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We prove the simplicity and isolation of the first eigenvalue for the problem
∆pu = |u|p−2u in a bounded smooth domain Ω ⊂ R

N , with a nonlinear boundary
condition given by |∇u|p−2∂u/∂ν = λ|u|p−2u on the boundary of the domain.

1. Introduction

In this paper, we study the first eigenvalue for the following problem:

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω.

(1.1)

Here Ω is a bounded domain in R
N with smooth boundary, ∆pu =

div(|∇u|p−2∇u) is the p-Laplacian, and ∂/∂ν is the outer normal derivative. In
the linear case, that is for p = 2, this eigenvalue problem is known as the Steklov
problem (see [3]).

Problems of the form (1.1) appear in a natural way when one considers the
Sobolev trace inequality. In fact, the immersion W1,p(Ω) ↪→ Lp(∂Ω) is compact,
hence there exists a constant λ1 such that

λ
1/p
1 ‖u‖Lp(∂Ω) ≤ ‖u‖W1,p(Ω). (1.2)

The extremals (functions where the constant is attained) are solutions of (1.1).
This Sobolev trace constant λ1 can be characterized as

λ1 = inf
u∈W1,p(Ω)

{∫
Ω
|∇u|p + |u|p dx,

∫
∂Ω

|u|p = 1
}
, (1.3)
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and is the first eigenvalue of (1.1) in the sense that λ1 ≤ λ for any other eigen-
value λ.

In [13] it is proved that, there exists a sequence of eigenvalues λn of (1.1) such
that λn → +∞ as n → +∞. This is done using standard variational arguments
together with the Sobolev trace immersion that provide the necessary compact-
ness. Indeed, for solutions of (1.1) we can understand critical points of the asso-
ciated energy functional

�(u) =
1
p

∫
Ω
|∇u|p +

1
p

∫
Ω
|u|p − λ

p

∫
∂Ω

|u|p. (1.4)

This functional � is well defined and C1 in W1,p(Ω) and the usual min-max
techniques can be applied (see [13]). Also see [14] for similar results for the
p-Laplacian with Dirichlet boundary conditions.

We prove the following result.

Theorem 1.1. The first eigenvalue λ1 is isolated and simple.

We remark that this theorem says that the extremals of the Sobolev trace in-
equality are unique up to multiplication by a real number. In the special case
of a ball, Ω = B(0,R), our result implies that the first eigenfunction is radial. In
fact, if u1(x) is an eigenfunction associated to λ1 and R(x) is any rotation, then
u1(R(x)) is also an eigenfunction, by our result we have that u1(x) = u1(R(x)).
We conclude that u1 must be radial. Also from our results it follows that any
other eigenvalue has nonradial eigenfunctions as they have to change sign on
the boundary (see Lemma 2.4).

The study of the eigenvalue problem when the nonlinear term is placed in the
equation, that is, when one considers a quasilinear problem of the form −∆pu =
λ|u|p−2u with Dirichlet boundary conditions, has received considerable attention
(cf. [1, 2, 15, 14, 17], etc.).

However, nonlinear boundary conditions have only been considered in recent
years. For the Laplace operator with nonlinear boundary conditions (cf. [5, 6, 8,
16, 19]). For elliptic systems with nonlinear boundary conditions (see [11, 12]).
For previous work for the p-Laplacian with nonlinear boundary conditions of
different type see [7, 13, 18]. Also, one is led to nonlinear boundary conditions in
the study of conformal deformations on Riemannian manifolds with boundary
(cf. [4, 9, 10]).

2. Proof of the main result

In this section, we prove that the first eigenvalue λ1 is isolated and simple. To
clarify the exposition, we will divide the proof in several lemmas.

Lemma 2.1. Let u1 be an eigenfunction with eigenvalue λ1, then u1 does not change
sign on Ω. Moreover, if u1 is C1,α, it does not vanish on Ω̄.
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Proof. We have that |u1| is also a minimizer of (1.3). By the maximum principle
(see [20]) we have that |u1| > 0 in Ω. Assume that u1 is regular and that there ex-
ists x0 ∈ ∂Ω such that u1(x0) = 0, by the Hopf lemma (see [20]) we have that the
normal derivative has strict sign, (∂|u1|/∂ν)(x0) < 0, but the boundary condition
imposes (∂|u1|/∂ν)(x0) = 0, a contradiction which proves that |u1| > 0 in Ω̄. The
result follows. �

