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We give several examples of Douglas algebras that do not have any maximal
subalgebra. We find a condition on these algebras that guarantees that some
do not have any minimal superalgebra. We also show that if A is the only
maximal subalgebra of a Douglas algebra B, then the algebra A does not have
any maximal subalgebra.

1. Introduction

Let D denote the open disk in the complex plane and T the unit circle. By
L∞ we mean the space of essentially bounded measurable functions on T with
respect to the normalized Lebesgue measure. We denote by H∞ the space of
all bounded analytic functions in D. Via identification with boundary functions,
H∞ can be considered as a uniformly closed subalgebra of L∞. Any uniformly
closed subalgebra B strictly between L∞ and H∞ is called a Douglas algebra.
M(B) will denote the maximal ideal space of a Douglas algebra B. If we
let X = M(L∞), we can identify L∞ with C(X), the algebra of continuous
functions on X. If C is the set of all continuous functions on T, we set

H∞ +C = {
h+g : g ∈ C, h ∈H∞}

. (1.1)

H∞ +C then becomes the smallest Douglas algebra containing H∞ properly.
The function

q(z)=
∞∏
n=1

∣∣zn∣∣
zn

· z−zn
1− z̄nz (1.2)

is called a Blaschke product if
∑∞
n=1(1−|zn|) converges. The set {zn} is called

the zero set of q in D. Here |zn|/zn = 1 is understood whenever zn = 0. We call
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q an interpolating Blaschke product if

inf
n

∏
m�=n

∣∣∣∣ zm−zn
1− z̄nzm

∣∣∣∣> 0. (1.3)

An interpolating Blaschke product q is called sparse (or thin) if

lim
n→∞

∏
m�=n

∣∣∣∣ zm−zn
1− z̄nzm

∣∣∣∣ = 1. (1.4)

The set

Z(q)= {
x ∈M(

H∞)\D : q(x)= 0
}

(1.5)

is called the zero set of q in M(H∞ +C). Any function h in H∞ with |h| = 1,
almost everywhere on T, is called an inner function. Since |q| = 1 for any
Blaschke product, Blaschke products are inner functions. Let

QC = (
H∞ +C)∩(

H∞ +C)
(1.6)

and, for x ∈M(H∞ +C), set

Qx = {
y ∈M(

L∞) : f (x)= f (y) ∀f ∈QC}
. (1.7)

Qx is called the QC-level set for x. For x ∈ M(H∞ + C), we denote ux
the representing measure for x and its support set by suppux . By H∞[q̄] we
mean the Douglas algebra generated by H∞ and the complex conjugate of the
function q. Since X is a Shilov boundary for every Douglas algebra, a closed
set E contained in X is called a peak set for a Douglas algebra B if there is a
function in B with f = 1 on E and |f |< 1 on X\E. A closed set E is a weak
peak set for B if E is the intersection of a family of peak sets. If the set E is a
weak peak set for H∞ and we define

H∞
E = {

f ∈ L∞ : f ∣∣
E

∈H∞∣∣
E

}
, (1.8)

thenH∞
E is a Douglas algebra. For a Douglas algebraB,BE is similarly defined.

A closed set E contained in X is called the essential set for B, denoted ess(B),
if E is the smallest set in X with the property that for f in L∞ with f = 0 on
E, then f is in B.

For an interpolating Blaschke product q, we put N(q̄) the closure of
⋃{

suppux : x ∈M(
H∞ +C)

,
∣∣q(x)∣∣< 1

}
. (1.9)

N(q̄) is a weak peak set for H∞ and is referred to as the nonanalytic points of
q. By N0(q̄) we denote the closure of

⋃{
suppux : x ∈ Z(q)}. (1.10)
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For an x ∈M(H∞) we let

