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We modify the definition of lopsided convergence of bivariate functionals to
obtain stability results for the min/sup points of some control problems. In
particular, we develop a scheme of finite dimensional approximations to a large
class of non-convex control problems.

1. Introduction

Let X be a topological space and consider the following problem:
Find x̄ such that

f0(x̄) = inf
x∈Xf0(x), subject to x ∈ C ⊂ X. (1.1)

In case f0 and C are convex, a variety of primal/dual numerical methods can be
used to find the saddle points of a Lagrangian L associated with this problem
[4, 7]. These methods take advantage of the fact that the search for the saddle
points of L is unconstrained, or conducted over sets much simpler than C.
Furthermore, we can introduce penalties on f0 in a way that regularizes L and
makes it smoother. This in turn leads to a more convenient optimality condition
of the form (0,0) ∈ ∂L. In the case of a non-convex problem, similar methods
can be used to find the saddle points of an augmented Lagrangian, and these
points can be used to obtain a solution to the original problem (see [7, 8], and
[11, Chapter 10, Sections I and K∗]).

The primal/dual methods are often combined with approximating L. The
notion of epi/hypo convergence introduced by Attouch and Wets in [2] provides
a setting for constructing a sequence Ln in such way that the saddle points
(x̄n, ȳn) of Ln converge to the saddle points of L. In this paper, however, we are
interested in problems where L has a min/sup point rather than a saddle point,
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and we are also interested in approximating L with a sequence of Lagrangians
of simpler forms.

The notion of lopsided convergence of bivariate functionals defined onX×Y ,
where X and Y are topological vector spaces, was introduced by Attouch and
Wets in [1] in order to study the stability of min/sup points. A very similar
notion was also introduced and studied in details by Lignola, Loridan, and
Morgan in [5, 6]. In this paper, we will use the concept of lopsided convergence
to approximate control problems. However, the original definition of lopsided
convergence in [1] cannot be used directly due to the lack of compactness of
the perturbation space for most control problems. Therefore, we modify the
definition of lopsided convergence to better suit our applications.

In Section 3, we review different notions of convergence for bivariate func-
tions. In Section 4, we show how the modified lopsided convergence can provide
a simple way to recover a number of stability results that already exist in the
literature. Section 5, contains the main application; we develop a scheme to
approximate non-convex optimal control problems with a sequence of finite
dimensional problems. The modified definition of lopsided convergence we in-
troduce in Section 3 has further applications in two level programming and
problems of existence of Stackelberg equilibria in a non compact setting. These
applications, however, will be left for a subsequent paper.

2. Preliminaries

In this section, we review some basic definitions of set convergence that we will
use in the following sections. Most of these definitions can be found in [4, 11].
Let (X,τ) be a topological vector space. Let Cn be subsets of X. We define the
limit inferior and the limit superior of the collection Cn

τ −LiCn = {
x ∈ X | ∃ sequence xn

τ−−→ x, xn ∈ Cn

}
,

τ −LsCn = {
x ∈ X | ∃ subsequence xnk

τ−−→ x, xnk ∈ Cnk

}
.

(2.1)

We define the following notions of set convergence

Cn
K−−−→ C0, if C0 ⊂ τ −LiCn,

Cn
K+−−→ C0, if τ −LsCn ⊂ C0.

(2.2)

We say Cn converge to C0 in the Painlevé-Kuratowski sense, and we write

Cn
p·k−−→ C, if

Cn
K+−−→ C, Cn

K−−−→ C0. (2.3)
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Let f : X → R̄, where R̄ is the set of extended real numbers. The function
f is sequentially lower semi-continuous (lsc), if for all x ∈ X and xn

τ−−→ x,

lim inf
n

f
(
xn

) ≥ f (x). (2.4)

Similarly, f is sequentially upper semi-continuous (usc), if for all x ∈ X and
xn

τ−−→ x,

lim sup
n

f
(
xn

) ≤ f (x). (2.5)

The domain of f is

domf = {
x ∈ X | f (x) < ∞}

, (2.6)

and f is proper, if domf �= ∅ and f never assumes the value −∞. The epigraph
of f is

epif = {
(x,α) ∈ X×R | α ≥ f (x)

}
. (2.7)

The function f is coercive, if for any α, {x | |f (x)| ≤ α} is bounded.
We say fn τ -epi-converge to f on the topological space (X,τ), and we write

fn
e−→ f , if

(i) ∀x ∈ X, ∀xn τ−−→ x,

lim inf
n

f
(
xn

) ≥ f (x), (2.8)

(ii) ∀x ∈ X, ∃xn τ−−→ x such that

lim sup
n

f
(
xn

) ≤ f (x). (2.9)

The set of minimizers of f is denoted by argminf = {x ∈ X|f (x) =
infX f (x)}.

