
ASYMPTOTIC ESTIMATES AND EXPONENTIAL STABILITY
FOR HIGHER-ORDER MONOTONE DIFFERENCE EQUATIONS

EDUARDO LIZ AND MIHÁLY PITUK
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Asymptotic estimates are established for higher-order scalar difference equations and in-
equalities the right-hand sides of which generate a monotone system with respect to the
discrete exponential ordering. It is shown that in some cases the exponential estimates can
be replaced with a more precise limit relation. As corollaries, a generalization of discrete
Halanay-type inequalities and explicit sufficient conditions for the global exponential sta-
bility of the zero solution are given.

1. Introduction

Consider the higher-order scalar difference equation

xn+1 = f
(
xn,xn−1, . . . ,xn−k

)
, n∈N= {0,1,2, . . .}, (1.1)

where k is a positive integer and f : Rk+1 → R. With (1.1), we can associate the discrete
dynamical system (Tn)n≥0 on Rk+1, where T :Rk+1 →Rk+1 is defined by

T(x)= ( f (x),x0,x1, . . . ,xk−1
)
, x = (x0,x1, . . . ,xk

)∈Rk+1. (1.2)

As usual, Tn denotes the nth iterate of T for n ≥ 1 and T0 = I , the identity on Rk+1. It
follows by easy induction on n that if (xn)n≥−k is a solution of (1.1), then(

xn,xn−1, . . . ,xn−k
)= Tn

(
x0,x−1, . . . ,x−k

)
, n≥ 0. (1.3)

Therefore, the dynamical system (Tn)n≥0 contains all information about the behavior of
the solutions of (1.1).

In a recent paper [7], motivated by earlier results for delay differential equations due
to Smith and Thieme [13] (see also [12, Chapter 6]), Krause and the second author have
introduced the discrete exponential ordering onRk+1, the partial ordering induced by the
convex closed cone

Cµ =
{
x = (x0,x1, . . . ,xk

)∈Rk+1 | xk ≥ 0, xi ≥ µxi+1, i= 0,1, . . . ,k− 1
}

, (1.4)
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where µ≥ 0 is a parameter. In [7], it has been shown that T is monotone (order preserv-
ing) under appropriate conditions on f . As a consequence of monotonicity, necessary
and sufficient conditions have been given for the boundedness of all solutions and for the
local and global stability of an equilibrium of (1.1) (see [7, Section 4]).

In this paper, we give further consequences of the monotonicity of T for (1.1) and for
the corresponding difference inequality

yn+1 ≤ f
(
yn, yn−1, . . . , yn−k

)
, n≥ 0, (1.5)

under the additional assumption that the nonlinearity f is positively homogeneous (of
degree one) on the generating cone Cµ, that is,

f (λx)= λ f (x) for λ≥ 0, x ∈ Cµ. (1.6)

An example of (1.1) with property (1.6) is the max type difference equation

xn+1 =
k∑
i=0

Kixn−i + bmax
{
xn,xn−1, . . . ,xn−r

}
, (1.7)

where k and r are positive integers and the coefficients Ki and b are constants. For other
examples of higher-order difference equations with a positively homogeneous right-hand
side, see, for example, [6].

Using the monotonicity of T and a simple comparison theorem, we give upper ex-
ponential estimates for the solutions of (1.5) in terms of the largest positive root of the
characteristic equation

λk+1 = f
(
λk,λk−1, . . . ,1

)
. (1.8)

As a corollary for the difference inequality

yn+1 ≤
k∑
i=0

Kiyn−i + bmax
{
yn, yn−1, . . . , yn−r

}
, (1.9)

we obtain a generalization of earlier results of Ferreiro and the first author [8] on discrete
Halanay-type inequalities (see Theorems 1.1 and 3.1). For other related results, see, for
example, [1, 9, 10].

Further, we will show that a mild strengthening of the monotonicity condition in [7]
implies that the map T is eventually strongly monotone. As a consequence, a nonlinear
version of the Perron-Frobenius theorem [3] applies and we obtain an asymptotic rep-
resentation of the solutions of (1.1) starting from Cµ (see Theorems 1.2 and 3.7). For a
similar result, using the standard ordering in Rk+1(µ= 0), see [6].

