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On the basis of G-convergence we prove an averaging result for nonlinear abstract
parabolic equations, the operator coefficient of which is a stationary stochastic process.

1. Introduction

It is well known that the averaging principle is a powerful tool of investigation of or-
dinary differential equations, containing high frequency time oscillations, and a vast
work was done in this direction (cf. [1]). This principle was extended to many other
problems, like ordinary differential equations in Banach spaces, delayed differential
equations, and so forth (for the simplest result of such kind we refer to [2]). It seems
to be very natural to apply such an approach to the case of parabolic equations, ei-
ther partial differential, or abstract ones. However, only a few papers deal with such
equations. Most of them deal with linear and quasilinear equations in the case when
high oscillations in coefficients and/or forcing term are of periodic or almost periodic
nature [4, 6, 9, 8, 13, 14, 18]. Moreover, many applications give rise naturally to par-
abolic equations with highly oscillating random coefficients. For linear equations of
such kind the averaging principle was studied in [15, 16, 17]. Note that, in [17] the
so-called spatial and space-time averaging (homogenization) is investigated, while the
time averaging is also considered.

In the present paper, we study the averaging problem for an abstract monotone
parabolic equation, the operator coefficient of which is a stationary (operator valued)
stochastic process. We prove that in this case the averaging takes place almost surely,
that is, with probability 1. As a consequence, we get an averaging result for the case of
almost periodic coefficients (almost periodic functions may be regarded as a particular
case of a stationary process). This result is, so to speak, individual, in contrast to the
main theorem which is statistical in its nature. Our approach differs from those used
in the references we pointed out above, except [17], and is based on the theory of
G-convergence of abstract parabolic operators. The last theory was developed in [7] in
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connection with homogenization of nonlinear parabolic equations (see [11] for detailed
presentation). Note that, in [7, 11] a simple result on time averaging in the periodic
case is obtained as well.

We point out that in this paper we make use of a characterization of stationary
processes from the point of view of dynamical systems, which is equivalent to the
standard definition [5], but seems to be more analytical.

The paper is organized as follows. Section 2 is devoted to the precise statement of the
problem and the formulation of the main result. In Section 3, we present some prelim-
inaries on G-convergence of abstract parabolic operators. Most of them are borrowed
from [11]. The proof of the main result is contained in Section 4. In Section 5, we
prove an averaging result for almost periodic parabolic equations. In Sections 6 and 7,
we present a simple example and discuss some immediate extensions of our results,
respectively.

2. Statement of the problem and the main result

Let � be a probability space, with a probability measure P . Assume that on � it is
given an action of a measure preserving dynamical system T (t), that is, for each t ∈ R

a self-map T (t) : � → � is defined such that

(1) T (t1 + t2) = T (t1)T (t2) (t1, t2 ∈ R) and T (0) = I, where I is the identity map,
(2) the map �×R → �, defined by (ω, t) �→ T (t)ω is measurable,
(3) P(T (t)�) = P(�) (t ∈ R) for every measurable set � ⊂ �.

In addition, we always assume the dynamical system T (t) to be ergodic. Recall that
T (t) is called ergodic if for each measurable function f (ω) on � such that f (T (t)ω) =
f (ω) almost everywhere (a.e.) one has f (ω) = const. a.e. In what follows we use
standard notations for the Lebesgue spaces, as well as for the space of continuous
functions. Moreover, 〈f 〉 stands for a mean value of measurable function f on �:

〈f 〉 =
∫
�

f (ω)dP (ω). (2.1)

Let V be a separable reflexive Banach space over the field R of reals, and let V ∗ be
its dual space and H a Hilbert space identified with its dual, H ∗ = H. It is assumed
that V ⊂ H ⊂ V ∗ and all the embeddings here are dense and compact. We denote by
‖ · ‖, | · |, and ‖ · ‖∗ the norms in V,H , and V ∗, respectively, and (·, ·) stands for the
inner product in H and the canonical bilinear form on V ∗ ×V (the duality pairing).

