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Reset control systems are a special type of state-dependent impulsive dynamic systems, in
which the time evolution depends both on continuous dynamics between resets and the discrete
dynamics corresponding to the resetting times. This work is devoted to investigate well-posedness
of reset control systems, taking as starting point the classical definition of Clegg and Horowitz.
Well-posedness is related to the existence and uniqueness of solutions, and in particular to the
resetting times to bewell defined and distinct. A sufficient condition is developed for a reset system
to have well-posed resetting times, which is also a sufficient condition for avoiding Zeno solutions
and, thus, for a reset control system to be well-posed.

1. Introduction

Reset control systems [1–3] are a type of impulsive hybrid systems, in which the system
state (or part of it) is reset at the instants it crosses some reset set. Impulsive hybrid systems
are an active area of systems theory that has been developed in the last years. Two classical
monographs are [4, 5], where reset control systems without external inputs are a particular
case of autonomous system with impulse effects.

In this work, reset control systems will be formulated as a particular type of
impulsive dynamical systems (IDSs), more specifically as state-dependent IDS, following the
impulsive/hybrid dynamic system framework developed in [6]. In this framework, existence
and uniqueness of solutions over a forward time interval is based on the well-posedness of
resetting times.
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The main goal of this work is to investigate well-posedness of reset control systems
taking as starting point the classical definition of Clegg and Horowitz. This formulation has
been also followed in several recent works, for example [7, 8] and references therein, and also
[9–12]. As it is well known, reset control systems and IDS in general can exhibit behaviors
that can be pathological from a control point of view. As it has been shown in [6], definition of
IDS solutions has to deal with the problem of beating, deadlock, and Zenoness. In general, a
reset control system will be considered well-posed if the resetting times are well-posed (they
are well defined and are distinct), meaning that a number of beating or pulse phenomena are
avoided, and in addition Zeno solutions do not exist.

As it will be shown, simple geometric conditions will be derived for avoiding the
presence of these pathological behaviours. In Section 2, preliminarymaterial and basic results
are given. Section 3 develops a result for reset control systems to have well-posed resetting
times. Finally, Section 4 tackles with the problem of existence of Zeno solutions.

Notation. In this work, R
+ is the set of nonnegative real numbers, and (x,y) denotes the

column vector
( x
y
)
. In addition, ei ∈ R

n stands for the unit vector (0 · · · 0 1 0 · · · 0)T

in which the ith-component is 1. For a set M ⊂ R
n, M is the closure of M. On the other

hand, for a linear and time-invariant system with state space matrices (A,C), the subspace of
unobservable states is given by the null space of the observability matrix O, where

O =

⎛

⎜⎜
⎝

C
CA
· · ·

CAn−1

⎞

⎟⎟
⎠. (1.1)

2. Preliminaries and Problem Setup

This work deals with a special class of hybrid systems called impulsive dynamical systems
(IDSs, [6]). In particular, with state-dependent IDS having the form

ẋ(t) = Ax(t), x(t) /∈ M,

x(t+) = ARx(t), x(t) ∈ M,

x(0) = x0,

(2.1)

where x(t) ∈ R
n, t ≥ 0, is the system state at the instant t, M ⊂ R

n is the reset set, and A
and AR are matrices of dimension n × n. The following material, including definition of IDS
solutions and well-posedness of resetting times, is strongly based on [6]. The first equation in
(2.1) will be referred to as the continuous-time dynamics or simply base system dynamics, while
the second equation in (2.1) will be referred to as the resetting law. When at some resetting
time t ≥ 0, x(t) ∈ M is true (the reset condition is active, and a crossing is performed), the
state x(t) jumps to x(t+) = ARx(t) ∈ MR; it will be assumed that resetting times are well-posed,
that is, they are well defined and distinct for any initial condition. Otherwise, the state x(t)
evolves with the base system dynamics. The setMR will be referred to as the after-reset set.