Ex = {
y ∈M(

H∞) : suppuy = suppux
}

(1.11)

and callEx the level set of x. Since the sets suppux andN(q̄) are weak peak sets
for H∞, both H∞

suppux and H∞
N(q̄) are Douglas algebras. For any interpolating

Blaschke product q we set

A=
⋂

x∈M(H∞+C)\M(H∞[q̄])
H∞

suppux , A0 =
⋂

y∈Z(q)
H∞

suppuy . (1.12)

It is easy to see that A ⊆ A0 and it was shown, in [7], that A = H∞
N(q̄). For x

and y in M(H∞), the pseudo-hyperbolic distance is defined by

ρ(x,y)= sup
{∣∣h(x)∣∣ : |h| ≤ 1, h ∈H∞, h(y)= 0

}
. (1.13)

For any x ∈M(H∞), we define the Gleason part of x by

Px = {
y ∈M(

H∞) : ρ(x,y) < 1
}
. (1.14)

If Px �= {x}, then x is said to be a nontrivial point. We denote by G the set of
nontrivial points of M(H∞ +C), and for a Douglas algebra B, we set

GB =G∩(
M

(
H∞ +C)\M(B)). (1.15)

A point x in GB is called a minimal support point of GB (or simply a minimal
support point of B) if there is no y ∈GB such that suppuy ⊆ suppux . The set
suppux is called a minimal support set for B. For Douglas algebras B and B0

with B0 ⊆ B we let (B,B0) be all interpolating Blaschke products q such that
q̄ ∈ B but q̄ �∈ B0.

We denote by  (B) the set of all interpolating Blaschke products q with
q̄ ∈ B. Let B be a Douglas algebra. The Bourgain algebra Bb of B relative
to L∞ is the set of those elements of L∞, f , such that ‖ffn+B‖∞ → 0 for
every sequence {fn} in B with fn → 0 weakly. The minimal envelop Bm of a
Douglas algebra B is defined to be the smallest Douglas algebra which contains
all minimal superalgebras of B. An algebra A is called a minimal superalgebra
of B if, for all x,y ∈M(B)\M(A), x �= y implies suppux = suppuy .

2. When two Douglas algebras have identical essential sets

Consider the Douglas algebras A and A0 defined above. In [7], some conditions
were given when A ⊆ A0, but yet ess(A) = ess(A0). This happened because
ess(A) = N(q̄) and ess(A0) = N0(q̄) (this is not hard to show). Theorem 1
of [7] gives conditions when ess(A) �= ess(A0). The conditions found in [7,
Theorem 5] are far more complicated than those found in Theorem 2.3 below.
Yet ess(A) = ess(A0) in that theorem [7, Theorem 5] and also satisfies the
condition in Theorem 2.3. Before we state this theorem we need the following
lemmas.
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Lemma 2.1. Let A be any Douglas algebra and q an interpolating Blaschke
product with q̄ �∈ A. Set B = A[q̄] and let x ∈M(A)\M(B) whose support set
is not trivial. Then Bsuppux = Asuppux [b̄].

Proof. Since A ⊂ B, we have that Asuppux ⊂ Bsuppux . Thus M(Bsuppux ) ⊂
M(Asuppux ). By the Chang Marshall theorem [1, 11], it suffices to show that
M(Bsuppux )=M(Asuppux [b̄]). Let y =M(Bsuppux ). Then y ∈M(Asuppux ) and
|q(y)| = 1, sinceM(B)= {y ∈M(A) : |q(y)| = 1}. Hence, y ∈M(Asuppux [q̄]).

Now suppose y �∈ M(Bsuppux ). If y �∈ M(Asuppux ), then y �∈ Asuppux [b̄]
and we have nothing to prove. We assume that y ∈ M(Asuppux ). Since y �∈
M(Bsuppux ) implies that |q(y)| < 1 and y ∈ M(Asuppux ). Hence y �∈
M(Asuppux [q̄]). Thus M(Asuppux [q̄]) ⊂ M(Bsuppux ). We have that
M(Asuppux [q̄]) =M(Bsuppux ). By the Chang-Marshall theorem, Asuppux [q̄] =
Bsuppux . �

Lemma 2.2. Let q be an interpolating Blaschke product and x ∈M(
H∞ +C)

such that |q(x)|< 1, and suppux is nontrivial. Put

E = ∪{
suppuy : suppuy ⊂ suppux,

∣∣q(y)∣∣+1
}
. (2.1)

Then E is a dense subset of suppux .

