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We study warped product of the type Nθ×fNT and Nθ×fN⊥, where Nθ , NT , and N⊥ are proper
slant, invariant, and anti-invariant submanifolds, respectively, and we prove some basic results
and finally obtain some inequalities for squared norm of second fundamental form.

1. Introduction

Bishop and O’Neil [1] introduced the notion of warped product manifolds that occur
naturally; for example, surface of revolution is a warped product manifold. With regard to
physical applications of these manifolds, one may realize that space time around a massive
star or a black hole can be modeled on warped product manifolds [2]. CR-warped product
was introduced by Chen [3]; he studied warped product CR-submanifolds in the setting
of Kaehler manifolds and showed that there does not exist warped product of the form
N⊥×fNT ; therefore he considered warped product CR-submanifolds of type NT × N⊥ and
established a relationship between the warping function f and the squared norm of second
fundamental form [3]. In [4] Atçeken studied semi-slant warped product of Riemannian
product manifolds. In fact they proved that there exists no warped product if spheric
submanifold of warped product submanifold is proper slant submanifold. On the other hand
they proved the existence of warped product of the type Nθ×fNT and Nθ×fN⊥ via some
examples. In this continuation we have studied the warped product submanifolds in which
proper slant submanifolds are totally geodesic; that is, we study the warped product of the
types Nθ × NT and Nθ × N⊥ and called them semi-slant warped product and hemi-slant
warped product submanifolds, respectively.
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2. Preliminaries

Let (M1, g1) and (M2, g2) be the Riemannian manifolds with dimensions m1 and m2,
respectively, and let M1 × M2 be Riemannian product manifold of M1 and M2. We denote
projection mapping of T(M1 ×M2) onto TM1 and TM2 by σ� and π�, respectively. Then we
have σ� + π� = I, σ2

� = σ�, π2
� = π�, and σ� ◦ π� = π� ◦ σ� = 0, where � denotes the differential.

Riemannian metric of the Riemannian product manifold M = M1 ×M2 is defined by

g(X,Y ) = g1(σ�X, σ�Y ) + g2(π�X, π�Y ), (2.1)

for any X,Y ∈ TM. If we set F = σ� − π�, then F2 = I, F /= I, and g satisfies the condition

g(FX, Y ) = g(X,FY ), (2.2)

for anyX,Y ∈ TM; thus F defines an almost Riemannian product structure onM. We denote
Levi-Civita connection on M by ∇; then the covariant derivative of F is defined as

(
∇XF

)
Y = ∇XFY − F∇XY, (2.3)

for any X,Y ∈ TM. We say that F is parallel with respect to the connection ∇ if we have
(∇XF)Y = 0. Here from [5], we know that F is parallel; that is, F is Riemannian product
structure.

Let M be a Riemannian product manifold with Riemannian product structure F and
M an immersed submanifold of M; we also denote by g the induced metric tensor on M

as well as on M. If ∇ is the Levi-Civita connection on M, then the Gauss and Weingarten
formulas are given, respectively, as

∇XY = ∇XY + h(X,Y ), (2.4)

∇XV = −AVX +∇⊥
XV, (2.5)

for any X,Y ∈ TM and V ∈ T⊥M, where ∇ is the connection on M and ∇⊥ is the connection
in the normal bundle, h is the second fundamental form of M, and AV is the shape operator
ofM. The second fundamental form h and the shape operator AV are related by

g(AVX, Y ) = g(h(X,Y ), V ). (2.6)

For any X ∈ TM, we can write

FX = TX +NX, (2.7)
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where TX and NX are the tangential and normal components of FX, respectively, and for
V ∈ T⊥M,

FV = tV + nV, (2.8)

where tV and nV are the tangential and normal components of FV , respectively, and the
submanifoldM is said to be invariant ifN is identically zero. On the other handM is said to
be an anti-invariant submanifold if T is identically zero.