A function x : Ix0 → R
n is a solution of the IDS system (2.1) on the interval Ix0 ⊆ R,

with initial condition x(0) = x0, if x(·) is left-continuous, and x(t) satisfies (2.1) for all t ∈ Ix0 .
For further discussion on solutions to impulsive differential equations and IDS solutions,
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see [4–6]. In general, there exists a unique solution ψ(t) = eAtψ0 of the (continuous) base
system with initial condition ψ(0) = ψ0 on [0,∞), for any ψ0 ∈ R

n. Informally speaking, the
solution x of the IDS (2.1) from the initial condition x(0) = x0 is given by x(t) = eAtx0 for 0 < t ≤
t1, where t1 is the first resetting time satisfying x(t1) ∈ M. Then, the state is instantaneously
transferred to ARx(t1) according to the resetting law. The solution x(t), t1 < t ≤ t2 (being
t2 the second resetting time given by eA(t2−t1)x(t1) ∈ M) is given by x(t) = eA(t−t1)x(t1) =
eA(t−t1)ARe

At1x0, and so forth. Note that the solution x of (2.1) is left-continuous, that is, it is
continuous everywhere except at the resetting times tk, and

x(tk) = lim
ε→ 0+

x(tk − ε),

x
(
t+k
)
= lim

ε→ 0+
x(tk + ε) = ARx(tk).

(2.2)

2.1. Well-Posed Resetting Times and Zeno Solutions

Two standard assumptions for well-posedness of resetting times of state-dependent IDS [6],
that will be used in this work, are

(A1) x(t) ∈ M \M ⇒ there exists ε > 0 such that x(t + δ) /∈ M, for all δ ∈ (0, ε).

(A2) x ∈ M ⇒ ARx /∈ M.

Note that for a particular solution x(·), the first resetting time t1 is well defined since
min{t ∈ R

+ : ψ(t, 0, x0) = eAtx0 ∈ M} exists (and thus, it is unique by uniqueness of solutions
of the base system). Analogously, for k = 2, 3, . . ., the resetting time tk is well defined since
again min{t ∈ R

+ : ψ(t, tk−1, ARx(tk−1)) ∈ M} exists, and in addition 0 = t0 < t1 < t2 < · · · , for
any x0 ∈ R

n. Here, ψ(t, t0, ψ0) is a solution of the base system with initial condition ψ(t0) = ψ0,
that is, ψ(t, t0, ψ0) = eA(t−t0)ψ0. Therefore, if for any initial condition x0 ∈ R

n the resetting times
are well defined, functions τk : R

n → [0,∞) are defined for k = 1, 2, . . ., where tk = τk(x0) is
the kth resetting time, and by definition τ0(x0) = 0. Note that for a particular solution, there
may exist no crossings, a finite or a infinite number of crossings, and in a finite or infinite
time interval Ix0 , and that functions τk(x0) are single valued by uniqueness of the base system
solutions.

Since by assumptions A1 and A2, the resetting times are well defined and distinct, and
since for a given initial condition, the solution to the base system differential equation exists
and is unique, it follows that the solution of the IDS (2.1) also exists and is unique over a
forward time interval [6]. For the IDS (2.1) with well-posed resetting times, a Zeno solution
xZ(·) exists on the interval Ix0 = [0, T] for some initial condition xz(0) = x0 ∈ R

n, if there
exists an infinite sequence of resetting times (τk(x0))

∞
k=0, and a positive number T , such as

τk(x0) → T as k → ∞. Note that the solution is not defined beyond the time T . If there does
not exist Zeno solutions for any initial condition, then the solutions of the IDS (2.1) exists and
are unique for any initial condition on Ix0 = [0,∞).

Note that conditions A1 and A2 can be interpreted as: (i) states that belong to the
closure ofM, and does not belong toM, evolve with the continuous base dynamics for some
finite time interval (A1); (ii) after-reset states are not elements of the reset setM (A2). In other
words, for resetting times to be well-posed a IDS system solution can only reachM through a
point belonging to bothM and its boundary ∂M; and if a solution reaches a point inM that is
on its boundary, then it is instantaneously removed fromM. Roughly speaking, condition A1
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avoids the presence of deadlock, while condition A2 avoids beating or livelock (using these
terms in the sense given in [6]).

In the following, two examples of ill-posed (not well-posed) second-order IDS are
shown to illustrate conditions A1 and A2. In both cases, the base system corresponds to some
matrixA ∈ R

2×2, making the equilibrium point x = 0 a center, and the resetting law is x1(t+) =
x1(t), x2(t+) = 0.

