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Abstract. In this paper we show the weak convergence and stability of the
proximal point method when applied to the constrained convex optimiza-
tion problem in uniformly convex and uniformly smooth Banach spaces.
In addition, we establish a nonasymptotic estimate of convergence rate of
the sequence of functional values for the unconstrained case. This estimate
depends on a geometric characteristic of the dual Banach space, namely
its modulus of convexity. We apply a new technique which includes Banach
space geometry, estimates of duality mappings, nonstandard Lyapunov func-
tionals and generalized projection operators in Banach spaces.

1. Introduction

The proximal method, or more exactly, “the proximal point algorithm”,
is one of the most important successive approximation methods for finding
fixed points of nonexpansive mappings in Hilbert spaces. This method, which
is therefore not new, (see [12], [17], [18]), was earlier used for regularizing
linear equations ([12], [13]), and seems to have been applied the first time
to convex minimization by Martinet (see [15], [16]). The first important
results (like approximate versions, linear and finite convergence) in the more
general framework of maximal monotone operators in a Hilbert space are due
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to Rockafellar [20]. Nowadays it is still the object of intensive investigation
(see [14] for a survey on the method).

The proximal method can be seen as a regularization scheme in which the
regularization parameter needs not approach zero, thus avoiding a possible
ill behavior of the regularized problems.

We will state here some main properties of this algorithm and some ap-
plications to convex programming and maximal monotone inclusions.

Let H be a Hilbert space with inner product 〈·, ·〉 and Ω a closed and
convex subset of H. Consider the problem

min
x∈Ω

f(x),(1.1)

where f :H → IR is a convex functional. It is a familiar fact that in direct
methods for solving (1.1), the tools for proving existence of solutions are the
convexity properties of the functional. Based on the fact that

x0 ∈ argminx∈Hf(x) iff 0 ∈ ∂f(x0),

we can pose the problem

Find x0 ∈ H such that 0 ∈ T (x0),(1.2)

where T : H → P(H) is a maximal monotone operator.
In the particular case in which T = ∂f , problem (1.2) is equivalent to (1.1).

In this way, the theory of subdifferentials can transform our original problem
(1.1) in the study of the range of the monotone operator ∂f : H → P(H).
Namely, we want to determine if 0 ∈ R(∂f), where R(T ) stands for the range
of an operator T .

Replacing ∂f by an arbitrary monotone operator T , we transform an
optimization problem into a more general one, involving monotone operators.

The proximal method for (1.1) in a Hilbert space H generates a sequence
{xk} ⊂ H in the following way:

x0 ∈ H, xk+1 = argminx∈H(f(x) + λk‖x− xk‖2),(1.3)

where

λk ∈ (0, λ], λ > 0.(1.4)

Martinet showed in [15] that if {xk} is bounded, then it converges weakly
to a minimizer of f . In [20] Rockafellar studied the convergence properties
of this algorithm, when applied to problem (1.2). In this case, the sequence
{xk} is defined by:

x0 ∈ H, xk+1 ∈ H such that 0 ∈ Txk+1 + λk(xk+1 − xk).
From now on, unless explicit mention, the parameters λk will be taken

as in (1.4). As we can easily see, in the case of T = ∂f , this procedure
reduces to (1.3). It is shown in [20] that {xk} converges weakly to a zero
of T , provided that the set of zeroes is nonempty. Rockafellar also proves
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linear convergence rate if either one of the following conditions is satisfied:
(a) T is strongly monotone.
(b) T−1 is Lipschitz continuous at 0 and {xk} bounded.
Finally, he furnishes a criterion for convergence in a finite number of itera-
tions, which requires the nonemptiness of the interior of the set T−1(0). As
a particular case of the latter result, we have finite convergence if H is finite
dimensional, T = ∂f , and f is polyhedral convex (i.e., the epigraph of f is
a polyhedral convex set). In the optimization case, we observe directly from
(1.3) that the objective function for each subproblem is coercive (remember
that g : H → IR is coercive if and only if lim‖x‖→+∞ g(x)/‖x‖ = +∞). In
particular, this property implies boundedness of the level sets of g, which
ensures existence of solutions of each subproblem. The uniqueness, on the
other hand, is ensured by the strict convexity of the objective function given
in (1.3). So this algorithm is a true regularization and the sequence {xk} is
well defined.

The structure of the iteration in (1.3) suggests the possibility of adding
other kind distances to the function f . For instance, a Bregman distance Dg,
where g : H → IR is a strictly convex function, satisfying some additional
properties (see, e.g. [6]). Dg is defined as:

Dg(x, y) := g(x) − g(y) − 〈∇g(y), x− y〉.(1.5)

The proximal point method with Dg(x, xk) substituting for ‖x − xk‖2 in
(1.3) has been analyzed in [7] for convex optimization in finite dimensional
spaces and in [6] for the variational inequality problem in a Hilbert space,
i.e., find x∗ ∈ Ω ⊂ H such that there exists y∗ ∈ T (x∗) with

〈y∗, x− x∗〉 ≥ 0,(1.6)

for all x ∈ Ω.
All previous results apply to a Hilbert space. In a Banach space, the

iteration (1.3) has as optimality conditions

∂f(x) + λkJ(x− xk) = 0,(1.7)

where J is the duality mapping, defined in section 3. If the Banach space is
not hilbertian, J is not a linear operator, so that (1.7) is not equivalent to

∂f(x) + λkJ(x) = λkJ(xk).(1.8)

(1.8) is more natural that (1.7) (e.g., with constant λk, the left hand side of
(1.8) is the same in all iterations).

In this paper we study the proximal point method in Banach spaces, where
xk+1 is the solution of (1.8). It is easy to check that this is equivalent to

xk+1 = argminx∈H{f(x) +
λk

2
Dg(x, xk)},

where Dg is as in (1.5) with g(x) = ‖x‖2. We emphasize that this is not
the iteration given by (1.3), because, if the space is not a Hilbert one, then
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Dg(x, y) �= ‖x − y‖2. When B is finite dimensional, but ‖ · ‖ is not an eu-

clidean norm, (e.g. ‖x‖p = (
∑n

j=1 |xj |p)
1
p , p ∈ (1,∞), p �= 2), the method

considered here is a particular case of the proximal point method with Breg-
man distances studied in [7]. We give a full convergence analysis in an ar-
bitrary uniformly convex and uniformly smooth Banach space. We present
also stability and convergence rate results.

2. Previous results in a Hilbert space

Let H be a Hilbert space and f : H → IR ∪ {∞} be a proper, closed and
convex functional. We recall below known results due to Güler (see [10])
about the convergence properties of the proximal method, applied to the
minimization of f . From now on we will write f∗ := f(x∗), where x∗ is any
minimizer of f .

