Lemma 1.6. Let f be a convex function on I, p a positive n-tuple such that Pn =
∑n

i=1 pi = 1 and
x1, x2, . . . , xn ∈ I, n ≥ 3 such that x1 ≤ x2 ≤ · · · ≤ xn. For fixed x1, x2, . . . , xk, where k = 2, 3, . . . , n−
1, the Jensen functional J(x,p, f) defined in (1.2) is minimal when xk = xk+1 = · · · = xn−1 = xn, that
is,

J
(
x,p, f

) ≥ k−1∑
i=1

pif(xi) +Qkf(xk) − f

(
k−1∑
i=1

pixi +Qkxk

)
, (1.8)

where

Qk =
n∑
i=k

pi, k = 1, . . . , n. (1.9)

Theorem 1.7. Let f be a convex function on I, p a positive n-tuple such that Pn =
∑n

i=1 pi = 1 and
x1, x2, . . . , xn ∈ I, n ≥ 3 such that x1 ≤ x2 ≤ · · · ≤ xn. For fixed xj and xk, where 1 ≤ j < k ≤ n, the
Jensen functional J(x,p, f) defined in (1.2) is minimal when

x1 = x2 = · · · = xj , xk = xk+1 = · · · = xn,

xj+1 = xj+2 = · · · = xk−1 =
Pjxj +Qkxk

Pj +Qk
,

(1.10)

that is,

J
(
x,p, f

) ≥ Pjf
(
xj

)
+Qkf(xk) −

(
Pj +Qk

)
f

(
Pjxj +Qkxk

Pj +Qk

)
, (1.11)

where Pj are as in (1.7) and Qk are as in (1.9).

The key step in proving these results was the following lemma presented in the same
paper.

Lemma 1.8. Let f be a convex function on I, and let p1, p2 be nonnegative real numbers. If
a1, a2, b1, b2 ∈ I are such that a1, a2 ∈ [b1, b2] and

p1a1 + p2a2 = p1b1 + p2b2, (1.12)

then

p1f(a1) + p2f(a2) ≤ p1f(b1) + p2f(b2). (1.13)
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Note that for a monotonic n-tuple x, Theorem 1.7 is an improvement of Theorem 1.2,
in a sense that (the maximum of) the right-hand side of (1.11) is greater than the middle
part of (1.3), which follows directly from the Jensen inequality. The aim of this work is to
give an improvement of Lemmas 1.5 and 1.6, and Theorem 1.7, in a sense that the condition
of monotonicity imposed on the n-tuple x will be relaxed. Several sets of conditions under
which (1.6), (1.8), and (1.11) hold shall be given. In our proofs, in addition to Lemma 1.8, the
following result from the theory of majorization is needed. It was obtained in [10].

Lemma 1.9. Let f be a convex function on I, p a positive n-tuple, and a,b ∈ In such that

k∑
i=1

piai ≤
k∑
i=1

pibi for k = 1, 2, . . . , n − 1,
n∑
i=1

piai =
n∑
i=1

pibi. (1.14)

If a is a decreasing n-tuple, then one has

n∑
i=1

pif(ai) ≤
n∑
i=1

pif(bi), (1.15)

while if b is an increasing n-tuple, then we have

n∑
i=1

pif(bi) ≤
n∑
i=1

pif(ai). (1.16)

If f is strictly convex and a/=b, then (1.15) and (1.16) are strict.

Note that for n = 2, inequality (1.15) holds if a2 ≤ a1 ≤ b1 and if (1.12) is valid, while
inequality (1.16) holds if a1 ≤ b1 ≤ b2 and if (1.12) is valid.