Now we state an auxiliary lemma,

Lemma 2.2. (a) Let p ≥ 2, then for all ξ1, ξ2 ∈ R
N

∣∣ξ2
∣∣p ≥ ∣∣ξ1

∣∣p + p
∣∣ξ1

∣∣p−2〈
ξ1, ξ2 − ξ1

〉
+C(p)

∣∣ξ1 − ξ2
∣∣p. (2.1)

(b) Let p < 2, then for all ξ1, ξ2 ∈ R
N

∣∣ξ2
∣∣p ≥ ∣∣ξ1

∣∣p + p
∣∣ξ1

∣∣p−2〈
ξ1, ξ2 − ξ1

〉
+C(p)

∣∣ξ1 − ξ2
∣∣p

(∣∣ξ2
∣∣+

∣∣ξ1
∣∣)2−p , (2.2)

where C(p) is a constant depending only on p.

Proof. See [17]. �

Lemma 2.3. The first eigenvalue λ1 is simple. Let u, v be two eigenfunctions associ-
ated with λ1, then there exists c such that u = cv.

Proof. By Lemma 2.1, we can assume that u, v are positive in Ω. We perform the
following calculations assuming that u, v are strictly positive in Ω̄, to obtain our
result we can consider u+ ε and v + ε and let ε→ 0 at the end as in [17]. There-
fore, we can take η1 = (up − vp)/up−1 and η2 = (vp − up)/vp−1 as test functions in
the weak form of (1.1) satisfied by u and v, respectively. We have

∫
Ω
|∇u|p−2∇u∇

(
up − vp
up−1

)

= λ

∫
∂Ω

|u|p−2u
(
up − vp
up−1

)
−
∫
Ω
|u|p−2u

(
up − vp
up−1

)
,

∫
Ω
|∇v|p−2∇v∇

(
vp −up

vp−1

)

= λ

∫
∂Ω

|v|p−2v
(
vp −up

vp−1

)
−
∫
Ω
|v|p−2v

(
vp −up

vp−1

)
.

(2.3)

Adding both equations we get

0 =
∫
Ω
|∇u|p−2∇u∇

(
up − vp
up−1

)
+
∫
Ω
|∇v|p−2∇v∇

(
vp −up

vp−1

)
. (2.4)
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Using

∇
(
up − vp
up−1

)
=∇u− p

vp−1

up−1
∇v + (p − 1)

vp

up
∇u, (2.5)

we obtain that the first term of (2.4) is

∫
Ω
|∇u|p−2∇u∇

(
up − vp
up−1

)

=
∫
Ω
|∇u|p − p

∫
Ω

vp−1

up−1
|∇u|p−2∇v∇u+

∫
Ω

(p − 1)
vp

up
|∇u|p

=
∫
Ω
|∇ lnu|pup − p

∫
Ω
vp|∇ lnu|p−2〈∇ lnu,∇ lnv〉uv

+
∫
Ω

(p − 1)|∇ lnu|pvp.

(2.6)

We also have an analogous expression for the second term of (2.4). Using both
expressions we get that (2.4) becomes

0 =
∫
Ω

(
up − vp)(|∇ lnu|p − |∇ lnv|p)

− p

∫
Ω
vp
(|∇ lnu|p−2〈∇ lnu,∇ lnv −∇ lnu〉)

− p

∫
Ω
up(|∇ lnv|p−2〈∇ lnv,∇ lnu−∇ lnv〉).

(2.7)

Taking ξ1 =∇ lnu and ξ2 =∇ lnv and using Lemma 2.2 we get, for p ≥ 2,

0 ≥
∫
Ω
C(p)|∇ lnu−∇ lnv|p(up + vp

)
. (2.8)

Hence,

0 = |∇ lnu−∇ lnv|. (2.9)

This implies that u = kv, as we wanted to prove. For p < 2, we use the second
part of Lemma 2.2 as above. �

Now we turn our attention to the proof of the isolation of the first eigenvalue,
in order to prove this we need the following nodal result.