Theorem 2.1. [10] Consider the sequence defined by (1.3), where λk is
taken as in (1.4). Define σk :=

∑k
i=1 λ

−1
i , by convention, σ0 = 0. Sup-

pose that the set of minimizers of f , which we call X∗, is not empty and
take x∗ ∈ X∗. Then {xk} converges weakly to a minimizer of f . In this
conditions, the following global convergence estimate holds:

f(xk) − f∗ ≤ inf
z∈X∗

‖x0 − z‖
2σk

.

Consequently, if σk → ∞, then the sequence f(xk) ↓ f∗ =: infz∈H f(z).

The next lemma shows that the proximal point method can be defined in
terms of the metric projection operator PΩ in a Hilbert space, and therefore
method (2.2) below shares all well known properties of the proximal point
method.

Lemma 2.2. Let f : H → IR be a closed and convex function, Ω ⊂ H a
closed and convex set and PΩ the orthogonal projection onto Ω. For fixed
a ∈ H and λ positive, consider the following two problems:

Problem (1): Find x ∈ Ω such that

x := argminz∈Ω(f(z) + (λ/2)‖z − a‖2).(2.1)

Problem (2): Find x ∈ Ω such that there exists y ∈ H satisfying{
0 ∈ ∂f(x) + λ(y − a),
x = PΩ(y).(2.2)

The sets of solutions of Problem (1) and Problem (2) coincide.

Proof. Let x be a solution of Problem (2). We claim that there exists
u ∈ ∂f(x) such that

〈u+ λ(x− a), z − x〉 ≥ 0 , for all z ∈ Ω.(2.3)

Observe that (2.3) are precisely the Karush-Khun-Tucker conditions for
Problem (1) (see [4]). Since x is a solution of Problem (2), there exist



A PROXIMAL POINT METHOD 101

y ∈ H and u ∈ ∂f(x) such that x = PΩ(y) and 0 = u+ λ(y− a). Therefore,

〈u+ λ(x− a), z − x〉 = 〈λ(x− y), z − x〉 = λ〈PΩ(y) − y, z − PΩ(y)〉 ≥ 0 ,

and (2.3) is established, therefore x is a solution of (2.1). Reciprocally, if
x solves Problem (1), then there exists w ∈ NΩ(x), the normality operator
associated to the set Ω, such that

0 = u+ w + λ(x− a) and u ∈ ∂f(x),

which implies

0 = u+ λ(x+ λ−1w − a).(2.4)

Take y = x+ λ−1w. Then

PΩ(y) = x and ∂f(x) = ∂f(PΩ(y)).(2.5)

So u ∈ ∂f(PΩ(y)). Hence, by (2.4), 0 ∈ ∂f(x) + λ(y − a), which, together
with (2.5), implies that x solves Problem (2).

The following theorem is a direct consequence of the lemma above and
Theorem 2.1.

Theorem 2.3. Consider the sequence {xk} given by

1) Take x0 ∈ Ω.
2) Given xk ∈ Ω, find y ∈ H and xk+1 ∈ Ω such that:

{
0 ∈ ∂f(PΩ(y)) + λk(y − xk),
xk+1 = PΩ(y).

Then if problem (1.1) has solutions, it holds that
(i) the sequence {xk} is well defined and bounded,
(ii) lim supk λ

−1
k (f(xk+1) − f∗) = 0,

(iii) if λk < λ, then all weak accumulation points of {xk} are solutions,
(iv) f(xk) ↓ f∗ as k → ∞,
(v) if λk > λ̄ > 0, then limk→∞ ‖xk+1 − xk‖ = 0,
(vi) if λk > λ̄ > 0, then there exist a sequence {uk ∈ ∂f(xk)} for all k such
that limk〈uk, xk − x∗〉 = 0,
(vii) the whole sequence converges weakly to a solution, i.e., there exists a
unique weak accumulation point.

All these statements are easy consequences of Lemma 2.2 and the results
in [10] and [20]. We will show in Section 4, Theorem 4.1, that all these results
are also valid in a Banach space, and hence Theorem 2.3 is a particular case
of Theorem 4.1. We present an estimate of convergence rate in Section 4.3.
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3. The Banach space concept

Let B be a uniformly convex and uniformly smooth Banach space, (see
[1] and [5]). The operator J : B → B∗ is the normalized duality mapping
associated to B, determined by the equalities

〈Jx, x〉 = ‖Jx‖B∗‖x‖B = ‖x‖2,
where 〈·, ·〉 stands for the usual dual product in B, ‖ · ‖ is the norm in the
Banach space B and ‖ · ‖B∗ is the norm in the dual space B∗. For later use,
we state the following lemma, whose proof can be found in [1].

Lemma 3.1. Let B be as above. Let δB(ε) : [0, 2] → [0, 1] denote the mod-
ulus of convexity and ρB(τ) : [0,∞) → [0,∞) the modulus of smoothness of
the Banach space B. If x, y ∈ B are such that ‖x‖ ≤ C and ‖y‖ ≤ C then

〈Jx− Jy, x− y〉 ≥ (2L)−1C2δB(
‖x− y‖

2C
),(3.1)

〈Jx− Jy, x− y〉 ≥ (2L)−1C2δB∗(
‖Jx− Jy‖B∗

2C
),

and

(3.2) ‖Jx− Jy‖B∗ ≤ 8ChB(16L‖x− y‖/C), hB(τ) = ρB(τ)/τ,

where L is the constant in Figiel’s inequalities (see [8], p. 128).

We recall next the analytical expressions of the duality mapping J(·) in the
uniformly smooth and uniformly convex Banach spaces lp, Lp and Sobolev
spaces W p

m, p ∈ (1,∞), (see [1]).

For lp, Jx = ‖x‖2−p
lp y ∈ lq, where x = {x1, x2, . . . }, p−1 + q−1 = 1 and

y = {x1|x1|p−2, x2|x2|p−2, . . . }.

For Lp, Jx = ‖x‖2−p
Lp |x|p−2x ∈ Lq, where p−1 + q−1 = 1.

For W p
m, Jx = ‖x‖2−p

W p
m

∑
(−1)|t|Dt(|Dtx|p−2Dtx) ∈ W q

−m, where p−1+q−1 =
1, and Dt is the weak derivative operator of order t.

For a convex and closed set Ω ⊂ B, we define the normality operator
NΩ : B → P(B∗), in the following way:

NΩ(x) =
{ {φ ∈ B∗ | 〈φ, z − x〉 ≤ 0 for any z ∈ Ω} if x ∈ Ω ,

∅ if x /∈ Ω .

