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Land use patch generalization is the key technology to achieve multiscale representation. We research patches and achieve the
following. (1) We establish a neighborhood analysis model by taking semantic similarity between features as the prerequisite
and accounting for spatial topological relationships, retrieve the most neighboring patches of a feature using the model for data
combination, and thus guarantee the area of various land types in patch combination. (2) We establish patch features using nodes
at the intersection of separate feature buffers to fill the bridge area to achieve feature aggregation and effectively control nonbridge
area deformation during feature aggregation. (3) We simplify the narrow zones by dividing them from the adjacent feature buffer
area and then amalgamating them into the surrounding features. This effectively deletes narrow features and meets the area
requirements, better generalizes land use features, and guarantees simple and attractivemapswith appropriate loads. (4)We simplify
the feature sidelines using the Douglas-Peucker algorithm to effectively eliminate nodes having little impact on overall shapes and
characteristics. Here, we discuss the model and algorithm process in detail and provide experimental results of the actual data.

1. Introduction

Land use generalization is a complicated process involving
complex spatial and semantic relationships between land
use features, and thus it is very difficult to satisfy such
conditions concurrently. A significant amount of research
has been conducted in this area: for example, Zongbo [1]
discussed proportion image generalization, purpose image
generalization, and visual image generalization in image map
compilation and elaborated the compilation process on the
basis of practice; Chithambaram et al. [2] integrated the
data based on extracting feature skeletons; that is, secondary
patches were compressed into lines or points, secondary
lines were compressed into points, and evaluations were
given; Ai and Wu [3] conducted neighborhood analysis
using the Delaunay triangulation network and carried out
a consistency correction for the shared boundary of vec-
tor patches after simplification; Ai et al. [4] applied the
Delaunay triangulation network executing neighborhood
analysis to retrieve neighbor patches in patch aggregation
and subdivided, merged, and simplified secondary patches
by generating skeleton lines using the Delaunay triangulation

network; Harrie [5] established appropriate weights for var-
ious generalization constraints to solve the balance between
constraining conditions andmap qualification; Kulik et al. [6]
proposed an ontology-oriented cartographic generalization
and matched the appropriate needs for different users; Zhao
et al. [7] studied the consistent update system of geospatial
databases based on digital map generalization; Li et al.
[8] and Huang et al. [9] discussed the area proportion
of each patch after generalization and investigated patch
boundary simplification, achieving constraints in the bal-
anced area of various features in boundary simplification
and attaining good adaptability; Stoter et al. [10] discussed
the noncustomized automated cartographic generalization
of commercial software, comprehensively considered the
elevation results of man and machine, and revealed the
possible differences; Qiao and Zhang [11] studied carto-
graphic generalization in a distributed environment, which
could be adapted to large quantity spatial data; Dilo et al.
[12] proposed tGAP to achieve map generalization between
two scales in a certain area, with large-scale maps used
for generalization and small-scale maps used for constraint;
Stanislawski [13] achieved automated generalization in U.S.
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national hydrological datasets by deleting the corresponding
features based on upstream drainage areas; Foerster et al.
[14] studied the feasibility of geospatial data integration in
a network service environment; Ai et al. [15] and Liu et al.
[16], respectively, provided a detailed analysis and calculation
models for the semantic similarity of land use data; Zhu et al.
[17] applied a curve fit algorithm to line generalization and
compared it with traditional algorithms.

The above studies comprehensively considered the se-
mantic and spatial neighborhood of features when establish-
ing an integrated model and obtained quantitative results
through the corresponding weights of various parts. How-
ever, the requirements for total area of each land use type
before and after land use generalization are strict, and the
total area of each featuremust fluctuatewithin a certain range.
Thus, this paper prioritized the semantic neighborhoodwhen
establishing themodel and took the spatial topology relation-
ship as an auxiliary factor to determine final results relating to
the same semantic neighborhoods and thus ensured the total
area of each land use type optimally.

2. Analysis Model of Feature Neighborhood

2.1. SemanticNeighborhood of Features. Landuse data is com-
pletely encompassed, seamless, and nonoverlapping in space,
has hierarchical semantic divisions [18], and generalizes the
feature set in the above premise. Land use data is divided
into three-level land types as shown in Figure 1 (each layer
is one level from top to bottom). Integration is difficult due to
semantic diversity, so a clear generalization rule can only be
developed after defining the relationship between semantics
and determining the semantic neighborhood.