Let p > 1 and 1/p+1/p′ = 1. We fix nonnegative constants m,m1, and m2, positive
constants c1,c2,c3, and c4, and reals α,β such that

0 < α ≤ min

{
p

2
,p−1

}
, β ≥ max{p,2}. (2.2)

Consider a family A(ω) : V → V ∗ (ω ∈ �) of operators satisfying the Carathéodory
condition

(C) for almost all ω ∈ � the operator A(ω) : V → V ∗ is continuous, while A(ω)u

is a measurable V ∗-valued function for every u ∈ V,
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and the following inequalities

‖A(ω)u‖p′
∗ ≤ m1 +c1

(
A(ω)u,u

)
, (2.3)(

A(ω)u,u
) ≥ c2‖u‖p −m2, (2.4)∥∥A(ω)u1 −A(ω)u2

∥∥∗ ≤ c3�
(p−1−α)/p

(
A(ω)u1 −A(ω)u2,u1 −u2

)α/β
, (2.5)(

A(ω)u1 −A(ω)u2,u1 −u2
) ≥ c4�

(p−β)/p
∥∥u1 −u2

∥∥β
, (2.6)

for every u,u1,u2 ∈ V and almost all (a.a.) ω ∈ �, where

� = �
(
u1,u2

) = m+(
A(ω)u1,u1

)+(
A(ω)u2,u2

)
. (2.7)

It is always assumed that m ≥ 2m2 which implies �(u1,u2) > 0 provided ‖u1‖ +
‖u2‖ > 0.

Now, we introduce a family Aω(t) (ω ∈ �) of operator valued functions defined by

Aω(t) = A
(
T (t)ω

)
, t ∈ R. (2.8)

It is not difficult to verify (cf. [11]) that for a.a. ω ∈ � the operator function Aω(t)

is well defined, and satisfies the Carathéodory condition (on the real line now) and
inequalities (3.1), (3.2), (3.3), and (3.4) below which are similar to (2.3), (2.4), (2.5),
and (2.6). In particular, the operator Aω(t) is bounded, coercive, and strictly mono-
tone uniformly with respect to ω and t. Therefore, due to standard results on abstract
monotone parabolic equations (cf. [10]), for a.a. ω ∈ � the following Cauchy problem:

u′ +Aω

(
t

ε

)
u = f ∈ Lp′(

0,τ ;V ∗), (2.9)

u(0) = u0 ∈ H (2.10)

has a unique solution

u = uω,ε ∈ Lp(0,τ ;V )∩C
([0,τ ];H )

(2.11)

such that u′ = u′
ω,ε ∈ Lp′

(0,τ ;V ∗). Here τ > 0 is an arbitrary, but fixed, real number.
We remark that at this point the whole set of assumptions (2.3), (2.4), (2.5), and (2.6)
is not needed. We use them only to apply the results on G-convergence [11].

Let Â : V → V ∗ be an operator defined by

Âu = 〈Au〉 =
∫
�

A(ω)udP (ω), (2.12)

the mean value of A(ω)u. It is easily seen that Â acts continuously from V into V ∗
and satisfies inequalities (3.1), (3.2), (3.3), and (3.4). By the Birkhoff ergodic theorem
(cf. [3]), for a.a. ω ∈ � one has

Âu = lim
s→∞

1

s

∫ s

0
A

(
T (t)ω

)
udt = lim

s→∞
1

2s

∫ s

−s

A
(
T (t)ω

)
udt. (2.13)

The following result justifies in the case we consider the principle of averaging.
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Theorem 2.1. For a.a. ω ∈�,uω,ε → û weakly in Lp(0,τ ;V ), strongly in C([0,τ ];H),

and u′
ω,ε → û′ weakly in Lp′

(0,τ ;V ∗) as ε → 0, where û is the unique solution of the
problem

û′ + Âû = f, (2.14)

û(0) = u0. (2.15)

3. G-convergence of abstract parabolic operators

To prove Theorem 2.1, we need certain preliminary results on G-convergence (we refer
to [11] for more details). First, we recall some definitions.

Let Ak(t), t ∈ [0,τ ], (k = 0,1, . . .) be operators acting from V into V ∗. Assume
that they satisfy the Carathéodory condition on [0,τ ] and inequalities

‖Ak(t)u‖p′
∗ ≤ m1 +c1

(
Ak(t)u,u

)
, (3.1)(

Ak(t)u,u
) ≥ c2‖u‖p −m2, (3.2)

∥∥Ak(t)u1 −Ak(t)u2
∥∥∗ ≤ c3�

(p−1−α)/p
k

(
Ak(t)u1 −Ak(t)u2,u1 −u2

)α/β
, (3.3)