Proof. To prove this, let B1 = H∞
suppux . Assume that Ē, the closure of E, is

properly contained in suppux . Put

B2 =H∞
E = {

f ∈ L∞ : f ∣∣
E

∈H∞∣∣
E

}
. (2.2)

By [2, page 39], M(B2) = {m ∈M(H∞ +C) : suppum ⊆ Ē}∪M(L∞). Since
Ē ⊆ suppux , we have that B1 ⊆ B2. Therefore, M(B2) ⊆M(B1) and so there
is a nontrivial point x0 ∈ M(B1)\M(B2) [4, Proposition 4.1] such that (a)
suppux0 ⊆ suppux , (b) suppux0 �⊂ Ē (otherwise x0 ∈M(B2)), (c) |q(x0)|< 1,
and (d) suppux0 ∩E = ∅.

By [6, Theorem 2], there is a z0 ∈ Z(q) such that suppuz0 is a minimal
support set for H∞[q̄] that is contained in suppux0 ⊆ suppux . Since q is an
interpolating Blaschke product, suppuz0 is not trivial. By [4, Theorem 4.2], there
is an m ∈M(H∞ +C) so that suppum is nontrivial and suppum ⊆ suppuz0 ⊆
suppux0 . Since suppux0 is a minimal support set for H∞[q̄], we have that
|q(m)| = 1. Thus suppux0 ∩E �= ∅. This contradicts (d). So Ē = suppux . �

Theorem 2.3. Let B0 be a subalgebra of a Douglas algebra B with

ess
(
B0

) �= X. (2.3)

If for every x ∈ M(B0)\M(B) we have ess(H∞
suppux ) = ess(Bsuppux ), then

ess(B)= ess(B0).
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Proof. We note that ess(H∞
suppux )= suppux . Hence if ess(H∞

suppux ) is contained
in ess(B) for every x ∈ M(B0)\M(B), then suppux ⊂ ess(B) for every y ∈
M(B0) and so ess(B0)⊂ ess(B). Since B0 ⊂ B, we have that ess(B)⊂ ess(B0),
and we get ess(B)= ess(B0). �

Corollary 2.4. Let B0 be a maximal subalgebra of a Douglas algebra B.
Then ess(B0)= ess(B).

Proof. Since M(B0) =M(B)∪Ex for some x ∈M(B0)\M(B), we have that
if z and y are in x ∈ M(B0)\M(B), then suppuy = suppux = suppuz. Now
ess(Bsuppux )= ess(H∞

suppux ) since the set

⋃{
suppuy : y ∈M(B)∩M(

H∞
suppux

)}
(2.4)

is dense in suppux (because x is a minimal point of B). Thus ess(B)= ess(B0).
�

Corollary 2.5. Let A be a Douglas algebra and q an interpolating Blaschke
product with q̄ �∈ A. Then ess(A)= ess(A[q̄]).

Proof. We have that M(A) = {x ∈ M(H∞ + C) : Asuppux = H∞
suppux }. By

Lemma 2.1, we have

ess
(
A[q̄]suppux

) = ess
(
Asuppux [q̄]

) = ess
(
H∞

suppux

)
. (2.5)

But by Lemma 2.2, we have that

ess
(
H∞

suppux [q̄]
) = ess

(
H∞

suppux

)
. (2.6)

Hence

ess
(
A[q̄]suppux

) = ess
(
H∞

suppux

) = suppux (2.7)

for all x ∈M(A)\M(A[q̄]). By Theorem 2.3 the corollary follows. �

We mention here that Corollary 2.5 was proved in [13, Theorem 2] by another
method.