Land use data is often concerned with the total amount
of first and second land use and is only interested in urban
and rural construction land subclasses for third land use.
Accordingly, this paper argues that semantic neighborhoods
exist only among features at the same first land use type
or that semantics are unrelated. We developed a land type
sequence of semantic neighborhoods at the same level for
each second and third land use. Taking arid land of the third
land type, we first considered the lands with the same parent
type and obtained the following sequence: arid land, irrigated
land, and paddy field (see Figure 1). We then considered the
relationship between the same first land types and arid land;
that is, paddy field was followed by garden plot, woodland,
grassland, raised path, irrigation andwater conservancy land,
agricultural land, and rural road (building land and other first
land use types were not related to arid land semantics).

2.2. Definition of Feature Relationship in the Model. We sup-
posed land use data as LandUseSet = {𝐹1, 𝐹2, 𝐹3 . . . 𝐹𝑛}, and
SArea and DFeature respectively represented the minimum
area of features in the map and the minimum distance
between the features; land type name was represented by
Land Name (Fn); the parent land type of feature land type
(e.g., the parent land type of farmland and garden plot
was agricultural land) was represented by Father[LandName
(Fi)]; feature area was represented by Area (Fi); Dis (𝐹𝑖, 𝐹𝑗)

represented the minimum distance between features Fi and
Fj; the spatial topology relationship between features Fi and Fj
was represented by TopoRel (𝐹𝑖, 𝐹𝑗); the semantic similarity
was represented by SemRel (𝐹𝑖, 𝐹𝑗). The values of TopoRel
(𝐹𝑖, 𝐹𝑗) and SemRel (𝐹𝑖, 𝐹𝑗) are as follows.

(1) The values of TopoRel (𝐹𝑖, 𝐹𝑗) were −1, 0, and 1. We
first determined ColLine (𝐹𝑖, 𝐹𝑗) (whether two features are
collinear), with spaces of features Fi and Fj being adjacent if
they were collinear, and thus TopoRel (𝐹𝑖, 𝐹𝑗) = 0; otherwise
we determined the relationship between Dis (𝐹𝑖, 𝐹𝑗) and
DFeature; if Dis (𝐹𝑖, 𝐹𝑗) < DFeature, the 𝐹1 and 𝐹2 spaces
were adjacent, and TopoRel (𝐹𝑖, 𝐹𝑗) = 1; otherwise TopoRel
(Fi, Fj) = −1, and the 𝐹1 and 𝐹2 spaces were unrelated.

(2) The range of SemRel (𝐹𝑖, 𝐹𝑗) was determined by the
number of land types close to Fi. As mentioned before, there
were 10 land types with similar semantics (including itself);
when Fi was arid land, the values of SemRel (𝐹𝑖, 𝐹𝑗) were
0, 1, 2 . . . 9 in order based on the semantic neighborhood of
dry land; when the semantics of features Fi and Fj were
unrelated, SemRel (Fi, Fj) = −1.

2.3. Model Rules. Land type area in each administrative
region should be counted before and after land use inte-
gration, so the administrative region is an independent
integrated unit. The following rules were formulated under
this precondition. The secondary feature dataset FeaSet{𝐹𝑖}
(Area (Fi) < SArea) should be obtained before integration.
According to 2.2, when TopoRel (Fi, Fj) = −1, no relationship
existed between Fj and Fi due to the too long distance; when
SemRel (Fi, Fj) = −1, the semantics of the two features were
unrelated, so aggregation treatment cannot be conducted.
The model process was as follows. Step 1: retrieve feature
dataset FeaSet{} based on condition (1) SemRel (𝐹𝑖, 𝐹𝑗) =
0 and TopoRel (𝐹𝑖, 𝐹𝑗) = 0, and the feature that had the
longest shared boundary with Feature Fi was the desired one
in the dataset. For example, Feature 𝐹7 in Figure 2(a) was a
secondary feature, the dataset meeting condition (1) should
be FeaSet{𝐹3, 𝐹4}, and the feature with the longest boundary
with 𝐹7 was the desired one, which was the nearest feature
in the dataset (𝐹4). If the dataset meeting condition (1) was
empty, Step 2 was conducted: retrieve feature dataset FeaSet{}
based on condition (2) SemRel (𝐹𝑖, 𝐹𝑗) = 0 and TopoRel
(𝐹𝑖, 𝐹𝑗) = 1; the feature with the largest area in the buffer of
the DFeature radius of Feature Fjwas the desired one. Taking
𝐹7 in Figure 2(b) as an example, when the dataset meeting
condition (1) was empty, the dataset meeting condition (2)
was FeaSet{𝐹4, 𝐹3} and consisted of two features, and the
buffer of the 𝐹7 Buffer (𝐹7) was made by taking DFeature
as the radius; attention should be paid to 𝐹3 and 𝐹4 in
Buffer (𝐹7), with 𝐹3 as being the desired feature because
its area was larger than that of 𝐹4 in Buffer (𝐹7). If the
nearest feature was not retrieved after the aforementioned
two steps, 1 was added to the value of SemRel (𝐹𝑖, 𝐹𝑗) for
recycling, until the most neighboring feature was retrieved.
If the aforementioned features were not found when the
maximum of SemRel (𝐹𝑖, 𝐹𝑗) was achieved, Feature Fi was
integrated into the neighboring feature with the largest area.
For example, Feature 𝐹7 in Figure 2(c) was finally merged
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Figure 1: Hierarchical tree of land use type.
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Figure 2: Neighborhood degree.