Theorem 2.1 is the main theorem regarding epi-convergence.

Theorem 2.1 (see [11, Theorem 7.31]). Let (X,τ) be a topological space and
let fn : X → R̄ be a collection of functions that τ -epi-converge to a proper
function f0. Then,

τ −Lsargminfn ⊂ argminf0. (2.10)

Furthermore, if τ −Lsargminfn is not empty, then limn inf fn = inf f0.

Let X and Y be topological spaces and suppose that 〈· , ·〉 : X×Y → R is
a bilinear continuous map. Let f : X → R̄ be a convex function. We define
f ∗ : Y → R̄, the conjugate of f , by

f ∗(y) = sup
x∈X

{〈x,y〉−f (x)
}
. (2.11)
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Consider the functions F0 : X → R̄ and G : X → R̄, where G is lsc and convex.
Let F(x) = F0(x)+G(�(x)), where � : X → X is a continuous map. Then, a
Lagrangian of F , with respect to a dual space Y , can be defined by

L(x,y) = F0(x)+
〈
�(x),y

〉−G∗(y), (2.12)

where

G∗(y) = sup
x∈X

{〈x,y〉−G(x)
}
. (2.13)

The bivariate function L is a Lagrangian in the sense that

F(x) = sup
y∈Y

L(x,y). (2.14)

We now consider a certain class of integral functionals on Lp spaces. Con-
sider first the function f : [0,T ]×R

n → R̄. We say f is a normal integrand, if
f is measurable in the first variable and lsc in the second. We define the integral
functional If over the space Lr([0,T ],Rn) for r ∈ [1,+∞],

If (u) =
∫ T

0
f

(
t,u(t)

)
dt. (2.15)

Suppose f is a normal integrand that is also convex in the second argument,
then If is a proper, convex, lsc (and weakly lsc) function on Lr . Furthermore,
if r ∈ [1,+∞), then the conjugate of If is defined over (Lr([0,T ],Rn))∗ by
the following equation

I ∗
f (v) =

∫ T

0
f ∗(t,v(t))dt, (2.16)

where for every t , f ∗(t, ·) is conjugate of f (t, ·) over R
n ([4, Proposition 2.1,

Chapter IX]). Note that for r = +∞, and a conjugate space (L∞)∗, the above
formula will not be valid.

We now list the definitions that we need regarding bivariate functions. Let
K : X×Y → R̄ where X and Y are topological spaces. We say K is proper, if
the function V : X → R̄ defined by V (x) = supy∈Y K(x,y) is proper. A saddle
point for K is a pair (x̄, ȳ) such that

K(x̄,y) ≤ K(x̄, ȳ) ≤ K(x, ȳ), ∀x ∈ X, ∀y ∈ Y. (2.17)

A min/sup point for K is a point x̄ ∈ X such that

sup
y∈Y

K(x̄,y) ≤ sup
y∈Y

K(x,y), ∀x ∈ X. (2.18)

We write arg spK to denote the set of saddle points of K , and we write
argminsupK to denote its set of min/sup points.

Finally, in all what follows, we will use the standard convention of ∞−∞ =
∞. This will allow us to deal with constraints on the variables x and y in a
consistent manner.
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3. Lopsided convergence

We start by reviewing some notions of convergence for bivariate functions.
Let (X,τ), (Y,σ ) be topological spaces and consider a sequence of bivariate
functionals Kn : X×Y → R̄. The sequence {Kn} epi/hypo converges to K0 [2],
if

(i) For all (x,y) ∈ X×Y , for all xn
τ−−→ x, there exists yn

σ−→ y such that

lim infKn

(
xn,yn

) ≥ K0(x,y). (3.1)

(ii) For all (x,y) ∈ X×Y , for all yn
σ−→ y, there exists xn

τ−−→ x such that

lim supKn

(
xn,yn

) ≤ K0(x,y). (3.2)

Epi/hypo convergence implies the convergence of saddle points.

Theorem 3.1 (see [2]). If Kn epi/hypo converge to K0, then

τ −Lsarg spKn ⊂ arg spK0. (3.3)

Definition 3.2 is the original definition of the lopsided convergence [3].

Definition 3.2. The sequence {Kn} lopsided converges to K0, denoted by

Kn
lo−−→ K0, if

(i) For all (x,y) ∈ X×Y , for all xn
τ−−→ x, there exists yn

σ−→ y such that

lim infKn

(
xn,yn

) ≥ K0(x,y). (3.4)

(ii) For all x ∈ X, there exists xn
τ−−→ x such that for all y ∈ Y and for all

yn
σ−→ y,

lim supKn

(
xn,yn

) ≤ K0(x,y). (3.5)

Note that in the definition of epi/hypo convergence there is a symmetry
between parts (i) and (ii). The term “lopsided” is meant to emphasize the lack
of such symmetry in Definition 3.2. Theorem 3.3 is the main theorem regarding
lopsided convergence that concerns us.