(a) (Figure 1(a)), here the reset set Ma is the rectangle

Ma =
{(

x1
x2

)
∈ R

2 : −1 ≤ x1 ≤ 1, 0.7 < x2 ≤ 1
}
, (2.3)

and the after reset set is

Ma
R =

{(
x1
x2

)
∈ R

2 : −1 ≤ x1 ≤ 1, x2 = 0
}
, (2.4)

that is, the interval [−1, 1] in the x1-axis. From an initial condition in the point A,
the trajectory reaches the reset set Ma at some point belonging to both Ma and its
boundary ∂Ma. Thus, the first resetting time τ1(A) is well defined, and then the
trajectory jumps to the point B. From the point B, the system trajectory evolves as
the base system until it reaches a point C that belongs to ∂Ma but not to Ma. Thus,
condition A1 is not satisfied since the trajectory enters into M for any arbitrarily
small time after reaching the pointC (the second resetting time τ2(A) is undefined).

(b) (Figure 1(b)),Mb is the grey region (it contains its boundary), and the after reset set
isMb

R = Ma
R. Note that theMb∩Mb

R = {C,D}. In this case, a trajectory starting from
the point A reaches Mb at the point B which belongs both to Mb and its boundary
(thus, A1 is satisfied, and the first resetting time τ1(A) is well defined). After that,
the trajectory jumps to the point C that belongs both toMb

R andMb and then make
an infinite number of resets (condition A2 is not satisfied).

2.2. Reset Control Systems

In this work, reset control systems will be represented by the state-dependent IDS (2.1).
Consider the feedback system given by Figure 2, where the (single input-single ouput) plant
is described by the following:

P :

{
ẋp(t) = Apxp(t) + Bpu(t), xp(0) = xp0,

y(t) = Cpxp(t),
(2.5)
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Figure 1: Examples of ill-posed IDSs.

and the (single input-single output) reset compensator is given by the impulsive differential
equation:

C :

⎧
⎪⎪⎨

⎪⎪⎩

ẋr(t) = Arxr(t) + Bre(t), xr(0) = xr0, e(t)/= 0,
xr(t+) = Aρxr(t), e(t) = 0,
v(t) = Crxr(t).

(2.6)

Here np is the dimension of the state xp, and nr is the dimension of the state xr .Aρ is a diagonal
matrix with (Aρ)ii = 0 if the state (xr)i of the compensator is to be reset, and (Aρ)ii = 1
otherwise. In general, it is assumed that the last nρ compensator states are set to zero at the
resetting times. In the case of a full-reset compensator, all the elements of Aρ are 0. Consider
the closed loop autonomous unforced system given by e(t) = −y(t), u(t) = v(t), and define
the (closed loop) state x = (xp, xr) of dimension n = np + nr , being nr = nρ + nρ. The result is
that the reset control system is given by the state-dependent IDS

ẋ(t) = Ax(t), x(t) /∈ M,

x(t+) = ARx(t), x(t) ∈ M,

x(0) = x0,

y(t) = Cx(t),

(2.7)
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Figure 2: Reset control system.

where

A =
(

Ap BpCr

−BrCp Ar

)
, (2.8)

AR = diag
(
Inp , Aρ

)
= diag

(
Inp ,

(
Inρ , Onρ

))
, (2.9)

C =
[
Cp,O

]
, (2.10)

M = {x ∈ R
n : Cx = 0}. (2.11)

In control practice, it is required that reset control system solutions x(t) will be well-
posed in the sense that they exist and are unique for t ≥ 0. By definition, the reset control
system (2.7)–(2.11) is well-posed if for any initial condition x0 ∈ R

n, a solution x exists and
is unique on Ix0 = [0,∞). As a state-dependent IDS system, the reset control system is well-
posed if resetting times are well-posed, and in addition, there do not exist Zeno solutions
for any initial condition. In Section 3, the well-posedness of resetting times for reset control
systems will be investigated. The existence of Zeno solutions is explored in Section 4.

3. Reset Control Systems with Well-Posed Resetting Times

The reset control system (2.7)–(2.11) is a particular case of the state-dependent IDS (2.1),
with a reset set (it will be referred to as reset surface)M = N(C), the null space of C, and with
an after-reset set, or after-reset surface, MR = AR(M). Since AR is a projector, it results that
in general MR ∩ M/= ∅, and thus, without any modification, the reset control system (2.7)–
(2.11) does not have well-posed resetting times. This problem was detected in [7, 8], and a
partial solution was given by redefining both sets as M = {x ∈ R

n \ MR : Cx = 0}, and
MR = {x ∈ R

n : Cx = 0, (I − AR)x = 0}, where after-reset states are simply removed from M
as given by (2.11). Since AR is a projector, then the set {x ∈ R

n : (I −AR)x = 0} is the column
space of AR, that is R(AR). Thus, the above definitions are equivalent to

