
SET QUANTITIES AND TAUBERIAN OPERATORS

SERGIO FALCON AND KISHIN SADARANGANI

Received 6 July 2001

The concept of convexity plays an important role in the classical geometry
of normed spaces and it is frequently used in several branches of nonlinear
analysis. In recent years some papers that contain generalizations of the concept
of convexity with the help of the measures of noncompactness have appeared.
The Tauberian operators were introduced by Kalton and Wilansky (1976) and
they appear in the literature with the aim of responding to some questions related
with the summability and the factorization of operators; in the preservation by
isomorphisms in Banach spaces, and so forth. In this paper we make the study of
the Tauberian operators, not starting from the Euclidean distance, but by means
of general set quantities.

1. Introduction

The concept of convexity plays an important role in the classical geometry of
normed spaces. It is frequently used in the metric fixed point theory and other
branches of nonlinear analysis [6, 8, 9, 11, 13].

In recent years there have appeared some papers that contain generalizations
of the concept of convexity with the help of the measures of noncompactness
[3, 12, 13]. Recently, Cabrera [7] has introduced the concept of weak near
uniform convexity using the De Blasi measure of weak noncompactness [10].

In order to recall this concept we introduce some notation. Assume that
(E,‖·‖) is an infinite-dimensional Banach space with the zero element θ . Denote
by BE and SE the closed unit ball and the unit sphere in E, respectively. For a
subset X of E we denote by convX the convex hull and by ConvX the convex
closed hull of X.

Moreover, if we assume that X is a nonempty and bounded set in E then the
quantity χ(X) defined in the following way: χ(X) = inf{ε > 0 : there exists
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a compact set Y such that X ⊂ Y + εBE} is called the Hausdorff measure of
noncompactness of the set X.

For the properties of the function χ we refer to [4]. We recall the concept of
the De Blasi measure of weak noncompactness.

Let X be a nonempty and bounded set in E. The quantity β(X) defined in the
following way: β(X) = inf{ε > 0 : there is a weakly compact set Y such that
X ⊂ Y +εBE} is called the De Blasi measure of weak noncompactness in the
space E. Observe that in the case when E is reflexive, we have that β(X) = 0
for every nonempty and bounded set X in E. We refer to [5] for more details.

We only mention that β(X) ≤ χ(X) for any nonempty and bounded set X

in E. The family of all nonempty and bounded subsets of E will be denoted by
Pb(E). For C,D ∈ Pb(E) we consider the Hausdorff nonsymmetric distance
defined in the following way:

H ′(C,D) = inf
{
ε > 0 : C ⊂ B(D,ε)

} = inf
{
ε > 0 : C ⊂ D+εB

}
. (1.1)

The Hausdorff distance between C and D is defined as

H(C,D) = max
{
H ′(C,D),H ′(D,C)

}
. (1.2)

Observe the function H is a metric on the family Pbc(E) where

Pbc(E) = {
C ∈ Pb(E) : C = C̄

}
. (1.3)

In what follows, let � be a nonempty subfamily of Pb(E). Consider two real
functions defined on the family Pb(E) in the following way:

H ′
�(C) = inf

{
H ′(C,P ) : P ∈ �

}
,

H�(C) = inf
{
H(C,P ) : P ∈ �

}
.

(1.4)

For further goals we recall the function H� was considered in [5] on a
complete metric space S. The main result which appears in [5] is formulated in
the following proposition.

Proposition 1.1. Let N be a nonempty subfamily of Pb(S) satisfying the con-
dition

M ∈ �, ∅ �= P ⊂ M �⇒ P ∈ �. (1.5)

Then for every C ∈ Pb(S) the following equality holds:

H ′
�(C) = H�(C). (1.6)

If � is the family of all nonempty and relatively compact subsets of E,
then H� coincides with the measure of noncompactness of Hausdorff, χ .

And if � is the family of all nonempty and relatively weakly compact subsets
of E, then H� coincides with the measure of weak noncompactness of De
Blasi, β.
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Definition 1.2. A mapping µ : Pb(E) → [0,∞) is said to be a set quantity if it
satisfies the following conditions for C,D ∈ Pb(E) and λ ∈ �:

(1) µ(C ∪D) = max{µ(C),µ(D)}
(2) µ(λC) = |λ|µ(C)

(3) µ(C +D) ≤ µ(C)+µ(D)

(4) µ(convC) = µ(C).