2. Main Results

In what follows, J(x,p, f) is as in (1.2), Pj are as in (1.7), and Qk, as in (1.9). Without any
loss of generality, we assume that Pn = 1, since for positive n-tuples such that Pn /= 1 results
follow easily by substituting pi with pi/Pn. Furthermore, for 1 ≤ j < k ≤ n, we introduce the
following notation:

Jmin
(
x,p, f

)
= min

{
Pj,Qk

}(
f
(
xj

)
+ f(xk) − 2f

(
xj + xk

2

))
,

Jjk
(
x,p, f

)
= Pjf

(
xj

)
+

k−1∑
i=j+1

pif(xi) +Qkf(xk) − f

⎛
⎝Pjxj +

k−1∑
i=j+1

pixi +Qkxk

⎞
⎠.

(2.1)

Note that J1n(x,p, f) = J(x,p, f).
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Theorem 2.1. Let f be a convex function on I and p a positive n-tuple such that Pn = 1, n ≥ 2. Let
1 ≤ j < k ≤ n and xi ∈ I, i = 1, . . . , k. If xj is such that

1
Pj

j∑
i=1

pixi ≤ xj ≤ 1
Qj+1

⎛
⎝ k−1∑

i=j+1

pixi +Qkxk

⎞
⎠, (2.2)

or
1

Qj+1

⎛
⎝ k−1∑

i=j+1

pixi +Qkxk

⎞
⎠ ≤ xj ≤ 1

Pj

j∑
i=1

pixi, (2.3)

then one has

J1k
(
x,p, f

) ≥ Jjk
(
x,p, f

)
. (2.4)

Proof. The claim is that

j∑
i=1

pif(xi) − f

(
k−1∑
i=1

pixi +Qkxk

)
≥ Pjf

(
xj

) − f

⎛
⎝Pjxj +

k−1∑
i=j+1

pixi +Qkxk

⎞
⎠. (2.5)

As a simple consequence of the Jensen inequality (1.1), we have

j∑
i=1

pif(xi) ≥ Pjf

(
1
Pj

j∑
i=1

pixi

)
. (2.6)

Therefore, if we prove

Pjf

(
1
Pj

j∑
i=1

pixi

)
+ f

⎛
⎝Pjxj +

k−1∑
i=j+1

pixi +Qkxk

⎞
⎠ ≥ Pjf

(
xj

)
+ f

(
k−1∑
i=1

pixi +Qkxk

)
, (2.7)

the claim will follow. The idea is to apply Lemma 1.8 for p1 = Pj , p2 = 1, a1 = xj , a2 =∑k−1
i=1 pixi +Qkxk, b1 = (1/Pj)

∑j

i=1 pixi, and b2 = Pjxj +
∑k−1

i=j+1 pixi +Qkxk. Condition (1.12) is
obviously satisfied. In addition, we need to check that

1
Pj

j∑
i=1

pixi ≤ xj ≤ Pjxj +
k−1∑
i=j+1

pixi +Qkxk,

1
Pj

j∑
i=1

pixi ≤
k−1∑
i=1

pixi +Qkxk ≤ Pjxj +
k−1∑
i=j+1

pixi +Qkxk.

(2.8)

Easy calculation shows that both of these conditions are valid if (2.2) holds. Thus, the claim
follows from Lemma 1.8. Note that we could have taken p1 = 1, p2 = Pj , a1 =

∑k−1
i=1 pixi+Qkxk,
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a2 = xj , b1 = Pjxj +
∑k−1

i=j+1 pixi + Qkxk, and b2 = (1/Pj)
∑j

i=1 pixi, instead. In this case, the
necessary conditions would follow from (2.3).

Theorem 2.2. Let the conditions of Theorem 2.1 hold. If xj is such that

1
Pj

j∑
i=1

pixi ≤ xj ≤
k−1∑
i=1

pixi +Qkxk, (2.9)

or
k−1∑
i=1

pixi +Qkxk ≤ xj ≤ 1
Pj

j∑
i=1

pixi, (2.10)

then inequality (2.4) holds.