It is easy to check that NΩ(·) is the subdifferential of the indicator function
χΩ(x) associated to the set Ω, i.e.

χΩ(x) =
{

0 if x ∈ Ω ,
+∞ if x /∈ Ω .

The function χΩ is convex and closed, hence NΩ(·) is a maximal monotone
operator.
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We follow in the sequel the theory developed in [1], where a generalized
projection operator ΠΩ(·) in a Banach space B is introduced.

Take the Lyapunov functional W : B ×B → IR+ given by

W (x, z) = ‖x‖2 − 2〈Jx, z〉 + ‖z‖2.(3.3)

It follows from the definition of J that ∇zW (x, z) = 2(Jz − Jx). It also
holds that W (x, z) ≥ 0. In the sequel we will need a property of W (x, z)
established in [1], namely

(‖x‖ − ‖z‖)2 ≤ W (x, z) ≤ (‖x‖ + ‖z‖)2.(3.4)

The generalized projection operator

ΠΩ : B → Ω ⊂ B
x �→ ΠΩ(x) := argminz∈ΩW (x, z),

has also been introduced in [1], where the following lemma is proved.

Lemma 3.2. (i) The operator ΠΩ(·) is well defined in any uniformly con-
vex and uniformly smooth Banach space.

(ii) In the conditions of the definitions above, the following inequality holds
for any fixed x ∈ B and any z ∈ Ω

〈Jx− J(ΠΩ(x)),ΠΩ(x) − z〉 ≥ 0.

Remark 3.3. We emphasize that in a Hilbert space W (x, z) = ‖x − z‖2,
ΠΩ(·) coincides with the classical metric projection PΩ(·), and the inequality
(ii) in Lemma 3.2 reduces to the Kolmogorov criterion which characterizes
the metric projection PΩ(x):

〈x− PΩ(x), PΩ(x) − z〉 ≥ 0,

for all z ∈ Ω.

Consider now the following two algorithms:
1) Take x0 ∈ Ω.

2) Given xk, define xk+1 by the inclusion

0 ∈ (∂f + λNΩ + λJ)xk+1 − λJxk,(3.5)

with λ positive, and

1) Take z0 ∈ Ω.

2) Given zk, define zk+1 by the system{
0 ∈ ∂f(ΠΩ(y)) + λ(Jy − Jzk),
zk+1 = ΠΩ(y),

(3.6)

with λ positive.

In a similar way as we established the equivalence of the algorithms in
Lemma 2.2, we will show next that the sequences defined by (3.5) and (3.6)
coincide when they start from the same point. Observe that the solution
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of (3.5) exists and is unique by coerciveness and strict monotonicity of J
and monotonicity of NΩ (see [21], Corollary 32.35). We point out also that
existence of the iterates in (3.6) is not obvious at all. Nevertheless, as a
by-product of the following lemma, we will show the existence of solution of
all the subproblems (3.6).

Lemma 3.4. In the algorithms (3.5) and (3.6), if z0 = x0, then zk is well
defined and zk = xk for any k ≥ 0.

Proof. By Lemma 3.2 and the definition of normality operator, for any
y ∈ B,

Jy − J(ΠΩ(y)) ∈ NΩ(ΠΩ(y)).(3.7)

We proceed by induction. The result holds for k = 0 by hypothesis.
Suppose that zk is well defined and zk = xk; we must show that zk+1 exists
and zk+1 = xk+1.

By definition of xk+1,

0 ∈ (∂f + λNΩ + λJ)xk+1 − λJxk.(3.8)

We remark that xk+1 is uniquely determined by the previous inclusion be-
cause of strict monotonicity of J . By (3.8) there exist uk+1 ∈ ∂f(xk+1) and
wk+1 ∈ NΩ(xk+1) such that

0 = uk+1 + λ(wk+1 + Jxk+1 − Jxk).(3.9)

Since J is onto, there exists y ∈ B such that

Jy = wk+1 + Jxk+1.(3.10)

We claim that
a) ΠΩ(y) = xk+1,

b) 0 ∈ ∂f(ΠΩ(y)) + λ(Jy − Jzk).

Since xk+1 ∈ Ω, for proving (a) it will be enough to show that

〈Jy − Jxk+1, z − xk+1〉 ≤ 0,

for any z ∈ Ω. In fact, by (3.10) and the properties of wk+1,

〈Jy − Jxk+1, z − xk+1〉 = 〈wk+1, z − xk+1〉 ≤ 0,

which implies (a).
Now we proceed to prove (b): by (3.9), (3.10) and the induction hypoth-

esis,

0 = uk+1 + λ(Jy − Jxk) = uk+1 + λ(Jy − Jzk),(3.11)
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which implies (b). Now, using (a) and (3.11) we conclude that the system
(3.6) has a solution zk+1, and this solution coincides with xk+1. The lemma
is complete.

4. Convex functionals in a Banach space

The following results deal with convergence of the sequence given by (3.6)
in a uniformly convex and uniformly smooth Banach space B. Under such
conditions, we get boundedness of the sequence and optimality of any weak
accumulation point. Weak convergence of the whole sequence is established
for a special kind of Banach spaces, namely those in which there exists a
weak-to-weak continuous duality operator J .

4.1. Constrained minimization problem: convergence analysis. Let
Ω be a closed and convex subset of B. Consider the problem

min
x∈Ω

f(x),(4.1)

where f :B → IR is a convex functional. Define the sequence {xk} as:
1) Take x0 ∈ Ω.

2) Given xk, define xk+1 by the system

{
0 ∈ ∂f(ΠΩ(y)) + λk(Jy − Jxk),
xk+1 = ΠΩ(y),

(4.2)

with λk positive.

Theorem 4.1. Consider the sequence {xk} given by (4.2). Suppose that
the set of minimizers of f , which we call X∗, is not empty and fix x∗ ∈ X∗.
Then it holds that
(i) The sequence {xk} is well defined and bounded,
(ii) lim supk λ

−1
k (f(xk+1) − f∗) = 0,

(iii) if λk < λ, then all weak accumulation points are solutions,
(iv) if λk < λ, then f(xk) ↓ f∗ as k → ∞,
(v) if λk > λ̄ > 0, then limk→∞ ‖xk+1 − xk‖ = 0,
(vi) if λk > λ̄ > 0, then there exist a sequence {uk}, with each uk ∈ ∂f(xk),
such that

lim
k→∞

〈uk, xk − x∗〉 = 0,

(vii) if B is such that there exists a weak-to-weak continuous duality map-
ping, then the whole sequence converges weakly to a solution, i.e., there exists
a unique weak accumulation point.
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Proof. (i) As we mentioned before, in order to prove welldefinedness of
the iterates of algorithm (4.2), it is enough to observe that by Lemma 3.4
they coincide with the iterates of algorithm (3.5), which is well defined, as
discussed before. In order to prove boundedness, we will show that the
sequence W (xk, x∗) is decreasing, in which case the result will follow from
boundedness of the level sets of the function W (·, x∗). Recall that W is
given by (3.3) and x∗ is any solution of problem (4.1). By the definition of
W (x, ξ), (4.2) and the projection properties, we get