There are algebras B0 and B that satisfy the hypothesis of Theorem 2.3
and are not of the form B = B0[q̄] for any interpolating Blaschke product (if
B0 ⊆ B). To see this, let " be the collection of sparse Blaschke products and
B the Douglas algebra [H∞ : q̄;q ∈ "]. Let q0 be an element in " and put
B0 = H∞[q̄]. Then B0 ⊂ B. By a theorem of Hedenmaln [9], we have that
if b is a Blaschke product such that b̄ ∈ B, then b = b1 · · ·bn, where each bi ,
i = 1, . . . ,n, is a sparse Blaschke product. Hence if x ∈M(B0)\M(B), then x
is the zero of some sparse Blaschke product. So ess(Bsuppux ) = ess(H∞

suppux ).
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So, by Theorem 2.3, we have ess(B)= ess(B0). (Theorem 3.1 below shows that
H∞

suppux is a maximal subalgebra of Bsuppux .) Now suppose there is a Blaschke
product q ∈  (B,B0) with B = B0[q̄]. Again by Hedenmaln’s theorem, we
have q = q1 · · ·qn with each qi a sparse Blaschke product. Let Q be an infinite
sparse Blaschke product such that |Q| = 1 on ∪x∈Z(q)Px . Then, there is an
m ∈ M(H∞ +C) such that Q(m) = 0 but m �∈ ∪x∈Z(q)Px . Thus |q(m)| = 1
and so we get thatm ∈M(B0[q̄]). Thus Q̄ �∈ B0[q̄] and yet Q̄ ∈ B. This implies
that B0[q̄] ⊆ B, which is a contradiction

3. Maximal subalgebras that have no maximal subalgebras

We begin by extending [5, Proposition 1]. There, the authors showed that if
x ∈ Z(q) with q a sparse Blaschke product, then the algebra H∞

suppux is a
maximal subalgebra of H∞

suppux [q̄]. Below we show that this is true for a larger
class.

Theorem 3.1. Let A be any Douglas algebra with maximal subalgebra and x a
minimal support point ofGA. ThenH∞

suppux is a maximal subalgebra of Asuppux
and Asuppux =H∞

suppux [q̄] for some q ∈ (A).

Proof. Let B0 = H∞
suppux and B = Asuppux . Suppose x is a minimal support

set for GA. Then we have, for any interpolating Blaschke product ψ ∈  (A)
with |ψ(x)|< 1 and any y ∈M(H∞ +C) with suppuy ⊆ suppux , |ψ(y)| = 1.
Thus if ψ0 ∈ (B) and |ψ0(x)|< 1, there is a ψ ∈ (A) such that ψ |suppux =
ψ0|suppux . This implies that |ψ0(y)| = 1 for every such y. Hence x is a minimal
support point for GB . Note that this implies that M(B) = M(B0)\Ex , where
each Ex is a level set for x. HenceM(B0)=M(B)∪Ex , so by [6, Theorem 1],
B0 is a maximal subalgebra of B. Let q be any element in  (A) with q(x)= 0.
Then q ∈ (B,B0), and we have that B = B0[q̄]. �

We will need the following lemmas in the proof of Theorem 3.4 below.

Lemma 3.2. For distinct points x1 and x2 in GA, there is an interpolating
Blaschke product b such that b̄ ∈ A and b(x1)= b(x2)= 0.

Proof. Let b1 and b2 be interpolating Blaschke products with b1(x1)= b2(x2)=
0. Take two open subsets V1 and V2 ofM(H∞) such that xi ∈ V̄i ,Vi∩M(A)=
∅, and V̄1 ∩ V̄2 = ∅, where V̄i is the closure of Vi in M(H∞), i = 1,2. Let ψi
be a subproduct of bi whose zeros are zeros of bi in Vi . Then it is not hard to
see that b = ψ1ψ2 is the desired function. �

To prove Lemma 3.3, we assume that suppux is not a one point set for every
x ∈GA.
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Lemma 3.3. Let x and y be distinct points in GA with suppuy �⊂ suppux . Then
there is an interpolating Blaschke product b such that b ∈ A, |b(x)| = 1, and
b(y)= 0.