Theorem 3.3 (see [1]). If Kn
lo−−→ K0, Y is a compact space, then

τ −LsargminsupKn ⊂ argminsupK0. (3.6)

It is clear from the definitions that lopsided convergence implies epi/hypo
convergence but the converse is not true. The compactness of Y is essential in
the proof of Theorem 3.3 even though the compactness of Y is not required for
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the existence of a min/sup point [1]. In this paper, however, we will investigate
control problems where the space Y is a space of perturbations for the state
variables which is not compact in most cases (or not compact in a topology that
is compatible with the continuity properties the problem has). Therefore, we
introduce the following modification of Definition 3.2.

Definition 3.4. Consider two topologies τ1 and τ2 on the space X and assume
that τ1 is stronger than τ2. Similarly, consider two topologies σ1 and σ2 on Y

and assume that σ1 is stronger than σ2. The sequence {Kn} converges to K0,

Kn
lo2−→ K0, if
(i) For all (x,y) ∈ X×Y , for all xn

τ2−−→ x, there exists yn
σ1−−→ y such that

lim infKn

(
xn,yn

) ≥ K0(x,y). (3.7)

(ii) For all x ∈ X, there exists xn
τ1−−→ x such that for any sequence {yn} such

that Kn(xn,yn) is bounded below, there exists a subsequence nk , there exists

εnk ↘ 0, there exists wnk ∈ Y such that wnk −ynk
σ2−−→ 0, and that eventually

K0
(
x,wnk

) ≥ Knk

(
xnk ,ynk

)−εnk . (3.8)

Note that when τ1 = τ2, σ1 = σ2, and Y is compact, the two definitions of
lopsided convergence are equivalent. Now we can prove the following theorem.

Theorem 3.5. If Kn
lo2−→ K0 and K0 is proper, then

τ2 −LsargminsupKn ⊂ argminsupK0. (3.9)

The proof of Theorem 3.5 follows immediately from the following lemma
and Theorem 2.1.

Lemma 3.6. Let X, Y be topological spaces as in Definition 3.4. Let Kn :
X×Y → R̄, where K0 is proper. Let

Vn(x) = sup
y∈Y

Kn(x,y), n = 0,1,2, . . . . (3.10)

Assume
(i) For every (x,y) ∈ X×Y , for all xn

τ2−−→ x, there exists yn
σ1−−→ y such

that

lim infKn

(
xn,yn

) ≥ K0(x,y). (3.11)

(ii) For every x ∈ X, there exists xn
τ1−−→ x such that for any sequence {yn},

where Kn(xn,yn) is bounded below, there exists a subsequence nk and there
exist εnk ↘ 0 and wnk ∈ Y such that eventually

K0
(
x,wnk

) ≥ Knk

(
xnk ,ynk

)−εnk . (3.12)
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Then,

τ2 −LsargminVn ⊂ argminV0. (3.13)

Furthermore, if τ2 −LsargminVn is not empty, then

lim
n

inf Vn = lim inf V0. (3.14)

Proof. Condition (i) implies that for all (x,y) ∈ X×Y , for all xn
τ2−−→ x, there

exists yn
σ1−−→ y such that

lim inf
n

sup
y∈Y

Kn

(
xn,y

) ≥ lim inf
n

Kn

(
xn,yn

) ≥ K0(x,y). (3.15)

Hence,

lim inf
n

Vn
(
xn

) ≥ V0(x). (3.16)

We also claim that for all x ∈ X, there exists xn
τ1−−→ x such that

lim sup
n

Vn
(
xn

) ≤ V0(x). (3.17)

Assume not, and assume that V0(x) < +∞. Then, for every sequence xn
τ1−−→ x,

we have lim supn Vn(xn) = β > V0(x). Thus, there exists a subsequence of
Vn(xn) that converges to β. To simplify the notation, we will also use n to index
this subsequence. Hence, there exist ε > 0, y ∈ Y , a sequence {yn} in Y , and
there exists n0 such that for all n ≥ n0,

Kn

(
xn,yn

)
>K0(x,y)+ε. (3.18)

Assumption (ii) implies that there exist wnk and εnk ↘ 0 such that eventually

K0
(
x,wnk

)
>Knk

(
xnk ,ynk

)−εnk . (3.19)

Hence, for some nk > n0, and for some ε′ > 0, we have

K0
(
x,wnk

)
>K0(x,y)+ε′. (3.20)