MR = R(AR) ∩N(C), M = N(C) \MR. (3.1)

Proposition 3.1. The reset system (2.7), with M and MR given by (3.1), has well-posed resetting
times if

MR ∩N(Obase) = {0}, (3.2)

where Obase is the base system observability matrix.
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Proof. If they do exist, by (3.1), resetting times are distinct since M ∩ MR = ∅ is equivalent
to A2, thus, the proof is centered in their existence. Note that by (3.1), M \ M = MR in
A1. By time invariance, A1 is equivalent to x0 ∈ MR ⇒ x(t) /∈ M for t ∈ (0, ε) and some
ε > 0. Here ε depends on x0, but the dependence will not be explicitly shown by simplicity. In
general, given x0 ∈ MR, the first crossing withM is at the instant t1 = τ1(x0), and finally A1 is
equivalent to the existence of a lower bound ε > 0 for t1, for any given x0 ∈ MR. From (3.1),
t1 is simply given by t1 = min{t > 0 | CeAtx0 = 0 ∧ eAtx0 /∈ R(AR)}. If ε1 > 0 is by definition a
lower bound of the set {t > 0 | CeAtx0 = 0}, and ε2 > 0 is by definition a lower bound of the
set {t > 0 | eAtx0 /∈ R(AR)} (both depending on x0), then ε = max{ε1, ε2} ≤ t1. By simplicity,
consider in first instance that A has distinct eigenvalues; in this case (see the Appendix)

{
t > 0 | CeAtx0 = 0

}
=
{
t > 0 | f1(t) := eλtTU(λ)Obasex0 = 0

}
. (3.3)

Since f1(·) is a sum of exponentials (in fact it is a Bohl function [13]), and thus, it is an
analytical function, it is true that f1(t) is either zero for all t ≥ 0 or has isolated zeros.
As a result, two options are possible as follows ε1 = 0 if x0 ∈ N(Obase) (f1(t) = 0, for
all t ∈ [0,∞)), or there exist an interval (0, ε1) in which f1(t)/= 0 for some ε1 > 0. Now, if
condition (3.2) is satisfied then for any x0 ∈ MR only the second option is possible, and thus,
t1 ≥ max{ε1, ε2} ≥ ε1, that is, A1 is satisfied (condition (3.2) is sufficient for A1). Finally, in the
case in which the eigenvalues of Amay be repeated, similar expressions may be found for f1
(see the Appendix), and the above arguments are again applied.

Remark 3.2. Note that, in particular, well-posedness of resetting times is obtained if the base
system is observable, since in this case N(Obase) = {0}. But some unobservable base linear
systems can also produce reset systems with well-posed resetting times, as far as the after-
reset surface does not contain unobservable states (different to 0).

Remark 3.3. Note that, in general, Proposition 3.1 may be applied to reset systems given
by (2.7) with arbitrary values A, AR, and C as far as the developed conditions apply (not
necessarily reset control systems).

Remark 3.4. For the reset and after-reset sets given by (3.1), functions τk(·), k = 0, 1, 2, . . . are
homogenous (of degree 0), that is τk(αx0) = τk(x0) for any real number α, since CeAt(αx0) =
αCeAtx0 = 0 at a resetting time t.

Example 3.5 (III-posed reset system). Consider a reset system (2.7), with the following system
matrices

A =

⎛

⎝
−1 0 0
0 −1 −1
0 1 −1

⎞

⎠, AR =

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠, C =
(
1 0 0

)
, (3.4)

where the sets MR and M are defined according to (3.1) as MR = R(AR) ∩ N(C) =
span{(0, 1, 0)T}, and M = N(C) \ MR = span{(0, 1, 0)T , (0, 0, 1)T} \ span{(0, 1, 0)T}. This is
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due to the fact that the after-reset surface MR is a subset of the unobservable subspace of the
linear base system, which is given in this case by

N
⎛

⎝

⎛

⎝
C
CA
CA2

⎞

⎠

⎞

⎠ = N
⎛

⎝

⎛

⎝
1 0 0
−1 0 0
1 0 0

⎞

⎠

⎞

⎠ = N(C) ⊃ MR. (3.5)

As a result, from any initial condition x0 = (0, a, 0)T ∈ MR, the condition A1 is not satisfied.
Note that the origin is a stable focus in the plane x2 − x3, and that the first resetting time
τ1((0, a, 0)

T ) is not well defined; in fact, the reset system is not well-posed.