Finally, we establish an asymptotic exponential estimate for the growth of the solutions
of the equation

xn+1 =
k∑
i=0

Kixn−i + g
(
n,xn,xn−1, . . . ,xn−r

)
, (1.10)
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under the assumption that its linear part

yn+1 =
k∑
i=0

Kiyn−i (1.11)

generates a monotone system and the growth of the nonlinearity g : N×Rr+1 → R is
controlled by a positively homogeneous function which is nondecreasing in each of its
variables (see Theorems 1.3 and 3.10). As a corollary, we obtain explicit sufficient condi-
tions for the global exponential stability of the zero solution of (1.10) (see Theorems 1.4
and 3.11).

The following four theorems give a flavor of our more general results presented in
Section 3. Without loss of generality, we assume that in all Theorems 1.1, 1.2, 1.3, and 1.4
below, k ≥ r. The first theorem offers an upper estimate for the solutions of inequality
(1.9).

Theorem 1.1. Suppose that b > 0 and there exists µ > 0 such that

µ+
k∑
i=1

K−i µ
−i ≤ K0, (1.12)

where K−i =max{0,−Ki}. Then, for every solution (yn)n≥−k of (1.9) there exists a positive
constant M =M(y0, y−1, . . . , y−k) such that

yn ≤Mλn0, n≥−k, (1.13)

where λ0 is the unique root of the equation

λk+1 =
k∑
i=0

Kiλ
k−i + bmax

{
λk,λk−1, . . . ,λk−r

}
(1.14)

in the interval (µ,∞).

The next result shows in case of (1.7) the exponential estimate (1.13) of Theorem 1.1
is sharp.

Theorem 1.2. Suppose that b > 0 and (1.12) holds with a strict inequality for some µ > 0.
Then, for every solution (xn)n≥−k of (1.7) with initial data (x0,x−1, . . . ,x−k)∈ Cµ \ {0}, there
exists a positive constant L= L(x0,x−1, . . . ,x−k) such that

λ−n0 xn −→ L as n−→∞, (1.15)

where λ0 has the meaning from Theorem 1.1.

The following theorem provides an estimate for the growth of the solutions of (1.10).

Theorem 1.3. Suppose that there exist b > 0 and µ > 0 such that (1.12) and∣∣g(n,x0,x1, . . . ,xr
)∣∣≤ bmax

{∣∣x0
∣∣,
∣∣x1

∣∣, . . . ,
∣∣xr∣∣}, n≥ 0, x ∈Rr+1 (1.16)
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hold. Then, for every solution (xn)n≥−k of (1.10) there exists a positive constant M =M(x0,
x−1, . . . ,x−k) such that ∣∣xn∣∣≤Mλn0, n≥−k, (1.17)

where λ0 has the meaning from Theorem 1.1.

The existence and uniqueness of the solution λ0 of (1.14) in (µ,∞) is a part of the
conclusions of Theorems 1.1, 1.2, and 1.3. This λ0 is a root of either

λk+1 =
k∑
i=0

Kiλ
k−i + bλk (1.18)

or

λk+1 =
k∑
i=0

Kiλ
k−i + bλk−r , (1.19)

depending on whether λ0 ≥ 1 or λ0 < 1. It will be shown (see Corollary 2.7) that λ0 < 1 if
and only if, in addition to the hypotheses of Theorem 1.1, µ < 1 and

k∑
i=0

Ki + b < 1. (1.20)

As a consequence of Theorem 1.3, we have the following criterion for the global expo-
nential stability of the zero solution of (1.10).

Theorem 1.4. Suppose that there exist b > 0 and µ ∈ (0,1) such that (1.12), (1.16), and
(1.20) hold. Then, the zero solution of (1.10) is globally exponentially stable.

For the proofs of Theorems 1.1, 1.2, 1.3, and 1.4, see Remarks 3.4, 3.9 and, 3.12.
In the special case K0 ≥ 0, Ki = 0 for i = 1,2, . . . ,k and 0 < b < 1−K0, the conclusion

of Theorem 1.1, a discrete analogue of Halanay’s inequality, was obtained by Ferreiro and
the first author (see [8, Theorem 1]). The same remark holds for Theorem 1.4 (see [8,
Theorem 2]).

Under the hypotheses of Theorem 1.4, the global asymptotic stability of the zero so-
lution of (1.10) was established by the second author using a different approach (see [11,
Corollary 2 and Remark 2]).