(
Ak(t)u1 −Ak(t)u2,u1 −u2

) ≥ c4�
(p−β)/p
k

∥∥u1 −u2
∥∥β

, (3.4)

for all u,u1,u2 ∈ V and a.a. t ∈ [0,τ ], where

�k = m+(
Ak(t)u1,u1

)+(
Ak(t)u2,u2

)
. (3.5)

Consider parabolic operators

Lku = u′ +Ak(t)u, (k = 0,1, . . .), (3.6)

acting from the space

W0 = {
u ∈ Lp

(
0,τ ;V ∗) | u′ ∈ Lp′(

0,τ ;V ∗), u(0) = 0
}

(3.7)

into Lp′
(0,τ ;V ∗). Endowed with the graph norm

‖u‖W0 = ‖u‖Lp(0,τ ;V )+
∥∥u′∥∥

Lp′
(0,τ ;V ∗), (3.8)

W0 becomes a reflexive Banach space. As it was already mentioned, due to our assump-
tions the operators Lk are invertible. One says that L0 is a G-limit of Lk, k = 0,1, . . . ,

(in symbols, Lk
G−−→ L0) if L−1

k f → L−1
0 f weakly in W0 for all f ∈ Lp′

(0,τ ;V ∗).
We have the following results [11].

Theorem 3.1. Let Lk (k = 0,1, . . .) be a sequence of parabolic operators satisfying
(3.1), (3.2), (3.3), and (3.4). Then there exists a subsequence Lk′ and a parabolic
operator L satisfying (3.1), (3.2), (3.3), and (3.4), with possibly different values of

m,m1,m2,c1,c2,c3, and c4, such that Lk
G−−→ L.
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We now point out that, in fact, our parabolic operators act on a larger space consisting
of all functions from Lp(0,τ ;V ) which have first derivative in Lp′

(0,τ ;V ∗). Such
functions are not necessarily vanishing at 0.

Theorem 3.2. Let Lk
G−−→L, uk ∈ Lp(0,τ ;V ) with u′

k ∈ Lp′
(0,τ ;V ∗). Assume that

Lkuk → f strongly in Lp′
(0,τ ;V ∗), uk → u weakly in Lp′

(0,τ ;V ), and u′
k → u′

weakly in Lp′
(0,τ ;V ∗). Then Lu = f and Ak(t)uk → A(t)u weakly in Lp′

(0,τ ;V ∗).

Proposition 3.3. Assume that Lk
G−−→ L, f ∈ Lp′

(0,τ ;V ∗), and u0 ∈ H . Let uk ∈
Lp(0,τ ;V ) be a (unique) solution of the Cauchy problem

Lkuk = u′
k +Ak(t)uk = f, uk(0) = u0, (3.9)

such that u′
k ∈ Lp′

(0,τ ;V ∗). Then uk → u weakly in Lp(0,τ ;V ) and strongly in

C([0,τ ];H), u′
k → u′ weakly in Lp′

(0,τ ;V ∗), where u is a (unique) solution of the
Cauchy problem for L with the same initial data u0.

Proof. Multiplying (3.9) by uk and integrating, we obtain

1

2
|uk(t)|2 − 1

2
|u0|2 +

∫ t

0

(
Ak(s)uk(s),uk(s)

)
ds =

∫ t

0

(
f (s),uk(s)

)
ds. (3.10)

Now due to assumption (3.2), we see that uk is a bounded sequence in Lp(0,τ ;V ) and
C([0,τ ];H). Using (3.1) and (3.9), we obtain from the last observation the boundedness
of u′

k in Lp′
(0,τ ;V ∗). Since Lp(0,τ ;V ) and Lp′

(0,τ ;V ∗) are reflexive spaces, passing
to a subsequence, we can assume that uk → u weakly in Lp(0,τ ;V ) and u′

k → u′
weakly in Lp′

(0,τ ;V ∗). In addition, due to Lemma 1.3.4 of [11], we can also assume
that uk → u strongly in C([0,τ ];H). (In fact, this lemma is stated in [11] only under a
stronger assumption u0 = 0. However, the proof works equally well if we assume only
that uk(0) = u0 ∈ H .) By Theorem 3.1, u is a solution of Lu = f , while u(0) = u0 due
to convergence of uk in C([0,τ ];H). Since such a solution u is unique, the passage to
a subsequence above is unnecessary and the proof is complete. �

In Section 5, we also use the following result (see [11, Corollary 1.3.1]).