into 𝐹2. In the previous process, if the Fi and Fj spaces were
adjacent, the amalgamationmethodwas taken; if the Fi and Fj
spaces were neighboring, the aggregation method was taken.
This model determines the nearest feature of secondary fea-
tures by focusing on the semantic neighborhood of features
with spatial topology relationships. This modeling process
was simple and the changes in each land type area were
minimized during integration, and the requirements of land
use integration were met. The workflow of the neighborhood
analysis model is shown in Figure 3.

3. Feature Processing Algorithms

3.1. Aggregation Processing. Feature aggregation is the merg-
ing of separate features in space, and it can prevent the same

type of features with short distance from being removed and
avoid large changes in total land type area after integration
[19]. The specific aggregation algorithm steps in buffer were
as follows (taking 𝐹1 in Figure 4(a) as an example): (1) create
the buffer of the𝐹1Buffer (𝐹1) usingDFeature (theminimum
distance between features); (2) look for neighborhood patch
𝐹2 intersecting Buffer (𝐹1); (3) create the buffer of the
𝐹2 Buffer (𝐹2) by taking DFeature as the buffer radius,
as shown in Figure 4(a); (4) calculate Buffer (𝐹1) ∩ Buffer
(𝐹2) of the two buffers, and the buffer intersection of the
two features (Figure 4(a)) was the grid region in the middle
part; (5) calculate NodeSet{𝑁1,𝑁2,𝑁3 . . . 𝑁𝑖}, the node set
of features 𝐹1 and 𝐹2 in the buffer intersection (black
boundary in Figure 4(b)); (6) establishe patch Feature 𝐹𝑛
using the nodes in the NodeSet, that is, the dark brown
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Figure 3: Model workflow.

region in the middle part of Figure 4(b); (7) merge 𝐹1, 𝐹2,
and 𝐹𝑛 to generate the feature after aggregation, as shown in
Figure 4(c).

As seen from Figures 4(b) and 4(c), the feature using
the buffer intersection nodes was the bridge area of separate
features, which was effectively eliminated after the separate

features were merged, effectively maintained the original
shapes and characteristics of features, and met the require-
ments of integration. Attention should be paid to the feature
overlapping when conducting aggregation processing by this
method, and the bridge area can be directly excised for newly
added features and overlapping in the bridge area.
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Figure 4: Process of aggregation.

3.2. Processing of Narrow Features. Narrow features in land
use data mainly include railways, roads, rivers, and ditches.
Simple integration or aggregation with the surrounding
features is not enough because the data is long and narrow
and the influence of the feature on the data cannot be
eliminated by simplemerger processing.Wepropose a buffer-
based method to subdivide the narrow features according to
semantic similarity and integrate the divided features into the
surrounding features. The algorithm is simple and easy to
implement with high efficiency.