Proof. By Lemma 3.2, there is an interpolating Blaschke product ψ with zeros
{zn}∞n=1 such that ψ̄ ∈ A and ψ(x)= ψ(y)= 0. Since suppuy �⊂ suppux , there
is an open and closed subset U ofM(L∞) such that suppux ⊂ U , suppuy �⊂ U ,
and suppuy �⊂M(L∞)\U . For the characteristic function χU on M(L∞), put
χ̂U (λ) = ∫

X
χU duλ for every λ ∈M(H∞). Then χ̂U is a continuous function

on M(H∞), χ̂U (y) < 1 [9, page 93]. Let

{
wn

}∞
n=1 =

{
zp : χ̂U

(
zp

)
<

1+ χ̂U (y)
2

}
(3.1)

and let b be an interpolating Blaschke product with zeros {wn}∞n=1. Then b̄ ∈ A.
Since z(ψ) coincides with the closure of {zp}∞p=1 in M(H∞) [10, page 205], y
is contained in the closure of {wn}∞n=1. Hence b(y) = 0. To prove |b(x)| = 1,
suppose |b(x)| < 1 and b(m) = 0. Then we have χ̂U (m) = 1. Since b(m) = 0,
m is contained in the closure of {wn}∞n=1, so that χ̂U (m) ≤ (1+ χ̂U (y)/2) < 1.
This is a contradiction. So |b(x)| = 1. The lemma follows. �

Theorem 3.4. A Douglas algebra A has no maximal subalgebra if and only if
H∞

suppux is not a maximal subalgebra of Asuppux for every x ∈GA.

Proof. Suppose A has no maximal subalgebra and let x ∈GA. Since x is not a
minimal support point of GA, there is a y ∈GA with suppuy ⊆ suppux , and a
ψ ∈ such that |ψ(y)|< 1. Since ψ̄ �∈H∞

suppuy , we can assume that ψ(y)= 0.
Hence y �∈M(Asuppux ). By Lemma 3.3, there is a ψ0 ∈  (Asuppux ) such that
|ψ0(y)| = 1 and ψ0(x) = 0. Then we have H∞

suppux ⊆ H∞
suppux [ψ̄0] ⊆ Asuppux .

So H∞
suppux is not a maximal subalgebra of Asuppux .

Suppose that for all x ∈GA,H∞
suppux is not a maximal subalgebra of Asuppux .

Then there is an algebra B with H∞
suppux ⊆ B ⊆ Asuppux . Thus we can find a

y ∈ M(H∞ +C) such that suppuy ⊆ suppux and y ∈ M(B)\M(Asuppux ).
This implies that there is an interpolating Blaschke product q with q̄ ∈ B ⊂
Asuppux such that |q(y)| = 1 and |q(x)| < 1. Hence there is a q0 ∈  (A) with
q0|suppux = q|suppux . So |q0(y)| = 1 and |q0(x)|< 1. This implies that x is not
a minimal support point of GA for every x ∈GA. So by [6, Theorem 1], A has
no maximal subalgebra. �

Proposition 3.5. Let x ∈ M(H∞)\M(L∞). Then H∞
suppux has no maximal

subalgebra.

Proof. Now ess(H∞
suppux ) = suppux . Hence if y ∈ GH∞

suppux
, then suppuy ∩

suppux = ∅. Hence if A is a subalgebra of H∞
suppux , there is a y ∈
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M(A)\M(H∞
suppux ) with suppuy ∩ suppux = ∅ or suppux ⊂ suppuy . Hence

ess(A) ⊇ suppuy ∪ suppux ⊇ suppux = ess(H∞
suppux ). By Corollary 2.4, A is

not a maximal subalgebra of H∞
suppux . �

Proposition 3.6. Let A be a Douglas algebra that has only one maximal sub-
algebra A0. Then A0 has no maximal subalgebra.