The covariant derivatives of T ,N, t, and n are defined as
(
∇XT

)
Y = ∇XTY − T∇XY, (2.9)

(
∇XN

)
Y = ∇⊥

XNY −N∇XY, (2.10)

(
∇Xt

)
V = ∇XtV − t∇XV, (2.11)

(
∇Xn

)
V = ∇⊥

XnV − n∇⊥
XY. (2.12)

Using (2.4)–(2.9) we get
(
∇XT

)
Y = ANYX + th(X,Y ), (2.13)

(
∇XN

)
Y = h(X, TY ) − nh(X,Y ). (2.14)

Let M be an immersed submanifold of a Riemannian product manifold M, for each
nonzero vector X tangent to M at a point x, and we denote by θ(x) the angle between FX
and TxM. The angle θ(x) is called the slant angle of immersion.

Let M be an immersed submanifold of a Riemannian product manifold M. M is said
to be slant submanifold of Riemannian product manifoldM if the slant angle θ(x) is constant
which is independent of choice of x ∈ M and X ∈ TM.

Invariant and anti-invariant submanifolds are particular cases of slant submanifolds
with angles θ = 0 and θ = π/2, respectively. A slant submanifold which is neither invariant
nor anti-invariant is called proper slant submanifold. The following characterization of slant
submanifolds of Riemannian product manifolds is proved by Atçeken [6].

Theorem 2.1. LetM be an immersed submanifold of a Riemannian product manifoldM. ThenM is
a slant submanifold if and only if there exists a constant λ ∈ [0, 1] such that T2 = λI.

Moreover, if θ is the slant angle of M, then it satisfies λ = cos2θ.
Hence, for a slant submanifold we have the following relations which are conse-

quences of the above theorem:

g(TX, TY ) = cos2θg(X,Y ), (2.15)

g(NX,NY ) = sin2θg(X,Y ) (2.16)

for any X,Y ∈ TM.
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Papaghuic [7] introduced a class of submanifolds in almost Hermitian manifolds
called semi-slant submanifolds; this class includes the class of proper CR-submanifolds and
slant submanifolds. Cabrerizo et al. [8] initiated the study of contact version of semi-slant
submanifolds and also gave the notion of Bi-slant submanifolds. A step forward Carriazo [9]
defined and studied Bi-slant submanifolds and simultaneously gave the notion of anti-slant
submanifolds; after that V. A. Khan andM. A. Khan [10] have studied anti-slant submanifolds
with the name pseudo-slant submanifolds. Recently, Sahin [11] renamed these submanifolds
and studied these submanifolds with the name hemi-slant submanifolds for their warped
product.

Definition 2.2. A submanifold M of a Riemannian product manifold is said to be semi-slant
submanifold if there exist two orthogonal complementary distributions DT and Dθ such that
DT is invariant and Dθ is slant distribution with slant angle θ /= 0.

It is straight forward to see that semi-invariant submanifolds and slant submanifolds
are semi-slant submanifolds with θ = π/2 and DT = {0}, respectively.

If μ is invariant subspace under F of the normal bundle T⊥M, then in the case of semi-
slant submanifold, the normal bundle T⊥M can be decomposed as

T⊥M = μ ⊕NDθ. (2.17)

A semi-slant submanifoldM is called a semi-slant product if the distributionsDT and
Dθ are parallel on M. In this case M is foliated by the leaves of these distributions.

Definition 2.3. A submanifold M of a Riemannian product manifold is called hemi-slant
submanifold if it is endowed with two orthogonal complementary distributions D⊥ and Dθ

such that D⊥ is totally real and Dθ is slant distribution with slant angle θ /=π/2.

It is easy to see that semi-invariant submanifolds and slant submanifolds are semi-
slant submanifolds with θ = 0 and D⊥ = {0}, respectively. The normal bundle T⊥M can be
decomposed as follows:

T⊥M = μ ⊕ND⊥ ⊕NDθ. (2.18)

As D⊥ and Dθ are orthogonal distributions on M, then it is easy to see that the
distributions ND⊥ and NDθ are mutually perpendicular. In fact, the decomposition (2.18)
is an orthogonal direct decomposition. A hemi-slant submanifold M is called a hemi-slant
product if the distributions D⊥ and Dθ are parallel on M.