Thus,

V0(x) ≥ K0(x,y)+ε′, (3.21)

which contradicts the definition of V0.
Finally (3.16) and (3.17) yield the required conclusion via Theorem 2.1. �

Remark 3.7. In Definition 3.4 of lopsided convergence, the requirements that

yn
σ1−−→ y in part (i) and that wnk − ynk

σ2−−→ 0 in part (ii) were not used in
the proof of Lemma 3.6. In fact, these requirements are not needed for the
conclusion of Theorem 3.5. However, they are needed to make the notion of
lopsided convergence stable with respect to perturbation of some classes of
functions (e.g., the class of τ2 ×σ2 continuous biaffine functions).
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Remark 3.8. There is a number of variations of the definition of epi/hypo con-
vergence. These variations consider more than one topology on the spaces X and
Y (see [3, 12]) in a way that is very similar to what we have in Definition 3.4.

Remark 3.9. At this point, it may seem that the original definition of lopsided
convergence can be directly used in problems defined over infinite dimensional
spaces when the Lagrangian is coercive in the y variable. It may seem that all
what is needed in this case is to restrict the Lagrangian to a bounded set of Y and
to choose a weak enough topology that will make this bounded set compact.
This, however, is not true, as the last remark of Section 5 will illustrate. In
fact, in some of our applications, a topology that is weak enough to make the
modified space Y compact will make it very difficult for us to verify condition
(ii) of Definition 3.2.

4. Applications I

In our first application, we will consider problems with Lagrangians of the
following form (for examples and details see [4, Chapter VII]):

L(u,v) = J (u)+ 〈
v,&(u)

〉+δA(u)−δB(v), (4.1)

where L : U×V → R̄ and U and V are Hilbert spaces, J : U → R is a convex,
lsc, Gâteau differentiable function. A and B are nonempty closed convex subsets
of U and V , respectively. δA and δB are the indicator functions of these sets (0
on the set and +∞ outside it).

The map & : A → V is Lipschitzian in the sense that∥∥&(
u2

)−&
(
u1

)∥∥ ≤ c
∥∥u1 −u2

∥∥, ∀u1,u2 ∈ A. (4.2)

And for every v ∈ V , the function u → 〈v,φ(u)〉 is convex and lsc on A, where
〈· , ·〉 is the inner product of V . Note that our assumptions imply that for all v,
for all un

w−→ u, we have

lim inf
n

〈
v,φ

(
un

)〉 ≥ φ(v,u). (4.3)

A number of primal/dual methods that take advantage of the special form of
the Lagrangian can be used to attack this problem (cf. [4, Chapter VII]). Most
of these methods, however, require the following additional conditions on J , A,
and B

(a) B is bounded
(b) J is coercive in the sense that for all u1,u2 ∈ A,〈

J ′(u2
)−J ′(u1

)
,u1 −u2

〉 ≥ α
∥∥u2 −u1

∥∥, α > 0. (4.4)

In this section, we are interested in problems that do not satisfy the above
conditions. Therefore, we perturb the original Lagrangian in such a way that the



Adib Bagh 43

resulting Lagrangians will be

Ln(u,v) = J (u)+ 〈
v,&(u)

〉+ 1

n
‖u‖2 +δA(u)−δBn(v), (4.5)

where Bn = B∩rn�, where � is the unit ball in V , and rn increases to infinity.
Clearly, Ln satisfies conditions (a) and (b). We now show that Ln lopsided

converges to L.

Theorem 4.1. Let τ1 and τ2 be, respectively, the norm and the weak topology
on U . Similarly, let σ1 and σ2 be, respectively, the norm and weak topology on
V . Let L0 and Ln be defined by (4.1) and (4.5), then

Ln
lo2−−→ L0. (4.6)

Proof. Let (u,v) ∈ U ×V such that v ∈ B. Let un
w−→ u, vn

s−→ v, and vn ∈ Bn.
Due to (4.3), and since every convex lsc function on a Banach space is also
weakly lsc, we immediately obtain

lim inf
n

{
J
(
un

)+δA
(
un

)+ 〈
vn,φ

(
un

)〉+ 1

n

∥∥un∥∥2 −δBn

(
vn

)}
≥ J (u)+δA(u)+

〈
v,φ(u)

〉−δB(v),

(4.7)

which is condition (i) of Definition 3.4.
To verify condition (ii), we let u ∈ U . For any sequence vn, there exists εn

such that

J (u)+δA(u)+
〈
vn,φ(u)

〉−δB
(
vn

)
≥ J (u)+δA(u)+

〈
vn,φ(u)

〉+ 1

n
‖u‖2 −δBn

(
vn

)−εn.
(4.8)

�

Remark 4.2. The above approximation method can be used when B is un-
bounded. Moreover, in some control problems, the set B has the following
form:

B = {
u ∈ Lp(.) such that ‖gradu‖ ≤ M

}
, (4.9)

where . is a bounded open set in R
n and M is some constant. The set B is

bounded in Lp due to the Poincaré inequality. However, the bound of B (the
Pointcaré constant for the region .) may not be available. In this case, it is
convenient numerically to use the above approximation and replace B with an
increasing sequence of balls in Lp even though B is bounded.