W (xk+1, x∗) ≤ W (xk, x∗) −W (xk, xk+1)

− 2
λk

〈uk+1, xk+1 − x∗〉,

where uk+1 ∈ ∂f(xk+1). As W (xk, xk+1) ≥ 0, the previous equation yields

W (xk+1, x∗) ≤ W (xk, x∗) − 2
λk

〈uk+1, xk+1 − x∗〉.(4.3)

At this point we use the fact that x∗ ∈ X∗ and the gradient inequality to
obtain

(4.4) W (xk+1, x∗) ≤ W (xk, x∗) − 2
λk

(f(xk+1) − f∗) ≤ W (xk, x∗).

Hence we proved that W (xk, x∗) is a decreasing sequence, which is also
bounded below, and therefore it converges. Using (3.4), we get

(‖xk‖ − ‖x∗‖)2 ≤ W (xk, x∗) ≤ W (x0, x∗) ≤ (‖x0‖ + ‖x∗‖)2,

which implies

‖xk‖ ≤ C0,

where C0 is any real number larger than ‖x0‖ + 2‖x∗‖. This establishes the
first statement.

(ii) This result is a consequence of (4.4) and the fact that

lim
k→∞

(W (xk+1, x∗) −W (xk, x∗)) = 0.

(iii) Take a sequence {xkj} which converges weakly to x̂. We will show
that x̂ is a minimizer of f . By (ii) and the assumption on λk we obtain that

lim
k→∞

f(xk+1) = f∗.

By weak lower semicontinuity of f ,

f(x̂) ≤ lim inf
kj

f(xkj ) = f∗.

Therefore x̂ is also a minimizer of f .
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(iv) By (iii), it is enough to prove that f(xk) is decreasing. In order to
prove this we use the gradient inequality and (4.2)

(4.5)

f(xk) ≥ f(xk+1) + λk〈Jxk − Jy, xk − xk+1〉
= f(xk+1) + λk

(〈Jxk+1 − Jy, xk − xk+1〉
+ 〈Jxk − Jxk+1, xk − xk+1〉).

Observe that the last two terms in the rightmost side of (4.5) are nonnegative;
the first one because of the properties of the generalized projection and the
fact that xk ∈ Ω, and the second one because of the monotonicity of J .
Hence we get f(xk) ≥ f(xk+1).

(v) By (iv) we obtain that

lim
k→∞

λk〈Jxk − Jy, xk − xk+1〉 = 0.

Therefore the assumption on λk yields

lim
k→∞

〈Jxk − Jy, xk − xk+1〉 = 0.

On the other hand,

〈Jxk − Jy, xk − xk+1〉 = 〈Jxk − Jxk+1, xk − xk+1〉
+〈Jxk+1 − Jy, xk − xk+1〉.

The second term on the right hand side of the previous equation is nonnega-
tive by the projection properties. For the first one, we use (3.1) with x = xk

and y = xk+1:

〈Jxk − Jxk+1, xk − xk+1〉 ≥ (2L)−1C2
0δB(

‖xk − xk+1‖
2C0

),

where we are using the fact that {xk} is bounded by C0. Now the properties
of δB(·), namely the fact that it is an increasing and continuous function
such that δB(0) = 0, imply that

lim
k→∞

‖xk − xk+1‖ = 0.

(vi) From (3.2)

‖Jxk+1 − Jxk‖B∗ ≤ 8C0hB(16LC−1
0 ‖xk+1 − xk‖),

By virtue of the fact that hB(τ) tends to 0 as τ tends to 0, which holds for
any uniformly smooth Banach space, we have

lim
k→∞

‖Jxk − Jxk+1‖B∗ = 0.(4.6)

Let now uk := Jxk − Jy, where xk and y are taken as in (4.2). We know,
by the definition of the algorithm, that uk ∈ ∂f(xk+1). In order to prove
(vi) it is enough to show that

lim
k→∞

〈uk, x∗ − xk+1〉 = lim
k→∞

〈Jxk − Jy, x∗ − xk+1〉 = 0.
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As x∗ ∈ X∗,

0 ≤ 〈uk, xk+1 − x∗〉 = 〈Jy − Jxk, x∗ − xk+1〉 = 〈Jy − Jxk+1, x∗ − xk+1〉
+ 〈Jxk+1 − Jxk, x∗ − xk+1〉 ≤ 〈Jxk+1 − Jxk, x∗ − xk+1〉

≤ ‖x∗ − xk+1‖ ‖Jxk+1 − Jxk‖B∗ ,

where we have used the gradient inequality, the definition of the algorithm,
the projection properties and Cauchy-Schwarz.

Now, using in the previous chain of inequalities (4.6) and the boundedness
of {xk}, we obtain the desired result.

(vii) Consider the duality mapping J in (4.2), which is weak-to-weak con-
tinuous. We will show that there exists only one weak accumulation point.
Suppose there are two points z1, z2, which are weak limits of subsequences of
{xk}. By part (i) and (iii), we know that there exist nonnegative numbers
l1 and l2 such that

lim
k→∞

W (xk, z1) = l1 and lim
k→∞

W (xk, z2) = l2.

Then

(4.7)
lim

k→∞
W (xk, z1) −W (xk, z2) = l1 − l2

= ‖z1‖2 − ‖z2‖2 + 2 lim
k→∞

〈Jxk, z2 − z1〉.

Let l := limk→∞〈Jxk, z2−z1〉. Let {xkj} and {xlj} be subsequences converg-
ing weakly to z1 and z2 respectively. Then, taking k = kj in (4.7) and using
the weak-to-weak continuity of J , we get that l = 〈Jz1, z2 − z1〉. Repeating
the same argument with k = lj in (4.7), we get l = 〈Jz2, z2 − z1〉. Hence,
〈Jz2 − Jz1, z2 − z1〉 = 0. According to Lemma 3.1 and the properties of the
duality mapping, we conclude that z1 = z2, which establishes the uniqueness
of the weak accumulation point. The proof of item (vii) and of the theorem
is now complete.

We have proved that existence of solutions of Problem 4.1 is sufficient to
guarantee convergence of the sequence generated by Method (4.2). The next
lemma shows that it is also a necessary condition. More precisely, we will
prove that the sequence {xk} is unbounded when X∗ is empty.