Proof. Proof is analogous to the proof of Theorem 2.1. Instead of Lemma 1.8, we apply
Lemma 1.9 for n = 2 and the same choice of weights and points, or their obvious
rearrangement.

Theorem 2.3. Let f be a convex function on I and p a positive n-tuple such that Pn = 1, n ≥ 2. Let
1 ≤ j < k ≤ n and xi ∈ I, i = j, . . . , n. If xk is such that

1
Pk−1

⎛
⎝Pjxj +

k−1∑
i=j+1

pixi

⎞
⎠ ≤ xk ≤ 1

Qk

n∑
i=k

pixi, (2.11)

or
1
Qk

n∑
i=k

pixi ≤ xk ≤ 1
Pk−1

⎛
⎝Pjxj +

k−1∑
i=j+1

pixi

⎞
⎠, (2.12)

then one has

Jjn
(
x,p, f

) ≥ Jjk
(
x,p, f

)
. (2.13)

Proof. Similarly as in the proof of Theorem 2.1, after first applying the Jensen inequality to the
sum on the left-hand side, the claim will follow if we prove

Qkf

(
1
Qk

n∑
i=k

pixi

)
+ f

⎛
⎝Pjxj +

k−1∑
i=j+1

pixi +Qkxk

⎞
⎠

≥ Qk(xk) + f

⎛
⎝Pjxj +

n∑
i=j+1

pixi

⎞
⎠.

(2.14)

We can apply Lemma 1.8 for p1 = 1, p2 = Qk, a1 = Pjxj +
∑n

i=j+1 pixi, a2 = xk, b1 = Pjxj +∑k−1
i=j+1 pixi + Qkxk, and b2 = (1/Qk)

∑n
i=k pixi, since condition (1.12) is obviously satisfied

and (2.11) ensures that the rest of the necessary conditions are fulfilled, and thus the claim
is proved. After the obvious rearrangement, applying Lemma 1.8 with (2.12), the claim is
recaptured.
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Theorem 2.4. Let the conditions of Theorem 2.3 hold. If xk is such that

Pjxj +
n∑

i=j+1

pixi ≤ xk ≤ 1
Qk

n∑
i=k

pixi, (2.15)

or
1
Qk

n∑
i=k

pixi ≤ xk ≤ Pjxj +
n∑

i=j+1

pixi, (2.16)

then inequality (2.13) holds.

Proof. It is analogous to the proof of Theorem 2.3. Instead of Lemma 1.8, we apply Lemma 1.9
for n = 2 and the same choice of weights and points, or their obvious rearrangement.

Corollary 2.5. Let f be a convex function on I and p a positive n-tuple such that Pn = 1, n ≥ 2. Let
x ∈ In be a real n-tuple and 1 ≤ j < k ≤ n.

If xk is such that

1
Pk−1

k−1∑
i=1

pixi ≤ xk ≤ 1
Qk

n∑
i=k

pixi, (2.17)

or
1
Qk

n∑
i=k

pixi ≤ xk ≤ 1
Pk−1

k−1∑
i=1

pixi, (2.18)

and xj is such that either (2.2) or (2.3) holds, then one has

J
(
x,p, f

) ≥ J1k
(
x,p, f

) ≥ Jjk
(
x,p, f

)
. (2.19)

If xj is such that

1
Pj

j∑
i=1

pixi ≤ xj ≤ 1
Qj+1

n∑
i=j+1

pixi, (2.20)

or
1

Qj+1

n∑
i=j+1

pixi ≤ xj ≤ 1
Pj

j∑
i=1

pixi, (2.21)

and xk is such that either (2.11) or (2.12) holds, then one has

J
(
x,p, f

) ≥ Jjn
(
x,p, f

) ≥ Jjk
(
x,p, f

)
. (2.22)