Proposition 3.4. Let

Ln
ku = u′ +An

k(t)u (n,k = 0,1,2, . . .) (3.11)

be a double sequence of parabolic operators. Assume that Ln
k

G−−→ Ln
0 as k → ∞ for

all n = 1,2, . . . , and

lim
n→∞

esssup
t∈[0,τ ]

sup
u∈V

∥∥An
k(t)u−Ao

k(t)u
∥∥∗

1+‖u‖p−1
= 0 (3.12)

uniformly with respect to k = 0,1,2, . . . . Then L0
k

G−−→ L0
0.
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4. Proof of Theorem 2.1

Consider parabolic operators Lω,ε and L̂ generated by the left-hand sides of (2.9) and
(2.14), respectively. First, we point out that for a.a. ω ∈ � the operators Lω,ε satisfy all
the assumptions of Section 3.

Theorem 4.1. For each τ > 0 and for a.a. ω ∈ �, we have

Lω,ε
G−−→ L̂ as ε −→ 0. (4.1)

Theorem 4.1 together with Proposition 3.3 imply obviously Theorem 2.1. To prove
Theorem 4.1 we need to introduce an operator of “differentiation” along trajectories
of our dynamical system T (t) (see [11, Section 3.1], for more details). Associated to
T (t), there exists a one-parameter groups of operators G(t) acting in all the spaces
Lr(�,E), where E = V,H or V ∗,1 ≤ r ≤ ∞.

The operator G(t) is defined by(
G(t)f

)
(ω) = f

(
T (t)ω

)
, t ∈ R, ω ∈ �. (4.2)

It is easily seen that G(t) is an isometric operator in each space under consideration.
Moreover,

G∗(t) = G(−t), t ∈ R. (4.3)

Now G(t) is considered as an operator in Lr(�;E) (1 < r < ∞), hence, G∗(t) acts in
Lr ′

(�;E∗). In particular, G(t) is a group of unitary operator in L2(�;H).

The group G(t) is strongly continuous in Lr(�;E), with 1 ≤ r < ∞. The generator ∂
of this group is a closed linear operator in Lr(�;E). Due to (4.3), ∂ is skew-symmetric:〈

(∂f,g)
〉 = −〈

(f,∂g)
〉
, ∀f ∈ D

(
∂,Lr(�;E)

)
,∀g ∈ D

(
∂,Lr ′(

�;E∗)), (4.4)

where D(∂,Lr(�;E)) is the domain of ∂ in Lr(�;E), 1 < r < ∞.

However, for our purpose we need to consider ∂ as an (unbounded) operator from
Lp(�;V ) into Lp′

(�;V ∗). Denote by �(�) the completion of

D
(
∂;Lp(�;V )

)∩D
(
∂;Lp′(

�;V ∗)) (4.5)

with respect to the norm

‖f ‖� = ‖f ‖Lp(�;V )+‖∂f ‖
Lp′

(�;V ∗). (4.6)

This is a reflexive Banach space densely embedded into Lp(�;V ). Now the action
of ∂ can be extended to �(�) and we get the desired operator from Lp(�;V ) into
Lp′

(�;V ∗), with the domain �(�). Making use of the same smoothing arguments
in [11, Section 3.1], we see that this operator, still denoted by ∂ , is skew-symmetric:
∂∗ = −∂. Moreover, if f ∈ �(�), then, for a.a. ω ∈ �, f (T (t)ω) ∈ L

p

loc(R;V ). For
its distributional derivative we have[

f
(
T (t)ω

)]′ = (∂f )
(
T (t)ω

) ∈ L
p′
loc

(
R;V ∗). (4.7)

We also remark that, due to ergodicity assumption, the kernel ker ∂ consists of constant
functions on �.
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Proof of Theorem 4.1. Independently of τ, for a.a. ω ∈ � the operators Lω,ε satisfy
the assumptions of Theorem 3.1. Hence, for any sequence of ε’s converging to 0, there
exists a subsequence, still denoted by ε, and a parabolic operator

L0u = u′ +A0(t)u (4.8)

such that Lω,ε
G−−→ L0, ω ∈ �0, where �0 is a set of measure 1. To prove the theorem

it suffices now to show that A0(t) = Â for a.a. t ∈ [0,τ ]. In particular, this means that
the passage to a subsequence above is superfluous.