Example 3.6 (Unobservable base system and well-posed resetting times). This example,
adapted from [8], shows how an unobservable base system may define a reset system with
well-posed resetting times, as far as the unobservable subspace does not contain after-reset
states. Consider a reset control system (2.7) with

A =

⎛

⎝
0 0 1
1 −0.2 1
0 −1 −1

⎞

⎠, AR =

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠, C =
(
0 1 0

)
, (3.6)

that has a unobservable mode corresponding to a stable pole-zero cancellation in the linear
base system, where the plant has a transfer function P(s) = (s + 1)/(s(s + 0.2)), and the
base compensator is C(s) = 1/(s + 1) (the reset compensator is a first-order reset element
-FORE). In addition, the after-reset and reset surfaces are given by MR = R(AR) ∩ N(C) =
span{(1, 0, 0)T} andM = N(C)\MR = span{(1, 0, 0)T , (0, 0, 1)T}\span{(1, 0, 0)T}, respectively.
In this case, the setMR is not a subset of the linear base system unobservable subspace, given
by

N
⎛

⎝

⎛

⎝
C
CA
CA2

⎞

⎠

⎞

⎠ = N
⎛

⎝

⎛

⎝
0 1 0
1 −0.2 1

−0.2 −0.96 −0.2

⎞

⎠

⎞

⎠ = span
{
(1, 0,−1)T

}
. (3.7)

As a result, Proposition 3.1 may be used to ensure that the system has well-posed resetting
times (see Figure 3 for system solutions corresponding to two initial conditions).

4. Zeno Solutions of Reset Control Systems

In this Section, the existence of Zeno solutions is investigated for reset control systems
described by (2.7)–(2.10), and with reset and after-reset surfaces given by (3.1). In principle,
as discussed in Section 2.2, the reset control system may exhibit Zeno solutions even in the
case in which resetting times are well-posed, that is, they are well defined and are distinct.
However, as it will be shown in the following, well-posedness of resetting times is sufficient
to avoid the existence of Zeno solutions in reset control systems, and thus, for reset control
systems to be well-posed.
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x2

x3

x1

Figure 3: System solutions for the well-posed reset control system example.

Proposition 4.1. The reset control system (2.7)–(2.10), with reset and after-reset surfaces given by
(3.1), will not have Zeno solutions if it has well-posed resetting times.

Proof. It will be assumed that x0 ∈ MR, and that there exist an infinite number of crossings
for x0 (otherwise no Zeno solution may exist), then reset intervals are given by Δk(x0) :=
τk(x0) − τk−1(x0)/= 0, k = 1, 2, . . .. In the following, the notation tk = τk(x0) is used, and the
argument x0 is dropped by simplicity. Note that reset intervalsΔk are well defined andΔk /= 0,
k = 1, 2, . . ., bywell-posedness of the resetting times. The proof will be based on the fact that in
general there can only exist a finite sequence of reset intervals (Δk)

m−1
k=1 such asΔm−1 < Δm−2 <

· · · < Δ1 = ε, for some ε > 0 arbitrarily small but fixed, and some finite positive integer m,
being m the dimension of the after reset surface MR. Thus, the sequence of resetting times
(tk = tk−1 + Δk)

∞
k=1, with t0 = 0, will not be a Cauchy sequence, and thus, tk → ∞, as k → ∞.

As a result, Zeno solutions does not exist. Assume that the plant state equations (2.5) are
given in observer form (note that the plant has not to be necessarily observable), that is,

Ap =

⎛

⎜⎜⎜⎜
⎝

0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

... · · · ...
...

0 0 · · · 1 −anp−1

⎞

⎟⎟⎟⎟
⎠
, Bp =

⎛

⎜⎜⎜⎜
⎝

b0
b1
...

bnp−1

⎞

⎟⎟⎟⎟
⎠
,

Cp =
(
0 0 · · · 1

)
,

(4.1)

then C = (0, 0, . . . , 1, 0, . . . , 0), and Obase is

Obase =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 · · · 0 0 1 0 · · · 0
0 0 · · · 0 1 −anp−1 	 · · · 	
0 0 · · · 1 −anp−1 	 	 · · · 	
...

...
...

...
...

...
...

...
...

1 −anp−1 · · · 	 	 	 	 · · · 	
...

...
...

...
...

...
...