Theorem 4.2. Under the hypotheses of Theorem 4.1, X∗ is nonempty if
and only if the sequence {xk} is bounded.

Proof. Theorem 4.1 provides the proof of the “only if” part. We proceed
to prove the “if” part. Suppose that {xk} is bounded. Then its weak closure
{xk} is bounded and there exists a closed, convex and bounded set D such
that

{xk} ⊂ Do,(4.8)

where Do is the interior of D. It follows that any weak accumulation point of
{xk} belongs to Do. Now we apply method (4.2) to the function f̃ = f+χD,
where, as before, χD denotes the indicator function of the set D. If {x̃k}
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is the sequence generated by the algorithm for f̃ , then x̃k+1 is uniquely
determined by the following system in unknowns x̃k+1, ỹ (see Lemma 3.4).{

0 ∈ (∂f +ND)(ΠΩ(ỹ)) + λk(Jỹ − Jx̃k),
x̃k+1 = ΠΩ(ỹ).

(4.9)

We will first prove by induction that the sequence {x̃k} coincides with the
sequence {xk}, resulting from applying method (4.2) to f rather than f̃ ,
when x0 = x̃0. Suppose that x̃k = xk. xk+1 is uniquely determined by the
following system in unknowns xk+1, y:{

0 ∈ ∂f(ΠΩ(y)) + λk(Jy − Jxk),
xk+1 = ΠΩ(y).

(4.10)

Since xk+1 belongs to Do by (4.8), we have that ND(ΠΩ(y)) = ND(xk+1) =
0, which, together with (4.10) and the induction hypothesis, gives

0 ∈ (∂f +ND)(ΠΩ(y)) + λk(Jy − Jx̃k).

Therefore, ΠΩ(y) is the unique solution of (4.9), and, as a consequence,
x̃k+1 = ΠΩ(y) = xk+1. The induction step is complete.

Consider now the problem

min(f + χD)(x)(4.11)

s.t. x ∈ Ω.

Since D is closed, convex and bounded, and so the operator ∂f + ND has
bounded domain, this problem is known to have solutions (see, e.g. [21],
Corollary 32.35), and we can apply Theorem 4.1 to conclude that the se-
quence {x̃k} is weakly convergent to a solution of (4.11). Since {xk} and
{x̃k} coincide, as proved above, we conclude that {xk} is weakly convergent
to a solution x̂ of (4.11). We prove next that x̂ belongs to X∗, i.e. it is a
solution of min f(x) subject to x ∈ Ω. x̂ belongs to the weak closure of {xk},
and therefore to Do, so that ND(x̂) = 0. In view of this fact and (4.11), we
have

0 ∈ (∂f +ND +NΩ)(x̂) = ∂f(x̂) +NΩ(x̂).(4.12)

Inclusion (4.12) implies that x̂ belongs to X∗, which is therefore nonempty.

4.2. Constrained minimization problem: stability analysis. We study
in this section the convergence of the following inexact version of algorithm
(4.2):

1) Take x̃0 ∈ Ω.
2) Given x̃k, define x̃k+1 by the system

(4.13)
{

0 ∈ ∂εk
f(ΠΩ(y)) + λk(Jy − Jx̃k),

x̃k+1 = ΠΩ(y),



110 Y. I. ALBER, R. S. BURACHIK AND A. N. IUSEM

where

∂εf(x) := {u ∈ B∗ | f(z) ≥ f(x) + 〈u, z − x〉 − ε ,∀z ∈ B}
is the ε-subdifferential of f at the point x (see, for instance, [11]). The
parameters {εk} and {λk} are chosen in the following way:
Λ1) 0 < λk < λ,
Λ2) εk ≥ 0 and

∑∞
k=0 λ

−1
k εk < ∞.

We will show next that for this choice of the parameters the method (4.2)
is stable. We point out that the system given by (4.13) has always a solution
as a straightforward consequence of the solvability of (4.2).

Theorem 4.3. Take {x̃k} as in (4.13). In the conditions of Theorem 4.1,
the algorithm given by (4.2) is stable, i.e.,
(i)

lim
k→∞

f(x̃k) = f∗,

and
(ii)

w− lim
k→∞

x̃k = x∗,

where w− lim stands for weak limit.

Proof. Take x∗ ∈ X∗. We consider as always the sequence {W (x̃k, x∗)}.
Let Wk := W (x̃k, x∗). Then, by definition of W (·, ·), we get

Wk+1 ≤ Wk + 2〈Jx̃k+1 − Jx̃k, x̃k+1 − x∗〉
≤ Wk + 2〈Jx̃k+1 − Jy, x̃k+1 − x∗〉 + 2〈Jy − Jx̃k, x̃k+1 − x∗〉

≤ Wk − 2λ−1
k 〈uk+1, x̃k+1 − x∗〉,

where we use the projection properties, and that uk+1 ∈ ∂εk
f(x̃k+1) satis-

fies the inclusion (4.13). Applying the definition of ε-subdifferential in the
previous inequality, we obtain

Wk+1 ≤ Wk − 2λ−1
k (f(x̃k+1) − f∗) + 2λ−1

k εk.(4.14)

(4.14) and our assumption on the parameters {εk} and {λk} imply that the
sequence {Wk} is convergent and that limk→∞ f(x̃k) = f∗, and then, with
the same argument as in Theorem 4.1, we obtain weak convergence of {x̃k}
to a minimizer. The theorem is proved.

Remark 4.4. In the particular case in which Ω = B, we get stability results
for the unconstrained problem.

We recall now the definition of Hausdorff distance H between sets A1 and
A2, defined as

H(A1, A2) = max{ sup
z2∈A2

inf
z1∈A1

‖z1 − z2‖, sup
z2∈A1

inf
z1∈A2

‖z1 − z2‖}.

Note that if A1 and A2 are singletons, then H reduces to the usual distance.

Theorem 4.5. Consider the sequence {x̃k} given by the following algorithm:
1) Take x̃0 ∈ Ω.
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2) Given x̃k, define x̃k+1 by the system{
0 ∈ T εk(ΠΩ(y)) + λk(Jy − Jx̃k),
x̃k+1 = ΠΩ(y),

(4.15)

where εk and λk are taken as in (4.13). Suppose that the operator T ε : B →
P(B∗) is such that

H(T ε(x), ∂f(x)) ≤ θ(‖x‖)ε,(4.16)

for all x ∈ Ω and for some finite nondecreasing positive function θ(·).
If problem (4.15) is solvable and if the sequence {x̃k} is bounded by C0,

then the whole sequence {x̃k} converges weakly to a minimizer, and the func-
tional values converge to f∗.