As a generalization of product manifold and in particular of semi-slant product
submanifolds (hemi-slant product submanifolds) one can consider warped product of
manifolds which are defined as.

Definition 2.4. Let (B, gB) and (F, gF) be two Riemannian manifolds with Riemannian metric
gB and gF , respectively, and f a positive differentiable function on B. The warped product of
B and F is the Riemannian manifold (B × F, g), where

g = gB + f2gF. (2.19)
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For a warped product manifold N1×fN2, we denote by D1 and D2 the distributions
defined by the vectors tangent to the leaves and fibers, respectively. In other words, D1 is
obtained by the tangent vectors ofN1 via the horizontal lift andD2 is obtained by the tangent
vectors of N2 via vertical lift. In case of semi-slant warped product submanifolds D1 and D2

are replaced by DT and Dθ, respectively.
The warped product manifold (B ×F, g) is denoted by B×fF. If X is the tangent vector

field toM = B×fF at (p, q), then

‖X‖2 = ‖dπ1X‖2 + f2(p)‖dπ2X‖2. (2.20)

Bishop and O’Neill [1] proved the following.

Theorem 2.5. LetM = B×fF be warped product manifolds. If X,Y ∈ TB and V,W ∈ TF, then

(i) ∇XY ∈ TB,

(ii) ∇XV = ∇VX = (Xf/f)V ,

(iii) ∇VW = (−g(V,W)/f)∇f .

∇f is the gradient of f and is defined as

g
(∇f,X

)
= Xf, (2.21)

for all X ∈ TM.

Corollary 2.6. On a warped product manifold M = N1×fN2, the following statements hold:

(i) N1 is totally geodesic inM;

(ii) N2 is totally umbilical inM.

Throughout, we denote by NT , N⊥, and Nθ invariant, anti-invariant, and slant
submanifolds, respectively, of a Riemannian product manifoldM.

3. Semi-Slant Warped Product Submanifolds

In this section we will consider the warped product of the typeNθ×fNT .
For the warped product of the type Nθ×fNT by Theorem 2.5 we have

∇XZ = ∇ZX = Z ln fX, (3.1)

for any Z ∈ TNθ and X ∈ TNT .

Lemma 3.1. Let M = Nθ×fNT be a semi-slant warped product submanifold of a Riemannian pro-
duct manifold; then

(i) g(h(X,Z),NW) = 0,

(ii) g(h(X,X),NZ) = TZ ln f‖X‖2,
for any X ∈ TNT and Z,W ∈ TNθ.
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Proof. For any Z,W ∈ TNθ, (∇ZT)W ∈ TNθ; then from (2.13)

(∇ZT)W = ANWZ + th(Z,W). (3.2)

Taking inner product with X ∈ TNT we have

g(h(X,Z),NW) = 0. (3.3)

This is part (i) of the lemma.
Now for any X,Y ∈ TNT , from (2.13) and (2.9),

∇XTY − T∇XY = th(X,Y ). (3.4)

Taking inner product with Z ∈ TNθ, the above equation yields

−g(∇XZ, TY ) − g(∇XTZ, Y ) = g(h(X,Y ),NZ). (3.5)

Using (3.1), the above equation gives

−Z ln fg(X, TY ) + TZ ln fg(X,Y ) = g(h(X,Y ),NZ). (3.6)

In particular

TZ ln fg(X,X) = g(h(X,X),NZ). (3.7)

This proves part (ii) of the lemma. Now we have the following corollary.

Corollary 3.2. For the warped product of the type Nθ×fNT following statements are equivalent:

(i) H ∈ μ,

(ii) θ = π/2 or the warping function f is constant; that is, there does not exist warped product.