Finally, we show how the modified lopsided convergence can be used to
recover some stability results regarding some classical control problems.
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Consider the following problem:
Minimize J : L2(Q) → R

J (u) =
∫
Q

∣∣y(t,x;u)−yd
∣∣2
dx dt (4.10)

subject to ∣∣grady(t,x, ;u)∣∣ ≤ 1 a.e., (t,x) ∈ Q, (4.11)

where yd(t,x) ∈ L2([0,T ];H 1
o (.)) is a given function, and y(t,x,u)

∈ L2([0,T ];H 1
o (.)) is the unique weak solution of the following dynamics:

∂y

∂t
−3y = f +u in Q,

y = 0 on ∂.×]0,T [,
y(0,x;u) = y0(x), ∀x ∈ .,

(4.12)

where . is a subset in R
n, T > 0, Q =]0,T [×., y0 ∈ L2(.), and f ∈ L2(Q).

The Lagrangian of the above problem can be expressed as (see [4, Section 3.1]
for details)

L(u,v) =
∫
Q

[
1

2

∣∣div(u)
∣∣2 −div(u) ·zd +u ·gradφ+u ·v

]
dx dt, (4.13)

where φ(t,x) = y(t,x;0), z(t,x;u) = y(t,x;u)−y(t,x;0), zd(t,x) = yd(t,x)

−y(t,x;0), and φ = y(0) (see [4, Section 3.1, Chapter VII]).
Solving the original control problem corresponds to finding u, where the

following infimum is attained:

inf
u∈L2(Q)n

sup
v∈B

L(u,v), (4.14)

where A = {u | u ∈ L2(Q)n, divv ∈ L2(Q)} and B = {v | v ∈ L2(Q)n and
|v(x)| ≤ 1 a.e.}. Note that, despite the fact that new formulation of the problem
involves a supremum and an infimum, the format of L and the simplicity of the
set B make the new formulation of the problem easier to solve numerically. The
Lagrangian in (4.13), however, does not satisfy requirement (b) for the direct
application of numerical methods. Furthermore, (4.5) may not have a saddle
point under our current assumptions, and the standard methods of approximating
saddle points (via epi/hypo convergence) cannot be used. Therefore, for ε > 0,
we introduce

Lε(u,v) =
∫
Q

[
1

2
|divu|2 −divu ·zd + ε

2
|u|2 +u ·gradφ+u ·v

]
dx dt. (4.15)

Now for every ε > 0, the Lagrangian Lε(u,v) satisfies conditions (a) and (b),
and a standard numerical method, such as the Uzawa method [4], can be used
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to find a saddle point (uε,vε) for Lε . If we show that, as ε → 0, Lε lopsided
converges to L, then we will know that every cluster point of {uε} is a min/sup
point of L. This is precisely the claim of the following theorem.

Theorem 4.3 (also [4, Proposition 3.4, Chapter VII]). Let Lε(u,v) and L(u,v)

be defined by (4.13) and (4.15). As ε → 0, we have

Lε(u,v)
lo2−−→ L(u,v),

w−LsargminsupLε(u,v) ⊂ argminsupL(u,v).
(4.16)

Furthermore, if w−LsargminsupLε(u,v) �= ∅, then

inf
V

sup
U

Lε(u,v) −→ inf
V

sup
U

L(u,v). (4.17)

Proof. The L2 norm in the space A = {u | u ∈ L2(Q)n, divv ∈ L2(Q)} is
weakly lsc, and the conditions of Definition 3.4 can be easily verified with the
appropriate choices for the topologies τ1, τ2, σ1, and σ2. �

5. Application II

In this section, we consider the following control problem, minimize, over Lp =
Lp([0,T ];R

n), with p ∈ [2,+∞), the functional

I1(u) =
∫ T

0
φ
(
t,u(t),x(t)

)
dt, (5.1)

where x(·) : [0,T ] → R
k is a solution to

Lx = u, (5.2)

andL is an operator fromC([0,T ],Rk) toL1. The states and controls are subject
to the constraint (

t,f
(
t,u(t),x(t)

)) ∈ gphE a.e., (5.3)

where E is a set-valued map from [0,T ] to R
j and gphE is the graph of the

map E.

Assumptions on the operator L. The operator L has an inverse � such that
un converges weakly to u in Lp which implies that �un converges pointwise
to �u.