Lemma 2.4. Let w be an eigenfunction corresponding to λ �= λ1, then w changes
sign on ∂Ω, that is, w+|∂Ω �= 0 and w−|∂Ω �= 0. Moreover, there exists a constant C
such that

∣∣∂Ω+
∣∣ ≥ Cλ−β,

∣∣∂Ω−∣∣ ≥ Cλ−β, (2.10)
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where ∂Ω+ = ∂Ω∩ {w > 0}, ∂Ω− = ∂Ω∩ {w < 0}, β = (N − 1)/(p − 1) if 1 < p < N
and β = 2 if p ≥N . Here |A| denotes the (N − 1)-dimensional measure of a subset A
of the boundary.

Proof. Assume that w does not change sign in Ω, then we can assume that w > 0
in Ω using ideas similar to those of Lemma 2.1. Let u1 be a positive eigenfunc-
tion associated to λ1. Making similar computations as the ones performed in the
proof of Lemma 2.3 we arrive at

(
λ1 − λ

)∫
∂Ω

(
u
p
1 −wp) ≥ C

∫
Ω

∣∣∇ lnw −∇ lnu1
∣∣p(up

1 +wp) ≥ 0. (2.11)

Therefore, if we take kw instead of w we get that, for every k > 0, we have

∫
∂Ω

(
u
p
1 − kpwp) ≤ 0, (2.12)

which is a contradiction if we take

kp
(∫

∂Ω
wp

)
<
(∫

∂Ω
u
p
1

)
. (2.13)

Therefore, w changes sign in Ω and by the maximum principle, [20], also w
changes sign in ∂Ω.

We use w− as test function in the weak form of (1.1) satisfied by w to obtain

∫
Ω

∣∣∇w−∣∣p +
∫
Ω

∣∣w−∣∣p = λ

∫
∂Ω∩{w<0}

∣∣w−∣∣p. (2.14)

Hence,

∥∥w−∥∥p

W1,p(Ω)
≤ λ

(∫
∂Ω

∣∣w−∣∣pα)1/α∣∣∂Ω−∣∣1/β
. (2.15)

If 1 < p < N we choose α = (N − 1)/(N − p) and β = (N − 1)/(p − 1). Now we use
the trace theorem to get that there exists a constant C such that

∥∥w−∥∥p
Lpα(∂Ω) ≤ C

∥∥w−∥∥p

W1,p(Ω)
. (2.16)

If p ≥ N , we choose α = β = 2 and we argue as before using that W1,p(Ω) ↪→
L2p(∂Ω). A similar argument works for w+. �

Lemma 2.5. Let φ ∈ W1,p(Ω)′, then there exists a unique weak solution u ∈
W1,p(Ω) of

−∆pu+ |u|p−2u = φ. (2.17)

Moreover, the operator Ap : φ �→ u is continuous.
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Proof. See [13]. �

With these lemmas we can prove the isolation of λ1.

Lemma 2.6. The first eigenvalue λ1 is isolated, that is, there exists a > λ1 such that
λ1 is the unique eigenvalue in [0,a].

Proof. From the characterization of λ1, it is easy to see that λ1 ≤ λ for every
eigenvalue λ. Assume that λ1 is not isolated, then there exists a sequence λk with
λk > λ1, λk ↘ λ1. Let wk be an eigenfunction associated to λk, we can assume that
‖wk‖W1,p(Ω) = 1. Therefore, we can extract a subsequence (that we still denote
by wk) such that wk → u1 in Lp(∂Ω). Define φk ∈ (W1,p(Ω))′ as

φk(u) = λk

∫
∂Ω

∣∣wk

∣∣p−2
wku (2.18)

and φ ∈ (W1,p(Ω))′ by

φ(u) = λ1

∫
∂Ω

∣∣u1
∣∣p−2

u1u. (2.19)

From the Lp(∂Ω) convergence of wk to u1 we get that φk converges to φ in
(W1,p(Ω))′. Using the continuity of Ap given by Lemma 2.5 we get that the se-
quence wk converge strongly in W1,p(Ω). Therefore, passing to the limit in the
weak form of (1.1) we get that u1 is an eigenfunction with eigenvalue λ1. By
Lemma 2.1 we can assume that u1 > 0 on ∂Ω. By Egorov’s theorem we can find
a subset Aε of ∂Ω such that |Aε| < ε and wk → u1 > 0 uniformly in ∂Ω \Aε. This
contradicts the fact that, by (2.10), we have, for every k

∣∣∂Ω−
k

∣∣ = ∂Ω∩ {
wk < 0

} ≥ Cλ
−(N−1)/(p−1)
k . (2.20)

This completes the proof. �
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