Proof. Suppose there is a subalgebra B0 ⊆ A0 such that B0 is a maximal sub-
algebra of A0. Then, by [5, Theorem 1], there is an x0 ∈GA0 such that

M
(
B0

) =M(
A0

)∪Ex0 . (3.2)

Since A0 is a maximal subalgebra of A, there is an x ∈GA∩M(B0) such that

M
(
A0

) =M(A)∪Ex. (3.3)

By (3.2) and (3.3), we have thatM(B0)=M(A)∪Ex∪Ex0 . Since x ∈M(A0),
we have that suppux �= suppux0 . Also since x0 �∈ Ex and x0 ∈ GA0 , we have
that suppux0 �⊂ suppux (otherwise x0 ∈M(A) by (3.3)). We show that x0 is a
minimal support point of GA, and hence get a contradiction. Let y ∈M(H∞ +
C) such that y ∈ M(A0) = M(A)∪Ex . If y ∈ M(A), then we are done. So
we can assume that y ∈ Ex . If y ∈ Ex , then suppuy = suppux , so we have
that suppux ⊆ suppux0 . Since x �∈ M(A), there is an interpolating Blaschke
product q with q̄ ∈ A and such that q(x) = 0. By [7, Theorem 2], there is an
uncountable set U of Z(q) such that (a) suppum ⊆ suppux0 for all m ∈ U and
(b) suppum ∩ suppuk for all m,k ∈ U , m �= k. By (3.2), each such m ∈ U is
in M(A0). Since for all m ∈ U (except if m= x) we have suppux ∩suppum =
∅, hence by (3.3), m ∈ M(A). But q̄ ∈ A and U ⊂ Z(q)∩M(A). This is a
contradiction, and we get y �∈ Ex . So y ∈M(A) and since suppux0 �= suppux ,
we have that x0 is a minimal support point of GA. This is a contradiction. So
A0 has no maximal subalgebra. �

Note that Proposition 3.5 follows from Proposition 3.6 if x is a minimal
support point for some interpolating Blaschke product.

Let q be an interpolating Blaschke product. We consider the algebra H∞
N(q̄).

Certainly H∞
N(q̄) is not known to be a maximal subalgebra of any Douglas

algebra, but it does have some of the same properties of H∞
suppux . For example,

we have the following proposition.

Proposition 3.7. The algebra H∞
N(q̄) has no maximal subalgebra.

Proof. Set B = H∞
N(q̄). Let x ∈ GB and suppose x is a minimal support point

for GB . Then if y ∈ M(H∞ +C) such that suppuy ⊆ suppux , we have that
y ∈M(B). By [2, page 39], we must have that suppuy ⊆N(q̄)= ess(B). Thus
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we have that ess(B)∩ suppux = N(q̄)∩ suppux �= ∅. By [10, Theorem 1],
N(q̄) = ∪x∈Z(q)Qx . So there is an x0 ∈ Z(q) such that suppux ∩Qx0 �= ∅. By
the definition ofQx0 , we have that suppux ⊂Qx0 . By [2, page 39], this implies
that x ∈M(B), which is a contradiction. So if x ∈GB , then suppux∩N(q̄)= ∅,
which implies that x is not a minimal support point for GB . B has no maximal
subalgebra. �

4. Minimal superalgebras of H∞
suppux

We will compute the Bourgain algebras and the minimal envelops of the Douglas
algebra H∞

suppux for any x ∈M(H∞ +C). We have the following theorem.

Theorem 4.1. Let x ∈ M(H∞ +C)\M(L∞) such that |q(x)| < 1 for some
interpolating Blaschke product q, and set B =H∞

suppux . Then

(i) Either Bb = B or Bb = B[ψ̄] for some interpolating Blaschke prod-
uct ψ .