The following are examples of operators that satisfy our assumptions.

Example 5.1. L is the linear differential operator given by

x′(t) = A(t)x(t)+B(t)u(t), x(0) = α, (5.4)

with the standard assumptions on A and B.
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Example 5.2. L is a differential operator representing an evolution equation,

x′(t) = g
(
t,u(t),x(t)

)
, x(0) = α, (5.5)

under the usual assumptions of growth and Lipschitz continuity on g.

Example 5.3. Any differential operator L whose inverse can be expressed by
an integral equation of the form

x(t) =
∫ T

0
g(t, s)u(s)ds, (5.6)

where g(t, ·) is in L+∞.

Assumptions on the constraint (5.3). The map f : [0,T ] × R
n × R

k → R
j is

measurable in the first argument, continuous in the rest. The map E is nonempty
and convex-valued with a closed graph. We also posit a growth condition, there
exists a function s ∈ L2 such that

sup
z∈E(t)

‖z‖ ≤ s(t) a.e. (5.7)

The constraint (5.3) can model a combination of constraints such as

u(t) ∈ U(t), x(t) ∈ V (t), M
(
t,x(t),u(t)

) ∈ C(t), (5.8)

where U , V , and C are set-valued maps. In this case, we only need to define

E(t) = U(t)×V (t)×C(t),

f
(
t,u(t),x(t)

) = (
u(t),x(t),M

(
t,x(t),u(t)

))
.

(5.9)

Assumptions on the cost function I1. We will assume that I1 is finite-valued,
weakly lower semi-continuous, and strongly upper semi-continuous over L2.
These assumptions can be formulated in terms of standard conditions on φ

(i) The map φ : [0,T ]×R
n×R

k → R is measurable in the first argument,
convex in the second, and continuous in the third.

(ii) There exists a function & : R
+ → R

+ such that for all t , y, and z such
that

&
(|z|) ≤ φ(t,z,y). (5.10)

(iii) For all u ∈ L2, there exists a neighborhood V of u and a function h ∈ L1

such that for every u′ ∈ V

φ
(
t,u′(t),x′(t)

) ≤ h(t), (5.11)

where x′ = �u′.
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The above conditions imply that I1 is finite-valued. Note that assuming that
I1 is finite-valued does not limit the scope of this model, since we will deal with
the constraints on the controls when we deal with constraint (5.3). Furthermore,
conditions (i) and (ii) imply the weak lower semi-continuity of I1 (see [4, Theo-
rem 2.1, Chapter VIII]). The (strong) upper semi-continuity of I1 follows from
(iii), Fatou’s lemma, and Lebesgue dominated convergence theorem.

Our goal in this section is to construct finite dimensional approximations for
the above non-convex (partially convex) control problem. In [9, 10], Rockafellar
developed the full duality theory for a similar type of control problems. However,
he was mainly interested in cases where the existence of saddle points for the
Lagrangians is guaranteed, and therefore he required the cost function to be
convex (in the control and the state) and the dynamics to be linear. We will be
able to relax these conditions, since we are only interested in the partial duality
of the problem and since we only assume the existence of min/sup points.

To simplify the notation, we will assume that f : [0,T ]× R
n × R

k → R
n.

Hence, for all u and for all x such that �x = u, we have f (t,u(t),x(t)) ∈ L2

because of the growth condition on E. We introduce an exact but finite penalty
function.

Let θ : [O,T ]×R
n be a normal, convex (in the second argument) integrand

θ(t,w) =
{

0, if (t,w) ∈ gphE,

> 0, otherwise.
(5.12)

More specifically, we define

θ(t,z) = d
(
z,E(t)

)
, (5.13)

where d(z,C) = infc∈C ‖c−z‖ for any closed subset C. Note that θ(t, ·) is finite
over R

j .
Now the problem can be expressed as minimizing, over Lp, the functional

F(u) = I1(u)+I2(w), (5.14)

where I2 : Lp → R is defined by

I2(w) =
∫ T

0
θ
(
t,w(t)

)
dt, (5.15)

I1(u) =
∫ T

0
φ
(
t,u(t),x(t)

)
dt, (5.16)

where w(t) = f (t,u(t),x(t)), and �u = x.
A Lagrangian associated with the above problem is given by L : Lp×L2 →

R with

L(u,v) = I1(u)−I ∗
2 (v)+;(v,w), (5.17)
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where

I ∗
2 =

∫ T

0
θ∗(t,v(t))dt, (5.18)

θ∗(t,z) = sup
y∈RJ

{〈y,z〉−θ(t,y)
}
, (5.19)

where θ is still given by (5.13), and

;(u,v) =
∫ T

0
v(t)w(t)dt, (5.20)

where again w(t) = f (t,u(t),x(t)), and �u = x. A direct calculation of
θ∗(t,z), when θ is given by (5.13), gives us

θ∗(t,z) = σE(t)(z)+δB(z), (5.21)

where σE(t)(z) = supy∈E(t)〈y,z〉 is the support function of the set E(t), and B

is the unit ball in R
n (see [11, Example 11.26, Chapter 11] for details). Note

that θ∗(t, ·) is convex, proper, and lsc. Moreover, it is coercive over R
n since

θ(t, ·) is finite everywhere.
The fact that F(u) = supv∈L2 L(u,v) follows from the definition of the con-

jugate function and from the fact that the conjugate of I2 is actually given by
(5.18) (see also (2.12) in the Preliminaries).