From this definition it is easily seen that µ satisfies:
(1) µ({0}) = 0
(2) C ⊂ D ⇒ µ(C) ≤ µ(D)

(3) µ(C) = µ(C̄).
The family kerµ is defined in the usual way as kerµ = {C ∈ Pb(E) :

µ(C) = 0} and will be called the kernel of the quantity µ.
When kerµ is the collection of all nonempty and relatively compact subsets

of E then µ is referred to as a measure of noncompactness. In the case when
kerµ is the family of all nonempty and relatively weakly compact subsets of E

we will say that µ is a measure of weak noncompactness. So, χ and β are two
particular examples of set quantities.

Definition 1.3. A Banach space E is µ-uniformly convex (µ-UC, in short) if

lim
ε→0

{
sup

{
µ

(
F(f,ε)

) : f ∈ SE∗
}} = 0, (1.7)

where µ is a set quantity and F(f,ε) = {x ∈ BE : f (x) ≥ 1−ε}.

Similarly we define the next concept.

Definition 1.4. A space E is said to be µ-locally uniformly convex (µ-LUC, in
short) if

lim
ε→0

{
µ

(
F(f,ε)

) : f ∈ SE∗
} = 0. (1.8)

Now, we give the following definition.

Definition 1.5. A space E is referred to as µ-strictly convex (µ-SC, in short) if
µ(F(f,0)) = 0 for each f ∈ SE∗ such that F(f,0) �= ∅.

Notice that µ-UC ⇒ µ-LUC ⇒ µ-SC.

2. µ-Tauberian operators

The Tauberian operators were introduced by Kalton and Wilansky in [15]
and they appear in the literature with the objective of responding to a group
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of questions related with the addition [18] and the factorization of operators
[9]; in the preservation for isomorphisms in Banach spaces, and so forth. In
[15, Theorem 2.2] they characterized the Tauberian operators in the following
way and this will be our starting point: An operator T ∈ �(E,F ) is said to
be Tauberian and we will denote it by T ∈ τ(E,F ), if for any C ∈ Pb(E)

with T (C) relatively weakly compact, one has that C is relatively weakly
compact.

Next we generalize this definition with the help of a set quantity µ and we
will obtain the µ-Tauberian operators.

More concretely, one has the following definition.

Definition 2.1. An operator T ∈ �(E,F ) is said to be µ-Tauberian, where µ

is a set quantity, and we will denote it by T ∈ τµ(E,F ), if for any C ∈ Pb(E)

with T (C) relatively weakly compact one has that C ∈ Kerµ.

In the following proposition we will see how weakly compact disturbs pre-
serve the µ-Tauberian operators, in the same way that in the standard case of
Tauberian operators.

Proposition 2.2. Let T be a µ-Tauberian operator from E into F and K a
weakly compact operator. Then T +K ∈ τµ(E,F ).

Proof. Let C be a nonempty and bounded set of E and consider that (T +K)(C)

is relatively weakly compact. As K is a weakly compact operator, K(C) will
be relatively weakly compact and as T (C) ⊂ (T + K)(C) − K(C), keeping
in mind the properties of the De Blasi measure of weak noncompactness, one
will have that β(T (C)) ≤ β((T + K)(C)) + β(K(C)) = 0 and consequently,
T (C) is relatively weakly compact. Taking into account that T ∈ τµ(E,F ),
then C ∈ Kerµ. This completes the proof. �

One of the most interesting properties in the Tauberian operators is that their
kernels are reflexive. We show some relationships with this fact.

In [7], it is proved that for the set quantity β, De Blasi measure of weak
noncompactness, the class of the β-UC spaces and the class of the β-LUC
spaces coincide with the class of the reflexive ones. Take into account that the
class of the reflexive spaces in fact coincides with the class of the Banach spaces
for those that the De Blasi measure of weak noncompactness is null.