...
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.2)
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where 	 stands for a non(necessarily) zero term. By simplicity, the case of full reset is
approached in first instance. An after-reset state x ∈ MR is given by

x =
(
x1, x2, . . . , xnp−2, xnp−1, 0, 0, . . . , 0

)T
, (4.3)

for some values x1, . . . , xnp−1 ∈ R, being np the number of plant states. Thus,m = np − 1 in the
case of full reset.

Let us start with the casem = 1. In this case, for any x0 = (x1, 0, 0, . . . 0)
T , it is clear that

τ1(x0) = Δ for some constant Δ > 0, since τ1(·) is homogenous (see Remark 3.4). In addition,
t2 = Δ + τ1(ARe

At1x0) = 2Δ since ARe
At1x0 = αx0 for some real number α. As a result Δk = Δ,

k = 0, 1, . . ., that is, resetting times are periodic with period Δ, and no Zeno solution may
exist.

The case m = 2 is analyzed in the following. Consider an initial condition x(0) = x0 ∈
MR, that is, x0 = (x1, x2, 0, 0, . . . 0)

T . If the solution x(t, 0, x0) crosses the reset surface MR at
time t1 = ε1 for some ε1 > 0 arbitrarily small, and thus, Δ1 = ε1, then

0 = CeAε1x1 = Cx1 + ε1CAx1 +
ε21
2
CA2x1 + · · · . (4.4)

Now, since the control system (2.7)–(2.10) has well-posed resetting times, then the right hand
of (4.4) is not identically zero for any x0 ∈ MR. Now, using the special structure given in (4.2),
it is obtained that

0 = x2 +
ε1
2
x1 +O

(
ε21

)
, (4.5)

for arbitrarily small ε1 > 0. In addition, the following after-reset state is x1 =
ARx(t1, 0, x0) = (x1 +O(ε21), x2 + ε1x1 +O(ε21), 0, 0, . . . , 0)

T . Repeating the above argument, the
solution x(t, t1, x1)will cross againM at the instant t2 = t1 +Δ2. IfΔ2 = ε2 ≤ ε1 for some ε2 > 0,
then

0 = x2 + ε1x1 +
ε2
2
x1 +O

(
ε21

)
, (4.6)

where the properties O(ε22) = O(ε21) for ε2 ≤ ε1 and O(kε) = O(ε), for a real constant k, have
been used. Now, using (4.5) and (4.6), the result is that given some ε1 > 0 arbitrarily small,
then ε2 = −ε1 +O(ε21) < 0, which is absurd. Thus, by contradiction, it is true that ε2 > ε1, and
thus any initial condition in the set MR that produces a first reset interval ε1 > 0 arbitrarily
small, gives a larger second reset interval ε2 > 0. Thus, Zeno solutions does not exist in this
case either.
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In the rest of the proof, the terms O(εm1 ) are directly neglected by simplicity.
For the general case in which the dimension of MR is m, with initial state x0 =
(x1, x2, . . . , xm, 0, 0, . . . 0)

T , a similar reasoning results in the set of equations

m∑

k=1

εm−1
1

(m + 1 − k)!xk = 0,

m∑

i=1

i∑

k=1

εm−i
2 εi−k1

(m + 1 − i)!(i − k)!xk = 0,

· · ·
m∑

i=1

i∑

k=1

εm−i
m (ε1 + · · · + εm−1)i−k

(m + 1 − i)!(i − k)! xk = 0,

(4.7)

which leads to an algebraic equation of order m in εm, being its solutions εm = −εm−1, εm =
−(εm−1 + εm−2), . . ., εm = −(εm−1 + εm−2 + · · ·+ ε1). And again, it can not exist a sequence of reset
intervals (ε1, ε2, . . . , εm), with ε1 ≥ ε2 ≥ · · · ≥ εm > 0 and ε1 arbitrarily small, showing that a
Zeno solution is not possible in the full-reset case.