Using exact penalties for the joint state and control constraints causes serious
computational complications (see [10] for details). Therefore, we introduce a
sequence of finite non exact penalties θn : [0,T ]×R

n :→ R such that θn(t, ·) in-
crease continuously to θ(t, ·). More specifically, we will take Moreau envelopes
of θ ,

θn(t,z) = inf
y∈RJ

{
θ(t,y)+ n

2
‖y−z‖2

}
. (5.22)

These approximating functions are strictly convex and differentiable. Moreover,
the conjugates of θ∗

n (t,w) are given by (see [11, Chapter 11])

θ∗
n (t,z) = σE(t)(z)+δB(z)+ 1

2n
‖z‖2. (5.23)

Since θn(t, ·) is strictly convex, θ∗
n (t, ·) is differentiable on the interior of its

domain (see [11, Theorem 11.13]).
We now use a method developed by Wright [12] to discretize the control

problem in the primal and dual variables at the same time. Let <n be an in-
creasing sequence of partitions of [0,T ]

<n = (
0 = an0 < an1 < · · · < ans−1 < ans < · · · < anT = T

)
, (5.24)

such that |ans −ans−1| → 0, uniformly in s, as n → +∞.
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We define the following sets:

Un = {
u ∈ Lp | u is constant on

(
ans−1,a

n
s

)
, s = 0,1, . . . ,T

}
,

Vn = {
v ∈ L2 | v is constant on

(
ans−1,a

n
s

)
, s = 0,1, . . . ,T

}
.

(5.25)

The sequence of approximating Lagrangians that we will consider is

Ln(u,v) = I1,n(u)−I ∗
2,n(v)+;(u,v), (5.26)

where δUn and δVn are the indicator functions of Un and Vn, respectively, and

I1,n(u) = I1(u)+δUn(u), (5.27)

I ∗
2,n(v) =

∫ T

0
θ∗
n

(
t,v(t)

)
dt+δVn(v), (5.28)

where I ∗
2,n : L2 → R and θ∗

n is given by (5.19).
The standard convention of ∞ − ∞ = ∞ implies that L(u,v) = +∞, if

u �∈ Un. Moreover, L(u,v) = −∞, if u ∈ Un and v �∈ Vn. Now, the problem
of finding the min/sup points of Ln is a finite dimensional problem. Also note
that for a step function v, calculating θ∗

n (t,v(t)) reduces to solving a number
of simple problems of convex minimization (concave maximization) in R

n.
Furthermore, the discretized problem will be governed by a difference equation
(see [12] for details).

Since Ln is not convex in u (φ is not convex in x and ; is not convex in
u), L and Ln may not possess saddle points. However, we can use the method
of augmented Lagrangians developed by Rockafellar in [8] to find the min/sup
points of Ln. The idea of this method is to construct an augmented Lagrangian
L̃n(u,v,r), for some r ∈ (0,+∞), and then use some standard primal/dual
numerical method to find (ūn, v̄n), the saddle points of L̃n(u,v,r). For every
n, the point ūn will then be a min/sup point for Ln (see [8] and [11, Section
K∗, Chapter 11], also see [7, Chapter 17] for an actual algorithm using aug-
mented Lagrangians). This approach will allow us to approximate, discretize,
and numerically solve the original problem despite its lack of convexity.

Finally, we state the main theorem of the section which will show that our
approximation scheme will actually work.

Theorem 5.4. Let Ln and L be defined by (5.17) and (5.26). Then

w−LsargminsupLn ⊂ argminsupL. (5.29)

Before we prove Theorem 5.4, we list a number of basic lemmas that we will
need in our proof.
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Lemma 5.5. Consider the functions I1 and I1,n defined by (5.16) and (5.27).
Consider also the sets Un (5.25). Let u ∈ Lp, then there exists a sequence
ûn ∈ Un such that

lim I1,n
(
ûn

) = I1(u). (5.30)

Proof. The proof is an immediate result of the fact that step functions are dense
in Lp for p ∈ [2,+∞) and of our assumption that I1 is norm continuous. �

Lemma 5.6. Let v ∈ L2 such that v(t) ∈ B a.e., where B is the unit ball in R
n.