Proof. The first inequality in (2.19) follows from Theorem 2.3 for j = 1, and the second
is a direct consequence of Theorem 2.1, while the first inequality in (2.22) follows from
Theorem 2.1 for k = n, and the second is a consequence of Theorem 2.3.
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Corollary 2.6. Let the conditions of Corollary 2.5 hold.
If xk is such that

n∑
i=1

pixi ≤ xk ≤ 1
Qk

n∑
i=k

pixi, (2.23)

or
1
Qk

n∑
i=k

pixi ≤ xk ≤
n∑
i=1

pixi, (2.24)

and xj is such that either (2.9) or (2.10) holds, then inequality (2.19) holds.
If xj is such that

1
Pj

j∑
i=1

pixi ≤ xj ≤
n∑
i=1

pixi, (2.25)

or
n∑
i=1

pixi ≤ xj ≤ 1
Pj

j∑
i=1

pixi, (2.26)

and xk is such that either (2.15) or (2.16) holds, then inequality (2.22) holds.

Proof. The first inequality in (2.19) follows from Theorem 2.3 for j = 1, and the second
is a direct consequence of Theorem 2.1, while the first inequality in (2.22) follows from
Theorem 2.1 for k = n, and the second is a consequence of Theorem 2.3.

Theorem 2.7. Let f be a convex function on I and p a positive n-tuple such that Pn = 1, n ≥ 2. Let
x ∈ In be a real n-tuple, and let 1 ≤ j < k ≤ n. If xj and xk are such that

1
Pj

j∑
i=1

pixi ≤ xj ≤
n∑
i=1

pixi ≤ xk ≤ 1
Qk

n∑
i=k

pixi, (2.27)

or

1
Qk

n∑
i=k

pixi ≤ xk ≤
n∑
i=1

pixi ≤ xj ≤ 1
Pj

j∑
i=1

pixi, (2.28)

then one has

J
(
x,p, f

) ≥ Jjk
(
x,p, f

)
. (2.29)

Proof. The claim is that

j∑
i=1

pif(xi) +
n∑
i=k

pif(xi) − f

(
n∑
i=1

pixi

)

≥ Pjf
(
xj

)
+Qkf(xk) − f

⎛
⎝Pjxj +

k−1∑
i=j+1

pixi +Qkxk

⎞
⎠.

(2.30)
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After applying the Jensen inequality to the two sums on the left-hand side, we need to prove

Qkf

(
1
Qk

n∑
i=k

pixi

)
+ f

⎛
⎝Pjxj +

k−1∑
i=j+1

pixi +Qkxk

⎞
⎠ + Pjf

(
1
Pj

j∑
i=1

pixi

)

≥ Qkf(xk) + f

(
n∑
i=1

pixi

)
+ Pjf

(
xj

)
.

(2.31)

Set p1 = Qk, p2 = 1, p3 = Pj , a1 = xk,a2 =
∑n

i=1 pixi, a3 = xj , b1 = (1/Qk)
∑n

i=k pixi, b2 = Pjxj +∑k−1
i=j+1 pixi + Qkxk, and b3 = (1/Pj)

∑j

i=1 pixi. Assumption (2.27) ensures that the necessary
conditions of Lemma 1.9 for n = 3 are fulfilled, and so (2.31) follows from (1.15). By obvious
rearrangement, utilizing (2.28), the inequality is recaptured.

Remark 2.8. Note that conditions (2.9) and (2.23) combined together give a condition

1
Pj

j∑
i=1

pixi ≤ xj ≤
k−1∑
i=1

pixi +Qkxk ≤
n∑
i=1

pixi ≤ xk ≤ 1
Qk

n∑
i=k

pixi, (2.32)

while (2.15) and (2.25) combined together give

1
Pj

j∑
i=1

pixi ≤ xj ≤
n∑
i=1

pixi ≤ Pjxj +
n∑

i=j+1

pixi ≤ xk ≤ 1
Qk

n∑
i=k

pixi, (2.33)

both of which are more restricting than (2.27). The same is true for combining conditions
(2.10) and (2.24), or (2.16) and (2.26), and comparing the result with (2.28).