Proof. Since NT is totally umbilical, then from (3.7)

g(H,NZ) = TZ ln f. (3.8)

Replacing Z by TZ and using Theorem 2.1, we get

g(H,NTZ) = cos2θZ ln f. (3.9)

The proof follows from (3.9).

Now we have the following characterization for semi-slant warped product submani-
folds.
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Theorem 3.3. A semi-slant submanifold M of Riemannian product manifolds M with integrable
invariant distribution DT and the slant distribution Dθ is locally a semi-slant warped product if and
only if ∇XTZ ∈ Dθ and there exist a C∞-function α on M with Xα = 0 for all X ∈ DT such that

ANZX = TZ ln fX, (3.10)

for all X ∈ DT and Z ∈ Dθ.

Proof. If M is a semi-slant warped product of the type Nθ×fNT , then for any X ∈ TNT and
Z ∈ TNθ from (2.9), (2.13), and (3.1), we have

TZ ln fX − Z ln fTX = ANZX + th(X,Z). (3.11)

Taking inner product with X, the above equation gives

g(ANZX,X) = TZ ln fg(X,X). (3.12)

By part (i) of Lemma 3.1, we also have

g(ANZX,W) = 0. (3.13)

From (3.12) and (3.13) we have the following equation:

ANZX = TZ ln fX. (3.14)

Conversely, letM be a semi-slant submanifold ofM satisfying the hypothesis of the theorem;
then for any Z ∈ TNθ and Y ∈ TNT we have

g(h(Z, Y ),NZ) = g(ANZY,Z) = 0. (3.15)

This mean h(Z, Y ) ∈ μ.
From (2.14), we have

−N∇ZY = fh(Z, Y ) − h(Z, TY ). (3.16)

Comparing components of μ and NDθ, we get

N∇ZY = 0. (3.17)

It is evident from the above equation that ∇ZY ∈ DT ; this means ∇ZW ∈ Dθ for any
Z,W ∈ Dθ and hence Dθ is totally geodesic. Further, let NT be a leaf of DT and hT a second
fundamental form of the immersion NT inM; then for any X,Y ∈ DT and Z,W ∈ Dθ

g
(
hT (X,Y ), FW

)
= g(∇XY, FW). (3.18)
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or

g
(
hT (X,Y ), FW

)
= −g(∇XTW −ANWX, Y ). (3.19)

Using the hypothesis, we get

g
(
hT (X,Y ), FW

)
= TW ln fg(X,Y ), (3.20)

Finally, the above equation yields

hT (X,Y ) = g(X,Y )∇α. (3.21)

That is,NT is totally umbilical and as Xα = 0, for all X ∈ DT , this means that mean curvature
vector ofNT is parallel; that is, the leaves ofDT are extrinsic spheres inM. Hence by virtue of
result of [12]which says that if the tangent bundle of a Riemannian manifoldM splits into an
orthogonal sum TM = E0 ⊕ E1 of nontrivial vector subbundles such that E1 is spherical and
its orthogonal complement E0 is auto parallel, then the manifold M is locally isometric to a
warped product M0×fM1, we can say M is locally semi-slant warped product submanifold
Nθ×fNT , where warping function f = eα.

Let us denote by DT and Dθ the tangent bundles on NT and Nθ, respectively, and let
{X1, . . . , Xp,Xp+1 = FX1, . . . , X2p = FXp} and {Z1, . . . , Zq, Zq+1 = TZ1, . . . , Z2q = TZq} be local
orthonormal frames of vector fields on NT and Nθ, respectively, with 2p and 2q being real
dimensions:

‖h‖2 =
2p∑

i,j=1

g
(
h
(
Xi,Xj

)
, h
(
Xi,Xj

))
+

2p∑
i=1

2q∑
r=1

g(h(Xi, Zr), h(Xi, Zr))

+
2q∑

r,s=1

g(h(Zr,Zs), h(Zr,Zs)).

(3.22)

Now, on a semi-slant warped product submanifold of a Riemannian product manifold, we
prove the following.