Then there exists a sequence v̂n → v such that vn ∈ B∩Vn and

lim sup
n

∫ T

0
σE(t)

(
v̂n(t)

)
dt ≤

∫ T

0
σE(t)

(
v(t)

)
dt. (5.31)

Proof. Using some elementary facts from measure theory (see [12, Lemmas 1,
2] for details) and using the definition of the support function, we can find a
sequence v̂n → v such that vn(t) ∈ B, v̂n(t) → v(t), and vn(t) ≤ v(t) a.e. in
[0,T ]. Hence, for all n, we have∫ T

0
σE(t)

(
v̂n(t)

)
dt ≤

∫ T

0
σE(t)

(
v(t)

)
dt, (5.32)

and the assertion of the lemma is immediate. �

Lemma 5.7. Let v ∈ L2 such that v(t) ∈ B a.e. Then, there exists a sequence
v̂n → v such that vn(t) ∈ B∩Vn and

lim sup
n

I ∗
2,n

(
v̂n

) ≤ I ∗
2 (v). (5.33)

Proof. Lemma 5.6 and the definition of I ∗
2,n given by (5.19) and (5.28). �

Proof of Theorem 5.4. In light of Theorem 3.5, we only need to show that Ln

lopsided converges to L when τ1 and τ2 are, respectively, the norm and weak
topologies on Lp, and σ1 and σ2 are also, respectively, the norm and weak
topologies on L2.

Verifying part (i) of Definition 3.4.
For all (u,v) ∈ Lp×L2 such that v ∈ dom I ∗

2 , take v̂n as in Lemma 5.7. Note

that, for all un
w−→ u, we have

lim inf
n

I1
(
un

) ≥ I1(u) (5.34)

due to our assumption that I1 is weak lsc. Moreover,

lim
n

∥∥;(
ûn,vn

) −→ ;(u,v)
∥∥ = 0. (5.35)
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It is clear now from our choice of v̂n and from (5.34) and (5.35) that part (i) of
Definition 3.4 is satisfied.

Verifying part (ii) of Definition 3.4.
For all (u,v) ∈ Lp ×L2 such that supv L(u,v) < +∞, take ûn → u as in

Lemma 5.5. Now, for any vn ∈ L2 such that −∞ < Ln(ûn,vn) = I1,n(ûn)−
I2,n(vn)+;(ûn,vn), we must have {vn(t)} ∈ B a.e. Hence {vn} must be bounded
in L2. Hence,

lim
n

∥∥;(
ûn,vn

) −→ ;
(
u,vn

)∥∥ = 0. (5.36)

Therefore, there exists εn → 0 such that eventually

I1(u)−I2
(
vn

)+;
(
u,vn

) ≥ I1,n
(
ûn

)−I2
(
vn

)+;
(
ûn,vn

)−εn (5.37)

and part (ii) of the definition is verified. �

Remark 5.8. Theorem 5.4 is only a stability result, in the sense that argminsupL
might be empty. However, standard conditions on φ can be added to assure that
w-Ls argminsup Ln and argminsupL will not be empty. In this case, the numer-
ical method we suggested will produce a sequence of pairs (un,vn) ∈ Lp ×L2

which are the saddle points of the augmented approximating Lagrangians. The
sequence vn will be bounded in L2, which is important for numerical reasons,
but its weak cluster point may fail to be a solution to the dual problem. More
specifically, a weak × weak cluster point of (un,vn), may fail to be a saddle point
for the Lagrangian of the original control problem. However, as Theorem 5.4
shows, any weak cluster point of un will be a solution of the original control
problem. Finally, if we know a priori that the original control problem has sad-
dle points, then Theorem 5.4 can be easily modified to show stability of the
saddle points with respect to the discretization and approximation scheme of
this section.

Remark 5.9. The convexity of φ in the second variable was needed only to
obtain the weak lower semi-continuity of I1. In case the cost function is known
to be weakly lsc on Lp, no such assumption is needed. A cost function that
depends on the state only would be an example of such a case.

Remark 5.10. We finally elaborate further on Remark 3.9 of Section 3; under the
appropriate coercivity conditions, we may attempt to use the original definition
of lopsided convergence, with Y taken as a large enough ball in L2 and σ

as the (relative) weak topology. In this case, Y is compact in σ . However,
verifying condition (ii) of Definition 3.2 is, in essence, equivalent to verifying
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that for all un
w−→ u in Y ,

lim inf
n

∫
σE(t)vn(t)dt ≥

∫
σE(t)vn(t)dt. (5.38)

Such statement cannot be verified without further conditions on the set-valued
map E.
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