On the other hand, to keep in mind that set quantities exist for which Banach
spaces of infinite dimension do not exist in those that this quantity is null. Take
as example the set quantity χ , the Hausdorff measure of noncompactness that
is only null in the finite-dimensional spaces. And more ahead we will see that
the fact that a set quantity is not null in infinite-dimensional Banach spaces will
be fundamental for our development.
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Recapturing the question that concerns us again and keeping in mind what
was said previously, the property that the kernels of Tauberian operators are
reflexive that is, if T is a Tauberian operator from E into F , then its kernel
KerT is a space for which the quantity β is null. This means, in particular that
KerT is a β-LUC space.

Theorem 2.3. If T is a µ-Tauberian operator from E into F , then KerT is
a Banach space for which the quantity µ is null and, therefore, it is a µ-UC
space.

Proof. Suppose that T ∈ τµ(E,F ) and let A be a nonempty and bounded set
of the kernel of T . As A ⊂ KerT , then T (A) = 0, that is to say that T (A) is
relatively weakly compact. As T is µ-Tauberian, A ∈ Kerµ, that is, µ(A) = 0.
Therefore, the quantity µ is null in KerT . This completes the proof. �

This theorem already has as corollary the result acquaintance for the Taube-
rian operators and mentioned previously.

Corollary 2.4. If T is a β-Tauberian operator, that is to say, if T ∈ τβ(E,F ),
then KerT is reflexive.

The test is immediate, because it is enough to keep in mind that the spaces
for those that the De Blasi measure of weak noncompactness is null they are
the reflexive ones.

To notice that if µ is a set quantity for which Banach spaces of infinite
dimension in those it is not null do not exist, we have the following corollary to
Theorem 2.3.

Corollary 2.5. Let µ be a set quantity for which there are no Banach spaces
of infinite dimension in those it is null and let T be a µ-Tauberian operator
from E into F . Then KerT is of finite dimension.

In particular, as the Hausdorff measure of noncompactness χ verifies the
hypothesis of the preceding corollary, we have the following corollary.

Corollary 2.6. Let T be a χ -Tauberian operator from E into F . Then KerT
is finite dimensional.

For the following result, we will demand some additional condition to the
set quantity µ.

This way, we will give the following necessary definition to continue this
development.



436 Set quantities and Tauberian operators

Definition 2.7. Let E be a set and � a family of subsets of E. We will say
that � is sequentially determined, if for each A ⊂ E, it is verified that A ∈ � if
and only if for any sequence (xn) ⊂ A, the set {xn : n ∈ N} ∈ �.

Examples of sequentially determined families are that of the relatively com-
pact sets and that of the relatively weakly compact ones of a Banach space E.

Definition 2.8. Let T be a linear and continuous operator between two Banach
spaces E and F , that is to say, T ∈ �(E,F ). We define the µ-variation of T

and we indicate it as µ(T ), as the number µ(T ) = µ(T (BE)).

With the following result we will obtain an algebraic characterization of the
µ-Tauberian operators.

Theorem 2.9. Let µ be a set quantity for which Kerµ is sequentially deter-
mined. Then, an operator T : E → F is µ-Tauberian if and only if given a
Banach space G and an operator L : G → E such that T ◦L is weakly com-
pact, then L has null µ-variation.

Proof. Suppose that T : E → F is µ-Tauberian and let L : G → E be an
operator such that T ◦ L is weakly compact. By virtue of the weak com-
pactness of T ◦ L one has that (T ◦ L)(BG) is relatively weakly compact, or
what is the same thing, T (L(BG)) is relatively weakly compact. As T is µ-
Tauberian, L(BG) ∈ Kerµ and, as a consequence, L has null µ-variation, as
required.

Suppose that T : E → F verifies that for each Banach space G and an oper-
ator L : G → X such that T ◦L is weakly compact, then L has null µ-variation.
If T is not µ-Tauberian, this means that A ∈ Pb(E) exists, with T (A) relatively
weakly compact and A /∈ Kerµ.

As the set quantity µ verifies that its kernel Kerµ is sequentially determined
then there exists (xn) ⊂ A and {xn : n ∈ N} /∈ Kerµ.