Theorem 3.4. Let M = Nθ×fNT be a semi-slant warped product submanifold of a Riemannian
product manifoldM withNT andNθ invariant and slant submanifolds, respectively, ofM. Then the
squared norm of the second fundamental form h satisfies

‖h‖2 ≥ 4p
(
1 + cos2θ

)
csc 2θ

∥∥∇ ln f
∥∥2

. (3.23)

Proof. For Nθ×fNT , in view of decomposition (2.17), we may write

h(X,Y ) = hNDθ(X,Y ) + hμ(X,Y ), (3.24)
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for each X,Y ∈ TM, where hNDθ(X,Y ) ∈ NDθ and hμ(X,Y ) ∈ μwith

hNDθ(X,Y ) =
2q∑
r=1

hr(X,Y )NZr, (3.25)

where

hr(X,Y ) = csc2θg(h(X,Y ),NZr), (3.26)

for each Z ∈ TNθ. For any X ∈ TNT and Z ∈ TNθ, by (3.25) we have

g(hNDθ(Xi,Xi), hNDθ(Xi,Xi)) = g(hr(Xi,Xi)NZr, h
r(Xi,Xi)NZr)

+
∑
s /= r

g(hs(Xi,Xi)NZr, h
s(Xi,Xi)NZr).

(3.27)

Now, using (3.26), (3.7), and (2.16), the above equation takes the form

g(hNDθ(Xi,Xi), hNDθ(Xi,Xi)) = csc2θ
(
TZr ln f

)2 + sin2θ
∑
s /= r

(hs(Xi,Xi))
2. (3.28)

Now summing over i = 1, . . . , 2p, r, s = 1, . . . , 2q and again using (3.7) and (3.26), we have

g(hNDθ(Xi,Xi), hNDθ(Xi,Xi)) = 2p
(
1 + cos2θ

)
csc2θ

∥∥∇ ln f
∥∥2

(
1 + sin2θcsc2θ

)
, (3.29)

or

g(hNDθ(Xi,Xi), hNDθ(Xi,Xi)) = 4p
(
1 + cos2θ

)
csc2θ

∥∥∇ ln f
∥∥2

, (3.30)

By similar calculation, from (3.25), (3.26), (3.3), and (2.16) it is easy to see that

g(hNDθ(Xi, Zr), hNDθ(Xi, Zr)) = 0. (3.31)

The result follows from (3.22), (3.30), and (3.31).

4. Hemi-Slant Warped Product Submanifolds

In this section we will study the warped product of the typeNθ×fN⊥. For warped product of
type Nθ×fN⊥ from Theorem 2.5 we have

∇XZ = ∇ZX = X ln fZ, (4.1)

for any X ∈ TNθ and Z ∈ TN⊥.
Now we have the following lemma.
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Lemma 4.1. Let M = Nθ×fN⊥ be a hemi-slant warped product submanifold of a Riemannian
product manifold; then

(i) g(h(X,Z),NY ) + g(h(X,Y ),NZ) = 0,

(ii) g(h(X,Z),NZ) = 0,

(iii) g(h(Z,Z),NX) = TX ln f‖Z‖2,
for any X,Y ∈ TNθ and Z ∈ TN⊥.

Proof. For any X,Y ∈ TNθ, (∇XT)Y ∈ TNθ; then from (2.13)we have

g
((

∇XT
)
Y,Z

)
= g(ANYX,Z) + g(th(X,Y ), Z), (4.2)

or equivalently the above equation gives

g(h(X,Z),NY ) + g(h(X,Y ),NZ) = 0, (4.3)

which proves part (i).
From (2.9), (2.13), we have

ANZX + th(X,Z) = 0. (4.4)

Taking inner product with Z ∈ TN⊥ the above equation is reduced to

g(h(X,Z),NZ) = 0. (4.5)

Using (2.9), (2.13), and (4.1), we derive

TX ln fZ = ANXZ + th(X,Z). (4.6)

Taking inner product with Z ∈ TN⊥ and using (4.5),

g(h(Z,Z),NX) = TX ln f‖Z‖2. (4.7)

Now we have the following corollary.