Fix u ∈ V and consider the following identity:

(
u+εwδ

(
t

ε

))′
+Aω

(
t

ε

)(
u+εwδ

(
t

ε

))
= Âu+φε,δ +ψε,δ, (4.9)

where

φε,δ = ε

[
wδ

(
t

ε

)]′
+Aω

(
t

ε

)
− Âu,

ψε,δ = Aω

(
t

ε

)(
u+εwδ

(
t

ε

))
−Aω

(
t

ε

)
u.

(4.10)

Now we specify the function wδ. Since ∂ is skew self-adjoint and ker ∂ is just the
space of constant functions, the image of ∂ is dense in the subspace

{
f ∈ Lp′(

�;V ∗) : 〈f 〉 = 0
}
. (4.11)

Therefore, for every δ > 0 there exist Wδ ∈ �(�), bδ,cδ ∈ Lp′
(�;V ∗) such that

〈
bδ

〉 = 〈
cδ

〉 = 0, Âu−A(ω)u = bδ(ω)−cδ(ω), ∂Wδ = bδ,∥∥cδ∥∥
Lp′

(�;V ∗) ≤ δ.
(4.12)

Moreover, one can assume that 〈Wδ〉 = 0.
We set

wδ(t) = Wδ

(
T (t)ω

)
. (4.13)

Now
∥∥∥∥wδ

(
t

ε

)∥∥∥∥
p

Lp(0,τ ;V )

=
∫ τ

0

∥∥∥∥wδ

(
t

ε

)∥∥∥∥
p

V

dt = ε

∫ τ/ε

0

∥∥wδ(t)
∥∥p

V
dt

= ε

∫ τ/ε

0

∥∥Wδ

(
T (t)ω

)∥∥p

V
dt.

(4.14)

Hence, by the Birkhoff ergodic theorem,
∥∥∥∥wδ

(
t

ε

)∥∥∥∥
p

Lp(0,τ ;V )

−→ τ
∥∥Wδ

∥∥p

Lp(�;V )
(4.15)
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as ε → 0. Therefore, ∥∥∥∥wδ

(
t

ε

)∥∥∥∥
p

Lp(0,τ ;V )

≤ C
∥∥Wδ

∥∥p

Lp(�;V )
. (4.16)

Due to (4.7), [
εwδ

(
t

ε

)]′
= (

∂Wδ

)(
T

(
t

ε

)
ω

)
. (4.17)

Hence, as above
∥∥∥∥
[
εwδ

(
t

ε

)]′∥∥∥∥
p′

Lp′
(0,τ ;V ∗)

≤ C
∥∥bδ∥∥

Lp′
(�;V ∗). (4.18)

Thus, by (4.16), εwδ(t/ε) → 0 strongly in Lp(0,τ ;V ) for any fixed δ > 0.
Now choose a sequence of δ’s converging to 0. Then, to each such δ one can as-

sign ε = ε(δ) such that ε → 0 and εwδ(t/ε) → 0 strongly in Lp(0,τ ;V ) as δ → 0.
Since, due to (4.18), [εwδ(t/ε)]′ remains bounded in Lp′

(0,τ ;V ∗) we conclude that
[εwδ(t/ε)]′ → 0 weakly in this space. At the same time, inequality (2.5) implies that
ψε,δ → 0 strongly in Lp′

(0,τ ;V ∗). Finally, we have, evidently, φε,δ = cδ(T (t/ε)ω).

Using again the Birkhoff ergodic theorem, we see that ‖φε,δ‖Lp′
(0,τ ;V ∗) → 0 as δ → 0,

uniformly with respect to ε.
Now, applying Theorem 3.2, we deduce from (4.9)

u′ +A0(t)u = Âu. (4.19)

Since u is independent of t , we complete the proof. �

5. Almost periodic averaging

We now consider the averaging problem for the equation

u′ +A

(
t

ε

)
u = f ∈ Lp′(

0,τ ;V ∗). (5.1)

We assume that the operator function A(t) : V → V ∗ satisfies inequalities (3.1),
(3.2), (3.3), and (3.4), and the function

A(t)v

1+‖v‖p−1
, v ∈ V, (5.2)

is almost periodic, in the sense of Bohr, in t ∈ R uniformly with respect to v ∈ V [12].
More precisely, continuous operators from V into V ∗, having power growth of order
p−1, form a metric space, with the metric

d
(
A1,A2

) = sup
v∈V

∥∥A1v−A2v
∥∥

1+‖v‖p−1
. (5.3)