The case of partial reset can be conveniently transformed into the full-reset form
by a change of coordinates, by a simple resorting of coordinates so that the bijectivity is
guaranteed. We will consider the system structure decomposition by writing the states as
x = (xp, xρ, xρ), where xp ∈ R

np stands for the states of the plant, xρ ∈ R
nρ for the nonresetting

compensator states and xρ ∈ R
nρ for the resetting compensator states. Define the linear

transformation T from R
n to R

n such that

Tx = T
(
xp, xρ, xρ

)
=
(
xρ, xp, xρ

)
= z, (4.8)

that is,

T =

⎛

⎜
⎝

0nρ×np Inρ×nρ 0nρ×nρ
Inp×np 0np×nρ 0np×nρ
0nρ×np 0nρ×nρ Inρ×nρ

⎞

⎟
⎠. (4.9)

Note that T is a square matrix, all of whose entries are 0 or 1, and in each row and column of
T there is precisely one 1. This means that T is a permutation matrix. Clearly, such a matrix
is unitary, hence orthogonal, so TT = T−1. The nonsingular matrix T allows to rewrite the
dynamical system via a similarity transformation (congruence transformation):

ż(t) = Az(t), z(t) /∈ M̃,

z(t+) = ARz(t), z(t) ∈ M̃,

y(t) = Cz(t),

(4.10)



12 Abstract and Applied Analysis

where A = TATT , AR = TART
T , and C = CTT , and in addition, the reset surface is

transformed into M̃ = {z ∈ R
n : TTz ∈ M}. Note that C = CTT = enp+nρ so that the output is

not changed by the transformation, that is, y(t) = znp+nρ(t) as expected. Henceforth, (4.10) is
in full-reset form. Since observability is invariant under similarity transformations, it is clear
that (2.8) is well-posed if and only if (4.10) is well-posed. Finally, to complete the proof it is
necessary to show that the observability matrix has the structure given in (4.2) (using state
transformations if needed). This is simply done by considering the substate z1 = (xρ, xp). In
general, there always exists a state transformation of z = (z1, xρ) to w = (w1, xρ), such that
the state submatrix corresponding to z1 is in the observer form, and thus, the observability
matrix has the structure given in (4.2) once unobservable states are eliminated.

4.1. Example: Well-Posed Reset Control System with Partial Reset

Consider a reset control system, where the plant, with state xp = (x1 x2)
T , is given by

Ap =
(
0 1
1 −1

)
, Bp =

(
1
0

)
, Cp =

(
0 1

)
, (4.11)

and the reset compensator, with state xr = (x3 x4)
T , by

Ar =
(
0 0
0 0

)
, Br =

(
1
1

)
, Cr =

(
1 1

)
, Aρ =

(
1 0
0 0

)
, (4.12)

that is the reset control system has a partial reset compensator: it is a parallel connection of an
integrator and a Clegg integrator, where only the state x4 is set to zero at the resetting times.
The closed-loop system is given by the matrices

A =

⎛

⎜⎜
⎝

0 −1 1 1
1 −1 0 0
0 −1 0 0
0 −1 0 0

⎞

⎟⎟
⎠, AR =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟⎟
⎠, C =

(
0 1 0 0

)
, (4.13)

and the closed-loop state x = (x1 x2 x3 x4)
T . This reset control system is well-posed, since

MR = span

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠,

⎛

⎜⎜
⎝

0
0
1
0

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
, Obase = span

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

0
0
−1
1

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
, (4.14)

and then,MR∩N(Obase) = {0}. Following the reasoning given in the proof of Proposition 4.1,
the closed-loop state x can be transformed into a state z in which the observability matrix
has the form (4.2). In this case, this is obtained with z = (x3 x1 x2 x4)

T . Thus, the initial
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Figure 4: First resetting time as a function of α.

conditions that produces a crossing in a arbitrarily small time ε > 0 are of the form z1 =
(1 − ε/2 0 0)T or equivalently

x1 =
(
−ε
2

0 1 0
)T
. (4.15)

Now, the second after-reset state is given by

x2 = ARe
Aε
(
−ε
2

0 1 0
)T

=
(ε
2

0 1 0
)T
, (4.16)

and according to Proposition 4.1, x2 cannot produce a new crossing in a time less than
or equal to ε. This fact can be verified by computing solutions to the implicit equation
0 = CeAt(α 0 1 0)T for t, given α ∈ R. The solution is shown in Figure 3, where t =
τ1((α 0 1 0)T ) is given.

Note that for t to be arbitrarily small, the initial condition x1 in the after-reset surface
must be given by (4.15), that is, α = −ε/2. Then, as a result, the state after the first reset
x2 is given by (4.16). And then the value of the second resetting time can be obtained from
Figure 4 with α = ε/2. The result is that if the first resetting time is arbitrarily small, then the
second resetting time is arbitrarily close to a number t∗ = 3.1698 · · · (it can be approximately
computed by numerically solving the implicit equation).