Corollary 4.2. For the warped product of the type Nθ×fN⊥ following statements are equivalent:

(i) H ∈ μ ⊕ND⊥,

(ii) the warping function f is constant; that is, there does not exist warped product.

Proof. AsN⊥ is totally umbilical, then from (4.7) and from Theorem 2.5

g(H,NTX) = cos2θX ln f. (4.8)
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Since θ /=π/2, hence from the previous equation it is easy to see that statements (i) and (ii)
are equivalent.

Let us denote by Dθ and D⊥ the tangent bundles on Nθ and N⊥, respectively, and let
{X1, X2, . . . , Xq, Xq+1 = TX1, . . . , X2q = TXq} and {Z1, Z2, . . . , Zp} be local orthonormal frames
of vector fields on Nθ and N⊥, respectively, with 2p and q being their real dimensions; then

‖h‖2 =
2q∑

r,s=1

g(h(Xr,Xs), h(Xr,Xs)) +
2q∑
r=1

p∑
i=1

g(h(Xr,Zi), h(Xr,Zi))

+
p∑

i,j=1

g
(
h
(
Zi, Zj

)
, h
(
Zi, Zj

))
.

(4.9)

Now, on a hemi-slant warped product submanifold of a Riemannian product manifold, we
prove the following inequality.

Theorem 4.3. Let M = Nθ×fN⊥ be a hemi-slant warped product submanifold of a Riemannian
product manifold M with N⊥ and Nθ anti-invariant and slant submanifolds, respectively, of M.
Then the squared norm of the second fundamental form h satisfies

‖h‖2 ≥ 2p
(
1 + cos2θ

)
csc 2θ

∥∥∇ ln f
∥∥2

. (4.10)

Proof. In view of decomposition (2.18), the second fundamental form can be decomposed as
follows:

h(X,Y ) = hNDθ(X,Y ) + hND⊥(X,Y ) + hμ(X,Y ), (4.11)

for each X,Y ∈ TM, where hNDθ(X,Y ) ∈ NDθ, hND⊥(X,Y ) ∈ ND⊥, and hμ(X,Y ) ∈ μ with

hNDθ(X,Y ) =
2q∑
r=1

hr(X,Y )NX′
r , (4.12)

where

hr(X,Y ) = csc2θg
(
h(X,Y ),NX′

r

)
, (4.13)

for each X′
r ∈ TNθ.

Now making use of (2.18), (4.12), (4.13), and (4.7) we have

g(hNDθ(Zi, Zi), hNDθ(Zi, Zi)) = csc2θ
(
TXr ln f

)2 + sin2θ
∑
s /= r

(hs(Zi, Zi))
2, (4.14)

for any X ∈ TNθ and Z ∈ TN⊥.
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Again using (4.12) and (4.13), the previous equation gives

g(hNDθ(Zi, Zi), hNDθ(Zi, Zi)) = csc2θ
(
TXr ln f

)2 + sin2θcsc4θ
(
TXs ln f

)2
. (4.15)

Summing over i = 1, . . . , p and r, s = 1, . . . , 2q, we have

g(hNDθ(Zi, Zi), hNDθ(Zi, Zi)) = 2p
(
1 + cos2θ

)
csc2θ

∥∥∇ ln f
∥∥2

. (4.16)

Similarly, for any X ∈ TNθ and Z ∈ TN⊥ by (4.12), (4.13), and (4.5) it is easy to see that

g(hNDθ(Xr,Zi), hNDθ(Xr,Zi)) = 0. (4.17)

The result follows from (4.9), (4.16), and (4.17).
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120, no. 10-11, pp. 1227–1234, 2005.

[3] B.-Y. Chen, “Geometry of warped product CR-submanifolds in Kaehler manifolds,” Monatshefte für
Mathematik, vol. 133, no. 3, pp. 177–195, 2001.
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