Consider the operator L : l1 → X : L(en) = xn. Then, as (T ◦L)(en) ⊂ T (A),
(T ◦L)(B1

1 ) ⊂ a Conv(T (A)), where a ConvX denotes the absolutely convex
hull of T (A) that is relatively weakly compact because T (A) is. Therefore, T ◦L

is weakly compact and, from our hypothesis, µ(L(B1
1 )) = 0.

On the other hand, as {xn : n ∈ N} ⊂ L(B1
1 ) and {xn : n ∈ N} /∈ Kerµ it will

be that µ(L(B1
1 )) > 0, which is absurd. �

In particular, as the Tauberian operators are in fact the β-Tauberian, and as
the family of the relatively weakly compact ones is sequentially determined, one
can obtain the following result as a corollary of this theorem and that appeared
in [11, Corollary 1.6].
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Corollary 2.10. An operator T : E → F is Tauberian if and only if given a
Banach space G and an operator L : G → E that it verifies that T ◦L is weakly
compact, then T is weakly compact.

Maybe one of the main reasons for the study of the Tauberian operators
was the inheritance of isomorphic properties of the Banach spaces. This way,
we have that if T : E → F is a Tauberian operator and F has the property
of reflexivity (quasi-reflexivity, weak sequentially complete, etc.), then E also
possesses it.

In our context of µ-Tauberian operators we have, in certain measure, some
homologous properties and, for it, it is necessary to keep in mind that the re-
flexive spaces are those for which the De Blasi measure is null. This way, we
have the following result.

Theorem 2.11. If T : E → F is µ-Tauberian and if F is reflexive, then the set
quantity µ is null on E.

Proof. Let A be a nonempty and bounded set of E. Then, as F is reflexive,
T (A) will be, when being bounded, relatively weakly compact. Taking into
acount that T is µ-Tauberian, it will be that A ∈ Kerµ. Consequently, µ is null
in E, like we wanted to prove. �

In particular, if we apply this theorem to the set quantity β, we already obtain
the well-known result of the classic Tauberian operators. More concretely, one
has the following result.

Corollary 2.12. If there exists T : E → F Tauberian and F is reflexive, then
E is reflexive.

Take into account that if for the set quantity µ there are no infinite-dimensional
spaces for which µ is null. Suppose that µ is only null in finite-dimensional
spaces, Theorem 2.11 allows us to obtain the following corollary.

Corollary 2.13. Let E and F be real Banach spaces of dimension infinity
and suppose that µ is not null in infinite-dimensional spaces and that F is
reflexive. Then, µ-Tauberian operators do not exist from E into F . That is to
say, τµ(E,F ) = ∅.

In particular, if we take the Hausdorff measure of noncompactness, one has
the following corollary.

Corollary 2.14. If F is reflexive, then τχ (E,F ) = ∅.
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Under the hypothesis that the relatively weakly compact sets are contained
in Kerµ, one has the following corollary.

Corollary 2.15. If Prwc(E) ⊂ Kerµ, then IE ∈ τµ(E,E), being Prwc(E) the
family of the relatively weakly compact subsets of E.

Also, for Theorem 2.11, we have the following consequence.

Corollary 2.16. If E is a Banach space for which the set quantity µ is not
null, then any f ∈ E∗ is not µ-Tauberian.

As an example, we will study the set τµ(l∞,c0), but before we will recall
the following theorem of James [14]:

A Banach space E is reflexive if and only if for each f ∈ E∗ −{0} there is
x ∈ E−{0} so that f (x) = ‖f ‖·‖x‖.

Definition 2.17. A set quantity µ defined on a Banach space E is said to be
cantorian if for any decreasing sequence (An) of nonempty sets of E, bounded
and closed so that limn→∞ µ(An) = 0 then

⋂∞
1 An �= ∅.

In [17], it is proven that all operators T : L∞ → c0 are weakly compact.
Taking this fact into account, we will prove the following result.

Theorem 2.18. If µ is a cantorian set quantity, then τµ(l∞,c0) = ∅.