Theorem 2.9. Let f be a convex function on I and p a positive n-tuple such that Pn = 1, n ≥ 2. Let
1 ≤ j < k ≤ n and xi ∈ I, i = j, . . . , k, then one has

Jjk
(
x,p, f

) ≥ Pjf
(
xj

)
+Qkf(xk) −

(
Pj +Qk

)
f

(
Pjxj +Qkxk

Pj +Qk

)

≥ Jmin
(
x,p, f

) ≥ 0.

(2.34)

Proof. The first inequality is an immediate consequence of the Jensen inequality. The other
two follow immediately from (1.4).

Remark 2.10. Inequalities (2.19), (2.22), and (2.34) recapture results from Lemmas 1.5 and 1.6,
and Theorem 1.7 as special cases, since an increasing n-tuple x fulfils conditions (2.2) and
(2.17), that is, (2.11) and (2.20). A decreasing n-tuple x, on the other hand, fulfills conditions
(2.3) and (2.18), that is, (2.12) and (2.21). The proofs of Theorem 2.9 and Corollary 2.5, that
is, Theorems 2.1 and 2.3, are in fact analogous to the proofs of Theorem 1.7, Lemmas 1.5 and
1.6 from [9].
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3. Some Special Cases

In this section, we consider some special cases of the presented results. The same special cases
were considered in [9], but here we obtain them undermore relaxed conditions on the n-tuple
x. More precisely, Corollaries 2.5 and 2.6, or Theorem 2.7, after applying Theorem 2.9, yield

J
(
x,p, f

) ≥ Pjf
(
xj

)
+Qkf(xk) −

(
Pj +Qk

)
f

(
Pjxj +Qkxk

Pj +Qk

)
. (3.1)

Corollary 3.1. Let the conditions of Corollaries 2.5 and 2.6, or Theorem 2.7 hold, then

n∑
i=1

piai −
n∏
i=1

a
pi
i ≥ Pjaj +Qkak −

(
Pj +Qk

)
a
Pj/(Pj+Qk)
j a

Qk/(Pj+Qk)
k . (3.2)

Proof. This follows from (3.1) for f(x) = ex, using notation ai = exi .

Corollary 3.2. Let the conditions of Corollaries 2.5 and 2.6, or Theorem 2.7 hold, and let in addition
xi > 0, i = 1, . . . , n, then

∑n
i=1 pixi∏n
i=1x

pi
i

≥ 1

x
Pj

j x
Qk

k

(
Pjxj +Qkxk

Pj +Qk

)Pj+Qk

. (3.3)

Proof. Follows from (3.1) for f(x) = − lnx.

Corollary 3.3. Let the conditions of Corollaries 2.5 and 2.6, or Theorem 2.7 hold, and let in addition
xi > 0, i = 1, . . . , n, then

n∑
i=1

pi
xi

− 1∑n
i=1 pixi

≥ PjQk

(
xk − xj

)2
xjxk

(
Pjxj +Qkxk

) . (3.4)

Proof. This follows from (3.1) for f(x) = 1/x.

In [9], additional bounds of J(x,p, f), lower than those obtained in the previous
corollaries, were derived for the case f(x) = ex and f(x) = 1/x. Now, note that from
Theorem 2.9, under conditions of Corollaries 2.5 and 2.6, or Theorem 2.7, we have

J
(
x,p, f

) ≥ Jmin
(
x,p, f

) ≥ 0. (3.5)

Next, we compare estimates obtained from (3.5) with those obtained in [9].