Proof. Indeed, in analogy with Theorem 4.3, it follows from (4.15) that

Wk+1 ≤ Wk + 2λ−1
k 〈vk+1, x∗ − x̃k+1〉,

where vk+1 ∈ T εk(x̃k+1) satisfies inequality (4.16). The previous inequality
can be rewritten in the form

(4.17) Wk+1 ≤ Wk +2λ−1
k 〈uk+1, x∗ − x̃k+1〉+2λ−1

k 〈vk+1−uk+1, x∗ − x̃k+1〉,
where uk+1 ∈ ∂f(x̃k+1). By the gradient inequality, we have

f∗ − f(x̃k+1) ≥ 〈uk+1, x∗ − x̃k+1〉,
which, together with (4.17), leads to

Wk+1 ≤ Wk − 2λ−1
k (f(x̃k+1) − f∗) + 2λ−1

k 〈uk+1 − vk+1, x∗ − x̃k+1〉.
Using now the Cauchy-Schwartz inequality, (4.16) and the boundedness of
the sequences {x̃k} and {λk}, the last expression becomes

Wk+1 ≤ Wk − 2λ−1(f(x̃k+1) − f∗) + θ(C0)C̄λ−1
k εk,

where C̄ is a bound for 2‖x∗ − x̃k‖. Now the assertion is obtained by the
same argument as in Theorem 4.3.

We remark that when the set Ω is bounded, then the sequence {x̃k} is
ensured to be also bounded.

4.3. Unconstrained minimization problem: convergence rate esti-
mate. We study now the problem

min
x∈B

f(x),

where f : B → IR is a convex functional. We propose the following method
for this problem:

Consider the sequence {xk} given by
1) Take x0 ∈ B.
2) Given xk, find xk+1 ∈ B, such that:

0 ∈ ∂f(xk+1) + λk(Jxk+1 − Jxk),(4.18)



112 Y. I. ALBER, R. S. BURACHIK AND A. N. IUSEM

where the parameters λk are chosen such that 0 < λk ≤ λ.
The method (4.18) is the classical proximal method in a Banach space and

also a particular case of (4.2) for Ω = B. We will provide in this section a
convergence rate estimate for the proximal point method in a Banach space.
The lemmas we prove next are essential in the proof of Theorems 4.9 and 5.1
below.

Lemma 4.6. Assume that {αk} is a sequence of nonnegative real numbers
satisfying the implicit recursive inequality

αk+1 ≤ αk − µψ(αk+1), k = 0, 1, . . . .,(4.19)

where ψ : IR+ → IR+ is a continuous and increasing function such that
ψ(0) = 0 and µ is a positive constant. Then αk → 0 as k → ∞. Also, if
1 ∈ R(ψ), then there exists k̄ ∈ [0, C2] such that

αk ≤ ψ−1(
C1

k
)(4.20)

for all k > k̄, where

C1 = exp (µ−1ψ−1(1) + 1), C2 = exp (µ−1α0 + 1)

and ψ−1(·) is the inverse function of ψ.

Proof. It follows directly from (4.19) that αk → 0 as k → ∞.
Consider now two alternatives for any fixed k ∈ N :

(H1) : ψ(αk+1) ≤ (k + 1)−1.

(H2) : ψ(αk+1) > (k + 1)−1.

Denote by N1 := {k ∈ N |ψ(αk+1) ≤ (k + 1)−1 }.
The proof of (4.20) will be performed in three steps.

1) We claim that the set N1 is unbounded. Indeed, if this is not true, there
exists N such that for all k > N , hypothesis H2 is satisfied. By (4.19)

αk ≤ αk−1 − µψ(αk) < αk−1 − µk−1 < αN − µ
k∑

i=N+1

i−1.

If N1 were bounded, then taking limits as k → ∞ in the previous chain
of inequalities, we obtain a contradiction. Indeed, the rightmost term goes
to −∞, while the leftmost one is nonnegative. Thus N1 must be unbounded.

2) Let {kj} denote all the ordered elements of N1. In the second step we
will prove that

kj+1

kj + 1
≤ C1,(4.21)

where C1 is as in the lemma. If kj+1 = kj +1 then (4.21) is trivially satisfied.
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Otherwise, take k ∈ [kj + 1, kj+1 + 1]. We emphasize that for k of the
form kj + 1 we have that

ψ(αk) ≤ 1
k
,

and, for k not of this form, it holds that

ψ(αk) >
1
k
.

Then, for all k such that kj + 2 ≤ k ≤ kj+1 we have:

αkj+2 ≤ αkj+1 − µψ(αkj+2) < αkj+1 − µ(kj + 2)−1,

αkj+3 < αkj+1 − µ((kj + 2)−1 + (kj + 3)−1),
etc. Applying iteratively (4.19), we obtain

αkj+1 < αkj+1 − µ

kj+1∑
i=kj+2

i−1.

Therefore, denoting by Sp :=
∑p

i=1 i
−1, we get

(4.22) µ(Skj+1 −Skj+1) < αkj+1 −αkj+1 ≤ αkj+1 ≤ ψ−1(
1

kj + 1
) ≤ ψ−1(1),

where the second inequality holds because {αk} is a nonnegative sequence,
the third one by definition of N1, and the last one because ψ is an increasing
function, and, consequently, ψ−1 is also increasing. In order to estimate the
leftmost expression in (4.22), we use a result from [9]:

Sp = ln p+ η(p) + E,

where η(p) ∈ (0, 12) and E ≈ 0, 577 is the Euler constant. Applying the
previous equality in (4.22) we obtain,

ln
kj+1

kj + 1
≤ µ−1ψ−1(1) + |η(kj + 1) − η(kj+1)| ≤ µ−1ψ−1(1) + 1.

It may thus be concluded that
kj+1

kj + 1
≤ exp (µ−1ψ−1(1) + 1),

and (4.21) is valid.

3) We will show now that

αk ≤ ψ−1(
C1

k
),

for all kj + 1 ≤ k ≤ kj+1 + 1. Indeed, for k = kj + 1 we have that

ψ(αkj+1) ≤ (kj + 1)−1,

and consequently

αkj+1 ≤ ψ−1(
1

kj + 1
) ≤ ψ−1(

C1

kj + 1
),

because C1 ≥ 1. The same estimate is valid for k = kj+1 + 1.
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If k is such that kj + 2 ≤ k ≤ kj+1, then kj+1/k ≥ 1 and

αk ≤ αkj+1 ≤ ψ−1(
1

kj + 1
)

≤ ψ−1(
kj+1

k(kj + 1)
) ≤ ψ−1(

C1

k
),

where we use that the sequence {αk} is decreasing in the first inequality,
definition of N1 in the second one, the assumption on k and the properties
of ψ in the third one, and step (2) in the last one.