Proof. Suppose that T ∈ τµ(l∞,c0). For the result mentioned above, T is
weakly compact, that is, for any A ∈ Pb(l

∞), T (A) is relatively weakly com-
pact. As T is µ-Tauberian, A ∈ Kerµ and, as a consequence, the set quantity µ

is null on l∞. Therefore, in particular, l∞ is µ-LUC.
Taking into account the theorem of James, like µ is a cantorian set quantity,

it would be that l∞ is reflexive, which is absurd. Therefore τµ(l∞,c0) = ∅. �

Theorem 2.18 generalizes the well-known result that there is no Tauberian
operator from l∞ into c0, because the De Blasi measure of weak noncompactness
is cantorian.

More concretely, we have the following corollary.

Corollary 2.19. There is no Tauberian operator from l∞ into c0.

A fact also fundamental in the theory of Tauberian operators is that if T ∗∗ is
Tauberian, then T is Tauberian, but the converse implication is not verified [1].
We will see that this result is also completed in the context of the µ-Tauberian
operators, although with certain restrictions for the set quantity µ.
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Definition 2.20. A set quantity µ is said to be equivalent by isometries if for any
isometry I : E → F there are two constants k and k′ that depend on the isometry
so that for any C ∈ Pb(E) it is verified that kµ(C) ≤ µ(I (C)) ≤ k′µ(C).

Theorem 2.21. Suppose that the set quantity µ is equivalent for isometries. If
T ∗∗ is µ-Tauberian, then T is µ-Tauberian.

Proof. Consider the following commutative diagram:

E
T

i

F

i

E∗∗ T ∗∗
F ∗∗,

(2.1)

where i is the canonical map from a space into its bidual and suppose T ∗∗ is
Tauberian.

Let A ∈ Pb(E) and T (A) be relatively weakly compact. As every linear and
continuous operator transforms relatively weakly compact sets into relatively
weakly compact sets, then i(T (A)) is relatively weakly compact. By virtue of
the commutative law of the previous diagram, T ∗∗(i(A)) is relatively weakly
compact. As T ∗∗ is µ-Tauberian, then i(A) ∈ Kerµ. Taking into account the
hypothesis that the quantity µ is equivalent for isometries, then A ∈ Kerµ and,
as a consequence, T is µ-Tauberian. �

It is necessary to notice that the result for the classic Tauberian operators,
one cannot deduce as a corollary of Theorem 2.21, since as Astala and Tylli
proved [2], the De Blasi measure of weak noncompactness is not equivalent for
isometries. Nevertheless, to notice that in Theorem 2.21, the essential thing is
that the Kera is preserved by isometries, or in equivalent form, µ ∈ Kerµ ⇔
I (A) ∈ Kerµ for any isometry I . Thus, this would be the enough hypothesis
for Theorem 2.21. This hypothesis is verified for the De Blasi measure of weak
noncompactness, by virtue of the call approach of Eberdin [16, page 159].

References

[1] T. Alvarez and M. Gonzalez, Some examples of Tauberian operators, Extracta Math.
5 (1990), no. 3, 91–107.

[2] K. Astala and H.-O. Tylli, Seminorms related to weak compactness and to Taube-
rian operators, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 367–375.
MR 91b:47016. Zbl 0709.47009.

[3] J. Banas, On drop property and nearly uniformly smooth Banach spaces, Nonlinear
Anal. 14 (1990), no. 11, 927–933. MR 92f:46011. Zbl 0734.46005.

[4] , Compactness conditions in the geometric theory of Banach spaces, Non-
linear Anal. 16 (1991), no. 7-8, 669–682. MR 92b:46016. Zbl 0724.46019.

http://www.ams.org/mathscinet-getitem?mr=91b:47016
http://www.emis.de/cgi-bin/MATH-item?0709.47009
http://www.ams.org/mathscinet-getitem?mr=92f:46011
http://www.emis.de/cgi-bin/MATH-item?0734.46005
http://www.ams.org/mathscinet-getitem?mr=92b:46016
http://www.emis.de/cgi-bin/MATH-item?0724.46019


440 Set quantities and Tauberian operators

[5] J. Banas and K. Fraczek, Conditions involving compactness in geometry of Ba-
nach spaces, Nonlinear Anal. 20 (1993), no. 10, 1217–1230. MR 94h:46020.
Zbl 0821.46010.