(ii) Either Bm = Bb = B or Bm = B[ψ̄] for some interpolating Blaschke
product ψ .

Proof. We will use [3, Theorem 2] which says that for any interpolating Blaschke
product ψ with ψ̄ ∈ Bb, we have Z(ψ)∩M(B) is a finite set and the fact that

M(B)=M(
L∞)∪{

m ∈M(
H∞) : suppum ⊆ suppux

}
. (4.1)

We claim that if ψ is an interpolating Blaschke product such that ψ̄ ∈ Bb,
then Z(ψ) ∩M(B) ⊂ Ex , the level set of x. Suppose not, then there is an
x0 ∈ Z(ψ)∩M(B) such that suppux0 ⊆ suppux . By [7, Theorem 2], there is
an uncountable set " of Z(ψ) such that (a) suppuγ ⊆ suppux for all γ ∈ "
and (b) suppum∩ suppuγ = ∅ for all m, γ ∈ ", m �= γ . By (a) and (4.1), each
γ ∈M(B) and so " ⊂ Z(ψ)∩M(B). This implies that the set Z(ψ)∩M(B) is
infinite. This is a contradiction. Hence if x0 ∈ Z(ψ)∩M(B), then suppux0 =
suppux , so we get Z(ψ)∩M(B) ⊂ Ex . There are two possibilities. (1) The
set Z(ψ)∩M(B) = ∅ for which ψ ∈ B, so Bb ⊆ B. This gives the case when
Bb = B.

(2) If Z(ψ) ∩M(B) �= ∅ but is finite. Then the algebra B[ψ̄] ⊆ Bb. To
show that Bb = B[ψ̄], let ψ0 be another interpolating Blaschke product with
ψ̄0 ∈ Bb. Since both sets Z(ψ0)∩M(B) and Z(ψ)∩M(B) are contained in Ex ,
we have that M(B)\M(B[ψ̄0]) =M(B)\M(B[ψ̄]) = Ex . Thus M(B[ψ̄0]) =
M(B[ψ̄]), and by the Chang-Marshall theorem [1, 11] we have B[ψ̄0] = B[ψ̄].
Since this is true for all ψ,ψ0, we have by [8, Theorem C], Bb = B[ψ] for any
such ψ (B[ψ̄] is a minimal superalgebra of B). This proves (i).

To prove (ii) let ψ̄ ∈ Bm. Then by [8, Theorem 3], there is a finite set
{x1, . . . ,xn} ⊂ Z(ψ)∩M(B) such that {u ∈M(B) : |ψ(u)| < 1} = Ex1 ∪·· ·∪
Exn . Again we claim that Ex1 = Ex2 = ·· · = Exn = Ex . Suppose that Ex1 �=
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Ex2 . Then suppux1 �= suppux2 . By (4.1) either suppux1 ⊆ suppux or suppux2 ⊆
suppux or both. Suppose that suppux1 ⊆ suppux . Then by [7, Theorem 2], there
is an uncountable set " such that Eα �= Eβ for all α,β ∈ " and ∪α∈"Eα ⊂ {u ∈
M(B) : |ψ(u)|< 1}. This contradicts [8, Theorem 3]. Thus Ex1 = Ex2 = ·· · =
Exn = Ex . As before we have that for ψ̄ ∈ Bm, Z(ψ) ∩M(B) ⊂ Ex , and
Bm = B[ψ̄] if Z(ψ)∩M(B) �= ∅. This proves (ii). �

Corollary 4.2. (i) Let x ∈M(H∞+C)\M(L∞) and B =H∞
suppux . Then B ⊂

Bm if and only if x is a minimal support point of H∞[ψ̄] for some interpolating
Blaschke product ψ .

(ii) B = Bb = Bm if and only if x is not a minimal support point of H∞[ψ̄]
for any interpolating Blaschke product.

Theorem 4.1(i) has also appeared in [12].
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