Taking into account the semantic similarity of narrow
features with spatial adjoining features at both sides, we
first extracted the centerline of the narrow surface feature
(such as the crimson line centerline in Figure 5(a)) and then
divided the narrow feature River into upper and lower parts
using the centerline (Upriver and Downriver in Figure 5(a)).
Upriver was divided by 𝐹1, which adjoined it in space;
although 𝐹2 and 𝐹3 adjoined River, in space they did
not directly contact Upriver or participate in the division;
while Downriver adjoined 𝐹2 and 𝐹3 in space, so it can
be divided by Feature 𝐹2 and 𝐹3. We took the division of
Downriver as an example to describe the processing steps
of narrow features. (1) Establish buffer (𝐹2) and buffer (𝐹3),
the buffers of features 𝐹2 and 𝐹3 adjoining Down River
in space (buffer distance was half the widest length of the
narrow surface feature), and the buffers were overlapping, as
shown in Figure 5(b). (2) Judge the features with neighboring
semantics based on SemRel (𝐹2, River), SemRel (𝐹3, River),
and the semantic similarity of 𝐹2 and 𝐹3 with the River.
The semantics of 𝐹2 were more neighboring with those of
the River. (3) Cut the buffers of the other features with the
buffer of the feature that had neighboring semantics with the
narrow feature; that is, cut buffer (𝐹3) with buffer (𝐹2), as
shown in Figure 5(c). At this stage, there was no overlapping
in the buffer. When 𝐹2 and 𝐹3 belonged to the same type,
we cut the buffer with a small area with the one with a large
area. (4) Divid Downriver with the buffer after processing.
Downriver was divided into River 1 and River 2, as shown
in Figure 5(d). (5) Respectively, merge River 1 and River
2 into the corresponding features and merge River 1 into
𝐹2 and River 2 into 𝐹3. The final processing results are
shown in Figure 5(e). For land use integration, dimension-
reduction treatment should be conducted for narrow surface
features to compress the strip surface into the line featurewith
partial proportional scale. As for this example, the centerline
extracted by strip feature could be used as its line feature, and

this line feature did not run through the strip feature, so the
topological location of the feature was expressed clearly.

3.3. Sideline Simplification Algorithm. Line feature simplifi-
cation algorithms consist of some classic algorithms, such as
the Douglas-Peucker algorithm [9, 20], progressive approach
simplification algorithm [21], oblique dividing curve algo-
rithm [22], and Li-Openshaw algorithm. The Douglas-
Peucker algorithmwas used in this paper. Commonly used in
global line simplification, this algorithm not only maintains
the shape characteristics of vector lines but also determines
the simplification tolerance based on mapping requirements
and effectively removes nodes that have small influence on
the overall shape of features. Its principle is to first connect
two line endpoints into a straight line, measure the vertical
distance from each node between the two endpoints to the
straight line, remove all nodes between the two endpoints if
the maximum distance is within the specified tolerance limit,
make two straight lines, respectively, from the node to the two
endpoints if the distance from a certain node to the straight
line is greater than the tolerance limit, and then, respectively,
compare them, until the line cannot be divided (see Figure 6).

When conducting sideline simplification for land use
data, we note that consistent simplification should be con-
ducted for important lines of administrative boundaries,
roads, and rivers, and independent simplification should be
avoided because it will result in inconsistent administrative
boundaries or changes in topological relationships between
rivers, roads, and other surrounding features.

4. Discussion and Conclusions

Data from the second national land survey of Longtou Sub-
district of Dalian Lushun Port of Liaoning province was
used in this study. We unified the land use type of the data
into type division of Appendix B in the People’s Republic of
China land management industry standard TD/T 1027–2010
file (Figure 7(a)).Theminimum patch area of research data is
400m2, and the scale is 1 : 10,000. According to the 1 : 10 land
use data requirements of the 2006–2020 overall plan for land
utilization, the minimum patch area of a map is 10,000m2,
and 30m is the furthest aggregation process distance. We
used the previous algorithm to generalize the data the results
of which are shown in Figure 7(b). The number of patches
in the data decreased from 1007 to 428, and the compression
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Figure 5: Process of handling strip feature.

ratio was 52.1%. The change rate of the total area of the
important city and countryside construction land was 0.72%.
The change rates of all land use types were less than 4%,
except for agroland (19.36%) due to its scarcity and being
highly dispersed. After generalization, some agro-land was
integrated into other classes, and therefore changes in its area
were larger than appropriate limits, which were considered
as special circumstances.These generalizationmethods above
must cause information loss as follows: the amalgamation of
adjacent small area patches did not cause information loss;

the aggregation of separate small patches with neighboring
semantics caused area information loss, but its attribute and
location informationwas preserved. Long and narrow terrain
was simplified into lines, which maintained information
and resulted in a very little loss. The most serious loss of
information comes from the merging of isolated patches into
other land types. In conclusion, methods based on semantic
priority maintained the general characteristics of the original
data, and thus the change in total area of each land type
was very small. Microelements and the narrow area were
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Figure 6: Douglas-Peucker algorithm procedure.

(a) Source data (b) Result data

Figure 7: Comparison of generalization.

managed effectively and reasonably. In addition, the buffer
algorithmwas simple and fast. However, because the division
was not smooth when dividing narrow features using the
buffer (see Figure 5(c)), there was a small raised area where
the narrow feature absorbed by Feature 𝐹3 contacted 𝐹2,
which will be the focus of future research.
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