Thus, we assume that A(t) is an almost periodic function with values in this metric
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space, that is, for every sequence tk → ∞ there exist a subsequence tk′ and an operator
function A′(t) such that

lim
k′→∞

sup
t∈R

d
(
A

(
t + tk′

)
,A′(t)

) = 0. (5.4)

To apply Theorem 2.1, we recall the notion of Bohr compactification RB of R [12].
There exist a compact abelian group RB and a dense continuous embedding R ⊂ RB of
abelian groups such that every almost periodic function on R is, in fact, a restriction to
R of a continuous function on RB . Moreover, each continuous function on RB restricted
to R gives rise to an almost periodic function. We refer to [12] for detailed presentation
of the theory of almost periodic functions from this point of view.

Now we set � = RB and denote by P the normalized Haar measure on RB . We
define the dynamical system T (t) by

T (t)ω = ω+ t, ω ∈ � = RB, t ∈ R ⊂ RB. (5.5)

Denote by A(ω) a (unique) extension of A(t) to RB. Then (5.1) results from (2.9) after
a substitution ω = 0. Theorem 2.1 implies averaging for a.a. ω ∈ RB, but not for ω = 0,
in general. Nevertheless, we have the following theorem.

Theorem 5.1. Let uε be a solution of Cauchy problem (5.1), (2.10), and û a solution
of (2.14), (2.15), where

Âv = lim
S→∞

1

S

∫ S

0
A(t)v dt = lim

S→∞
1

2S

∫ S

−S

A(t)v dt. (5.6)

Then uε → û weakly in Lp(0,τ ;V ) and strongly in C([0,τ ];H), u′
ε → û′ weakly in

Lp′
(0,τ ;V ∗).

Proof. By Theorem 4.1, there exists a measurable set �0 ⊂ RB of measure 1 such that

Lω,ε
G−−→ L̂ for all ω ∈ �0. However, each set of measure 1 in RB is dense. Therefore,

there exists a sequence ωn ∈ �0 such that ωn → 0. Moreover,

lim
n→∞

sup
t∈R

d
(
Aωn(t),A(t)

) = 0. (5.7)

Due to Proposition 3.4, we have L0,ε
G−−→ L̂. Applying Proposition 3.3, we obtain the

result. �

6. An example

Now we consider a simple example. Let Q ⊂ R
n be a bounded open set and a(ω, t) a

stationary stochastic process a.a. realizations of which are contained between two pos-
itive constants. The last assumption may be expressed as follows: a(ω, t) = a(T (t)ω),

where a(ω) ∈ L∞(�) and a(ω) ≥ α0 > 0. The equation

u′ −∇
(
a

(
ω,

t

ε

)
|∇|p−2∇u

)
= f, (6.1)
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together with the homogeneous Dirichlet condition on ∂Q, reduces to (2.9), with V =
W

1,p
0 (Q) (the Sobolev space) and H = L2(Q), provided p ≥ 2. All assumptions (2.3),

(2.4), (2.5), and (2.6) are easy to verify. The averaged equation is

û′ − â∇(|∇û|p−2∇û
) = f, (6.2)

where â is the mean value of the process a.

7. Some generalizations

First of all, we note that in (2.9) we can consider the forcing term f of the form
f0(t)+ f1(T (t/ε)ω), where f0 ∈ Lp′

(0,τ ;V ∗) and f1 ∈ Lp′
(�;V ∗). This situation

reduces immediately to the case of Theorem 2.1 if we replace the operator A(ω) by
a new operator Ã(ω) = A(ω) − f1(ω). It is easily seen that Ã(ω) satisfies all the
assumptions of Section 2 whenever A(ω) does.

Moreover, one can extend Theorem 2.1 to the case when the equation under consid-
eration contains the slow variable t as well as the fast one t/ε, that is, is of the form

u′ +Aω

(
t,

t

ε

)
u = f, (7.1)

where f = f (t), or even f = fω(t, t/ε). To do this we need only to consider instead
of A(ω) an operator function A(t,ω) defined on [0,τ ] ×� and satisfying the same
assumption as in Section 2, with � replaced by [0,τ ]×�. Certainly, in this case

Aω

(
t,

t

ε

)
= A

(
t,T

(
t

ε

)
ω

)
. (7.2)

A similar remark concerns with f = fω(t, t/ε).
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