[6] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, North-Holland
Mathematics Studies, vol. 68, North-Holland, Amsterdam, 1982. MR 84g:46017.
Zbl 0491.46014.

[7] I. Cabrera, Medidas de no compacidad débil y geomrtría de espacios de Banach,
Ph.D. thesis, Universidad de Las Palmas de Gran Canaria, 1999.

[8] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3,
396–414. CMP 1 501 880. Zbl 0015.35604.

[9] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pelczynski, Factoring weakly compact
operators, J. Funct. Anal. 17 (1974), 311–327. MR 50#8010. Zbl 0306.46020.

[10] F. S. De Blasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc.
Sci. Math. R. S. Roumanie (N.S.) 21(69) (1977), no. 3-4, 259–262. MR 58#2475.
Zbl 0365.46015.

[11] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies
in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge,
1990. MR 92c:47070. Zbl 0708.47031.

[12] K. Goebel and T. Sekowski, The modulus of noncompact convexity, Ann. Univ.
Mariae Curie-Skłodowska Sect. A 38 (1984), 41–48 (1986). MR 87j:46031.
Zbl 0607.46011.

[13] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J.
Math. 10 (1980), no. 4, 743–749. MR 82b:46016. Zbl 0505.46011.

[14] R. C. James, Reflexivity and the supremum of linear functionals, Israel, J. Math. 13
(1972), 289–300.

[15] N. Kalton and A. Wilansky, Tauberian Operators on Banach Spaces, Proc. Amer.
Math. Soc. 57 (1976), no. 2, 251–255. MR 57#13555. Zbl 0304.47023.

[16] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Ab-
stract Spaces, International Series in Nonlinear Mathematics: Theory, Meth-
ods and Applications, vol. 2, Pergamon Press, Oxford, 1981. MR 82i:34072.
Zbl 0456.34002.

[17] J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach
spaces, Michigan Math. J. 10 (1963), 241–252. MR 29#6316. Zbl 0115.10001.

[18] R. D. Neidinger, Properties of Tauberian operators on Banach spaces, Ph.D. thesis,
University of Texas and Austin, 1984.

Sergio Falcon: Department of Mathematics, University of Las Palmas de Gran
Canaria, 35017 Las Palmas, Spain

E-mail address: sfalcon@dma. ulpgc. es

Kishin Sadarangani: Department of Mathematics, University of Las Palmas
de Gran Canaria, 35017 Las Palmas, Spain

http://www.ams.org/mathscinet-getitem?mr=94h:46020
http://www.emis.de/cgi-bin/MATH-item?0821.46010
http://www.ams.org/mathscinet-getitem?mr=84g:46017
http://www.emis.de/cgi-bin/MATH-item?0491.46014
http://www.ams.org/mathscinet-getitem?mr=1+501+880
http://www.emis.de/cgi-bin/MATH-item?0015.35604
http://www.ams.org/mathscinet-getitem?mr=50:8010
http://www.emis.de/cgi-bin/MATH-item?0306.46020
http://www.ams.org/mathscinet-getitem?mr=58:2475
http://www.emis.de/cgi-bin/MATH-item?0365.46015
http://www.ams.org/mathscinet-getitem?mr=92c:47070
http://www.emis.de/cgi-bin/MATH-item?0708.47031
http://www.ams.org/mathscinet-getitem?mr=87j:46031
http://www.emis.de/cgi-bin/MATH-item?0607.46011
http://www.ams.org/mathscinet-getitem?mr=82b:46016
http://www.emis.de/cgi-bin/MATH-item?0505.46011
http://www.ams.org/mathscinet-getitem?mr=57:13555
http://www.emis.de/cgi-bin/MATH-item?0304.47023
http://www.ams.org/mathscinet-getitem?mr=82i:34072
http://www.emis.de/cgi-bin/MATH-item?0456.34002
http://www.ams.org/mathscinet-getitem?mr=29:6316
http://www.emis.de/cgi-bin/MATH-item?0115.10001
mailto:sfalcon@dma. ulpgc. es