Case 1. For f(x) = ex, using notation ai = exi , inequality (3.5) takes the form

n∑
i=1

piai −
n∏
i=1

a
pi
i ≥ min

{
Pj,Qk

}(√
ak −

√
aj

)2
. (3.6)



Abstract and Applied Analysis 11

In [9], under the assumption that a is an increasing n-tuple, the following inequality was
obtained

n∑
i=1

piai −
n∏
i=1

a
pi
i ≥ C

(√
ak −

√
aj

)2
, (3.7)

where

C =

⎧⎪⎨
⎪⎩

2PjQk

Pj +Qk
, Pj ≤ Qk,

Qk, Pj ≥ Qk.

(3.8)

Note that when Pj ≥ Qk, (3.6) recaptures this result. However, when Pj ≤ Qk, the constant C
is better, since 2PjQk/(Pj +Qk) ≥ Pj .

Case 2. For f(x) = 1/x and xi > 0, i = 1, . . . , n, inequality (3.5) takes the form

n∑
i=1

pi
xi

− 1∑n
i=1 pixi

≥ min
{
Pj,Qk

} (
xk − xj

)2
xjxk

(
xj + xk

) . (3.9)

In [9], under the assumption that x is an increasing n-tuple such that x1 > 0, the following
inequality was obtained:

n∑
i=1

pi
xi

− 1∑n
i=1 pixi

≥ C

(√
xk − √

xj

)2
xjxk

, (3.10)

where

C =

⎧⎪⎪⎨
⎪⎪⎩
Pj, Pj ≤ 3Qk,

4PjQk

Pj +Qk
, Pj ≥ 3Qk.

(3.11)

In order to compare these two estimates, first assume that Pj ≤ Qk. Since

Pj

(
xk − xj

)2
xjxk

(
xj + xk

) ≥ Pj

(√
xk − √

xj

)2
xjxk

⇐⇒
(√

xk +
√
xj

)2 ≥ xj + xk, (3.12)

it follows that the estimate in (3.9) is better than the one in (3.10).
Next, assume that Qk ≤ Pj ≤ 2Qk. First, observe that

Qk

(√
xk +

√
xj

)2
≥ Pj

(
xk + xj

)⇐⇒ Pj ≤ Qk

(√
xk +

√
xj

)2
xk + xj

. (3.13)



12 Abstract and Applied Analysis

Simple calculation reveals that

1 ≤
(√

xk +
√
xj

)2
xk + xj

≤ 2, (3.14)

and so we conclude that the estimate in (3.9) is better than the one in (3.10) when Qk ≤ Pj ≤
Qk((

√
xk +

√
xj)

2/(xk+xj)), while whenQk((
√
xk +

√
xj)

2/(xk+xj)) ≤ Pj ≤ 2Qk, the estimate
in (3.10) is better than the one in (3.9).

Further, assume that 2Qk ≤ Pj ≤ 3Qk. In this case, the estimate in (3.10) is better than
the one in (3.9), that is,

Pj

(
xk + xj

) ≥ Qk

(√
xk +

√
xj

)2
. (3.15)

Namely,

Pj

(
xk + xj

) ≥ 2Qk

(
xk + xj

)
,

2Qk

(
xk + xj

) ≥ Qk

(√
xk +

√
xj

)2 ⇐⇒
(√

xk −
√
xj

)2 ≥ 0.
(3.16)

Finally, if 3Qk ≤ Pj , the estimate in (3.10) is again better than the one in (3.9), that is,

4PjQk

Pj +Qk

(
xj + xk

) ≥ Qk

(√
xk +

√
xj

)2
. (3.17)

This is equivalent to

Pj

(
3xj + 3xk − 2

√
xjxk

)
≥ Qk

(√
xk +

√
xj

)2
. (3.18)

In this case, we have

Pj

(
3xj + 3xk − 2

√
xjxk

)
≥ Qk

(
3xj + 3xk − 2

√
xjxk

)
, (3.19)

and since

Qk

(
3xj + 3xk − 2

√
xjxk

)
≥ Qk

(√
xk +

√
xj

)2 ⇐⇒
(√

xk −
√
xj

)2 ≥ 0, (3.20)

the claim follows.
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