We show next that the estimate (4.20) holds at least beginning from some
k̄, where 0 ≤ k̄ ≤ exp (µ−1α0 + 1). If k1 = 0 then (4.20) is satisfied by any
k > 1. Otherwise, take 0 ≤ k ≤ k1. We know that hypothesis (H2) holds for
0 < k ≤ k1. This means that

0 ≤ αk < α1 − µ
k∑

i=2

i−1 ≤ α0 − µ
k∑

i=2

i−1.

Therefore, using again [9], we obtain

ln k + η(k) + E ≤ µ−1α0 + 1,

which implies that
ln k ≤ µ−1α0 + 1.

This yields

k ≤ exp(µ−1α0 + 1).(4.23)

Then all the results above are valid for k1 ≤ C2. The proof of the lemma
is now complete.

Remark 4.7. If 1 /∈ R(ψ), then there exists 0 < β < 1 such that β ∈ R(ψ).
In this case the lemma remains valid, but the constants C1 and C2 should be
changed.

Next we consider the particular case of inequality (4.19) with ψ(t) = t2,
which allows us to improve upon our previous estimate.

Lemma 4.8. If {αk}, (k = 1, 2, . . . ) is a sequence of nonnegative real num-
bers satisfying the implicit recursive inequality αk+1 ≤ αk − µα2k+1 then it
holds that αk ≤ C1/k for all k, where C1 = max{2/µ, α1}.
Proof. We proceed by induction. The result holds for k = 1 by definition
of C1. Assume that it holds for k. Then, the recursive inequality and the
induction hypothesis imply that

αk+1 ≤
√

1 + 4µαk − 1
2µ

≤
√

1 + 4µC1/k − 1
2µ

,(4.24)

and it suffices to prove that the rightmost expression in (4.24) is less than
or equal to C1/(k + 1), which is equivalent, after some algebra, to

1
µ

(1 +
1
k

) ≤ C1.(4.25)
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(4.25) holds because k ≥ 1 and C1 ≥ 2/µ.
As we mentioned before, the convergence rate estimate that we present

next is an application of Lemma 4.6.

Theorem 4.9. Let {xk} be the sequence given by (4.18) with 0 < λ̄ ≤ λk ≤
λ. Suppose that the set of minimizers of f , which we call X∗, is nonempty
and take x∗ ∈ X∗. Then results (i)-(vii) of Theorem 4.1 hold. Moreover,
defining uk := f(xk) − f∗, there exists k̄ ∈ [0, exp(R−1

1 u0 + 1)] such that

uk ≤ R−1
2 δ−1

B∗(
C1

k
)(4.26)

for all k > k̄. If C0 is a bound for {xk} as in Theorem 4.1, then the constants
above are given by the relations

C1 = exp (
1

R1R2
δ−1
B∗(1) + 1),

R1 = (2L)−1λ̄C2
0 , R2 = (2λC0(C0 + ‖x∗‖))−1.

Proof. Statements (i)−(vi) hold because of our choice of λk and the fact
that this algorithm is a particular case of (4.2) for Ω = B.

For establishing (4.26) we show first that

uk+1 − uk ≤ −R1δB∗(R2u
k+1),(4.27)

which will allow us to apply Lemma 4.6 to the sequence αk = uk, with
µ = R1 and ψ(t) = δB∗(R2t).

By the definition of the method and the gradient inequality, there exists
wk+1 ∈ ∂f(xk+1) such that

(4.28) uk+1 − uk ≤ 〈wk+1, xk+1 − xk〉 = −λk〈Jxk+1 − Jxk, xk+1 − xk〉.
Using Lemma 3.1 and the fact that the sequence is bounded by C0, the
previous inequality becomes

(4.29)
uk+1 − uk ≤ −λkC

2
0

2L
δB∗

(
‖Jxk+1 − Jxk‖B∗

2C0

)

= −λkC
2
0

2L
δB∗(

‖wk+1‖B∗

2λkC0
) ≤ − λ̄C

2
0

2L
δB∗(

‖wk+1‖B∗

2λC0
)

On the other hand,

f(xk+1) − f∗ ≤ 〈wk+1, xk+1 − x∗〉 ≤ ‖xk+1 − x∗‖‖wk+1‖B∗

≤ (C0 + ‖x∗‖)‖wk+1‖B∗ .

The previous chain of inequalities implies that

‖wk+1‖B∗ ≥ uk+1

C0 + ‖x∗‖ ,(4.30)

which, together with (4.29) and the fact that δB∗(·) is an increasing function,
gives (4.27).
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Now all the assertions of the theorem follow from Lemma 4.6 and the fact
that ψ−1(z) = R−1

2 δ−1
B∗(z), and the proof is complete.

We recall that spaces 9p, Lp and the Sobolev spaces W p
m are uniformly

convex and uniformly smooth for all p ∈ (1,∞) and, denoting any of these
spaces by B, we have

δB(ε) ≥ 8−1(p− 1)εp, ρB(τ) ≤ p−1τ2

for p ∈ [2,∞), and

δB(ε) ≥ p−12−pε2, ρB(τ) ≤ p−1τp

for p ∈ (1, 2].
In the examples above, as well as in other spaces considered by Pisier in

[19], it holds that δB(ε) ≥ Cεγ , where γ ≥ 2 and C is a constant. Under
such assumption, we get from (4.29) and (4.30)

uk+1 − uk ≤ −λkC
2
0C‖wk+1‖γ

B∗

L2γ+1λγ
kC

γ
0

= − C‖wk+1‖γ
B∗

2γ+1Lλγ−1
k Cγ−2

0
≤ − C

2γ+1Lλγ−1Cγ−2
0

(uk+1)γ

(C0 + ‖x∗‖)γ
.

Therefore, it follows from Lemma 4.6 that there exists k̄ ∈ [0, exp(R3u
0 +1)]

such that

f(xk) − f∗ ≤ (
C1

k
)

1
γ ,

for all k > k̄, where

C1 = exp(R3), R3 = C−12γ+1Lλγ−1Cγ−2
0 (C0 + ‖x∗‖)γ .

For such spaces, we do not need a positive lower bound for λk.

Remark 4.10. Recalling that u0 = f(x0)−f∗, (4.23) gives a precise relation
between k1, the first element of N1, and the initial data. As a corollary,
we conclude that if the functional value at the initial point is close to the
minimum value f∗ of f , then k1 cannot be too large.

In Theorem 4.9 we obtained estimate (4.26) for an arbitrary uniformly
convex and uniformly smooth Banach space B. Using Lemma 4.8 we can
improve the mentioned estimate for a very wide family of Banach spaces,
namely the ones which satisfy that δB∗(ε) ≥ Cε2, C = const. This family
includes the Hilbert spaces, because

ε2

8
≤ δH(ε) ≤ ε2

4
.