5. Conclusions

Well-posedness of reset control system has been investigated using a state-dependent
impulsive dynamic system (IDS) representation. Reset systems have been shown to be well-
posed, in the sense that resetting times of the IDS are well defined and are distinct for any
initial condition, and in addition, no Zeno solutions do exist. A sufficient condition for the
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well-posedness of resetting times has been elaborated, based on the observability of after-
reset states. In addition, it has been shown that reset control systems do no exhibit Zeno
solutions if resetting times are well-posed. On the other hand, it has also been revealed several
properties related with the structure of the resetting times: (i) an initial condition in the after-
reset surface (having dimension m) will have sequences of decreasing reset intervals with
length at most m − 1; (ii) resetting times as a function of the initial condition, is in general
a discontinuous mapping, which explains to certain extent the complexity in the analysis of
reset control systems.

Appendix

In the following, it is shown that CeAtx0 = eλt1
T
U(λ)Obasex0.

By simplicity, consider in first instance that the closed-loop state matrix A has distinct
eigenvalues, then the matrix exponential may be computed by use the Caley-Hamilton
method, that is,

eAt1 = α0I + α1A + · · · + αn−1An−1, (A.1)

where αi, i = 0, . . . , n − 1, are given by

eλ1t1 = α0 + α1λ1 + · · · + αn−1λn−11 ,

eλ2t1 = α0 + α1λ2 + · · · + αn−1λn−12 ,

· · ·

eλnt1 = α0 + α1λn + · · · + αn−1λn−1n .

(A.2)

Using the notation λT = (λ1 λ2 · · · λn), αT = (α0 α1 · · · αn−1) and eλt1 =
∑n

i=1 e
λitiei, where

ei stands for the unit (0 · · · 0 1 0 · · · 0)T in which the i-component is 1, (A.2) can be
compactly written as

eλt1 = V (λ)Tα, (A.3)

where V (λ) is a (nonsingular) Vandermonde matrix. Now, by eliminating α from (A.1) and
(A.3), the equation CeAt1x0 is transformed into

αT

⎛

⎜⎜
⎝

C
CA
· · ·

CAn−1

⎞

⎟⎟
⎠x0 = eλt1

T
U(λ)Obasex0 = eλt1

T
U(λ)Obasex0, (A.4)

whereU(λ) = V (λ)−1.
In the case in which the eigenvalues of A may be repeated, a similar argument may

be applied. Note that eAt may be written as the infinite series D(A) =
∑∞

i=0A
iti/i!. Thus, the
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polynomial D(λ) =
∑∞

i=0 λ
iti/i! can be factorized by D(λ) = Q(λ)P(λ) + R(λ), with R(λ) = 0

or degree (R) < degree (P) = n. In addition, R has degree no greater than n − 1, and thus,
R(λ) =

∑n−1
j=0 αjλ

j . Since the characteristic polynomial is zero for the eigenvalues of A, then
D(λk) = R(λk) for k = 0, 1, . . . , n − 1. And then D(λk) =

∑∞
i=0 λ

i
k
ti1/i! = eλkt1 = R(λk) =

∑n−1
j=0 αjλ

j

k
para k = 0, 1, . . . , n − 1. This can be compactly expressed as V T (λ)α = eλt, and the

expression (A.3) is obtained. Now, if A has r different eigenvalues with multiplicity order
nr , and as a consequence, the characteristic polynomial is p(λ) =

∏r
i=1(λ − λi)ni . Again, there

exists unique polynomialsQ andR such asD(λ) = Q(λ)P(λ)+R(λ), whereD(λ) = eλt1 yR = 0
or deg (R) < deg (P). Here, R can be expressed as R(λ) =

∑n−1
i=0 αiλ

i, where the coefficients are
unique. Since p and its derivatives up to order nr are zero at λi, then

djD(λi)
dλj

=
djR(λi)
dλj

∀i = 1, 2, . . . , r, ∀j = 0, 1, . . . , ni − 1. (A.5)

This can be expressed by μ =Wα, where

μ =
r∑

i=1

ni−1∑

j=0

eieλit1 ⊗ ejλ
j

i ,

W =

⎛

⎝
r∑

i=1

ni−1∑

j=0

ei ⊗ ejeTi
∂jV (λ)

∂λ
j

i

⎞

⎠.

(A.6)

By using arguments based on the Lagrange-Hermite interpolation problem, it can be shown
that in fact the matrix W is invertible. And then, an expression similar to (A.4) may be
obtained.
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