Theorem 4.11. Suppose that all conditions of Theorem 4.9 hold with 0 <
λk ≤ λ. Moreover, assume that δB∗(ε) ≥ Cε2, C = const. Then

(4.31) f(xk) − f∗ ≤ C1

k
, C1 = max{16C−1Lλ(C0 + ‖x∗‖)2, f(x0) − f∗}

for all k ≥ 1.
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Proof. Since δB∗(ε) ≥ Cε2, we have from (4.29)

uk+1 − uk ≤ − C

8λL(C0 + ‖x∗‖)2
(uk+1)2.

Now (4.31) follows from Lemma 4.8 and the fact that u1 ≤ u0.

Corollary 4.12. Consider the spaces 9p, Lp and W p
m. Suppose that 2 ≤ p <

∞. If 0 < λk ≤ λ, then, under the hypotheses of Theorem 4.9, we have

f(xk) − f∗ ≤ C1

k
, C1 = max{16q2qλL(C0 + ‖x∗‖)2, f(x0) − f∗}

for all k ≥ 1, where q = p/(p− 1).

The proof follows directly from the fact that when 2 ≤ p < ∞, the
corresponding dual space B∗ = 9q, Lq, W q

m satisfies

δB∗(ε) ≥ q−12−qε2, q = p/(p− 1), 1 < q ≤ 2.

An estimate similar to (4.31) was obtained in [10] for the particular case
of a Hilbert space. Lemma 4.8 allows us to obtain a much simpler proof
for this case. In Hilbert spaces, J is the identity operator, and the method
(4.18) takes the form

0 ∈ ∂f(xk+1) + λk(xk+1 − xk).

Using (4.30), we have

uk+1 − uk ≤ 〈wk+1, xk+1 − xk〉 =

≤ −‖wk+1‖2
λk

≤ − (uk+1)2

λ(C0 + ‖x∗‖)2
.

Now Lemma 4.8 immediately gives the following estimate:

f(xk) − f∗ ≤ C1

k
, C1 = max{2λ(C0 + ‖x∗‖)2, f(x0) − f∗}

for all k ≥ 1.

5. Convergence analysis for uniformly convex functionals

We will establish now strong convergence in the case of uniformly convex
functionals. In this section, a uniformly convex functional will be understood
as a functional f such that there exists a continuous and increasing function
Ψ : [0,∞] → [0,∞] satisfying Ψ(0) = 0, limt→∞ Ψ(t) = ∞ and

〈u, x− x∗〉 ≥ Ψ(‖x− x∗‖).(5.1)

for all x ∈ B, and all u ∈ ∂f(x), where x∗ is the minimizer of f on Ω.

Theorem 5.1. Suppose that f is a uniformly convex functional and take
Ψ(·) as in (5.1). Then, the sequence generated by (4.2) with 0 < λk ≤ λ
converges strongly to x∗ and there exists k̄ ∈ [0, exp(2−1λD0 + 1)] such that

‖xk − x∗‖ ≤ 4C0δ
−1
B (

1
8C2

0
Ψ̃−1(

C1

k
)),(5.2)
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for all k > k̄, where C0 is a bound for {xk}, Ψ̃(t) = Ψ(4C0ρ
−1
B (t/4C2

0 )),
D0 = (‖x0‖ + ‖x∗‖)2 and

C1 = exp (
λ

2
Ψ̃−1(1) + 1).

Proof. By (4.3), the gradient inequality and definition of Ψ(·), we get

W (xk+1, x∗) ≤ W (xk, x∗) − (2/λk)Ψ(‖xk+1 − x∗‖).(5.3)

Then the sequence {W (xk, x∗)} is nonnegative and decreasing, hence conver-
gent. We show next that the properties of Ψ(·) and the previous inequality
imply the strong convergence of {xk}. Indeed, the following property of
W (·, ·) can be found in [1], Theorem 7.5:

(5.4) 4Cρ−1
B [W (x, y)/(4C2)] ≤ ‖x− y‖ ≤ 4Cδ−1

B [W (x, y)/(8C2)],

for any x, y ∈ B, such that ‖x‖ ≤ C, ‖y‖ ≤ C. Applying the leftmost
inequality in (5.4) to (5.3), and using the assumption on C0, we have

W (xk+1, x∗) ≤ W (xk, x∗) − 2λ−1
k Ψ(4C0ρ

−1
B [W (xk+1, x∗)/(4C2

0 )].

Let Wk := W (xk, x∗). Then the previous inequality can be rewritten as

Wk+1 ≤ Wk − 2λ−1
k Ψ̃(Wk+1) ≤ Wk − 2λ−1Ψ̃(Wk+1).

Observe that Ψ̃ is continuous and Ψ̃(0) = 0, because ρ−1
B (0) = 0. Then we

are in conditions of Lemma 4.6 with αk = Wk, ψ(t) = Ψ̃(t) and µ = 2/λ.
This lemma implies that

Wk ≤ Ψ̃−1(
C1

k
),

for all k ≥ k̄, where k̄ ≤ exp (2−1λW0 + 1). Combining now (5.4) with the
previous inequality, we get

8C2
0δB(

‖xk − x∗‖
4C0

) ≤ Ψ̃−1(
C1

k
),

which gives

‖xk − x∗‖ ≤ 4C0δ
−1
B (

1
8C2

0
Ψ̃−1(

C1

k
)).

The constant D0 is obtained applying the formula (3.4) in the bound for k̄
and thus this establishes (5.2).

Remark 5.2. In the same way as in Section 4, the estimate (5.2) can be
improved for the special case in which Ψ̃(t) = t2. It is also obvious that if
Ψ̃(t) = t, then Wk converges to 0 with a linear convergence rate.

Remark 5.3. In [2], explicit versions of gradient type methods were con-
sidered for {λk} and {εk} such that limk→∞ λ−1

k = 0 and 0 ≤ εk ≤ C̄λ−1
k ,

for some constant C̄. The authors proved in this reference all the results of
Theorem 4.1 in the case of a Banach space in which δB(ε) ≥ C̄ε2. The same
assumption on the parameter {λk} is still necessary for uniformly convex
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functionals in an arbitrary uniformly convex and uniformly smooth Banach
space (see [3]).

Remark 5.4. It is not difficult to show that the proximal point algorithm
(4.2) can be written as

xk+1 = πΩ(Jxk − λku
k+1),(5.5)

where uk+1 ∈ ∂f(xk+1), and πΩ : B∗ → Ω ⊂ B is generalized projection
operator introduced in [1].
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Pont́ıficia Universidade Católica do Rio de Janeiro
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