The paper is organized as follows. In Section 2, we discuss the monotonicity properties
of the map T defined by (1.2). The main results on the behavior of the solutions of the
above higher-order difference equations and inequalities are given in Section 3.

2. Monotonicity

Recall the definition of the discrete exponential ordering from [7]. For every µ ≥ 0, the
convex closed cone Cµ defined by (1.4) has nonempty interior intCµ given by

intCµ =
{
x = (x0,x1, . . . ,xk

)∈Rk+1 | xk > 0, xi > µxi+1, i= 0,1, . . . ,k− 1
}
. (2.1)



E. Liz and M. Pituk 45

As a cone in Rk+1, each Cµ induces a partial order ≤µ on Rk+1 by x ≤µ y if and only if
y − x ∈ Cµ. We write x <µ y if x ≤µ y and x �= y. The strong ordering �µ is defined by
x�µ y if and only if y − x ∈ intCµ. The ordering ≤µ is called the discrete exponential
ordering. Note that the restriction µ < 1 in [7] is not needed here.

The following result follows immediately from the definition of the ordering ≤µ (see
also [7, Proposition 1]). It gives a necessary and sufficient condition for the mapT defined
by (1.2) to be monotone. Recall that T is said to be monotone (increasing, order preserving)
on Rk+1 with respect to ≤µ if

T(y)≥µ T(x) whenever x, y ∈Rk+1 satisfy x ≤µ y. (2.2)

Theorem 2.1. Let µ≥ 0. The map T defined by (1.2) is monotone with respect to ≤µ if and
only if

f (y)− f (x)≥ µ
(
y0− x0

)
whenever x, y ∈Rk+1 satisfy x ≤µ y. (2.3)

A relatively easily verifiable sufficient condition for (2.3) to hold is given below.

Proposition 2.2 [7, Proposition 2]. Let µ > 0. Condition (2.3) holds if there exist constants
Li, i= 0,1, . . . ,k such that

f (y)− f (x)≥
k∑
i=0

Li
(
yi− xi

)
whenever xi ≤ yi for i= 0,1, . . . ,k (2.4)

and

µ+
k∑
i=1

L−i µ
−i ≤ L0, (2.5)

where L−i =max{0,−Li}.
Note that in both previous results the domain Rk+1 of T can be replaced with a subset

of Rk+1.
If f is differentiable, then the constants Li in (2.4) may be viewed as the infima of the

partial derivatives ∂ f /∂xi(x), where the infimum is taken over all x ∈Rk+1.
The next theorem shows that a mild strengthening of the monotonicity condition (2.3)

implies that T is eventually strongly monotone.

Theorem 2.3. Let µ > 0 and suppose that

f (y)− f (x) > µ
(
y0− x0

)
whenever x, y ∈Rk+1 satisfy x <µ y. (2.6)

Then, Tk is strongly monotone with respect to ≤µ, that is,

Tk(y)�µ T
k(x) whenever x, y ∈Rk+1 satisfy x <µ y. (2.7)
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Proof. Let x, y ∈ Rk+1 satisfy x <µ y. We must show that Tk(y)�µ Tk(x). In view of the
definition of intCµ and the relation

Tk(x)= ( f (Tk−1(x)), f
(
Tk−2(x)

)
, . . . , f

(
T(x)

)
, f (x),x0

)
, x ∈Rk+1, (2.8)

the last inequality is equivalent to the system of inequalities

f (y)− f (x) > µ
(
y0− x0

)
> 0 (2.9)

and

f
(
Ti+1(y)

)− f
(
Ti+1(x)

)
> µ

(
f
(
Ti(y)

)− f
(
Ti(x)

))
> 0 (2.10)

for i = 0,1, . . . ,k− 2. Since x <µ y, it follows that y0 − x0 > 0. (Otherwise, the condition
y− x ∈ Cµ would imply that y = x, a contradiction.) Consequently, (2.6) implies (2.9).
Since T is monotone, T(y) ≥µ T(x). Further, by virtue of (2.9) and the definition of T ,
we have (

T(y)
)

0−
(
T(x)

)
0 = f (y)− f (x) > 0 (2.11)

and hence T(y) >µ T(x). Using (2.6) again, we find

f
(
T(y)

)− f
(
T(x)

)
> µ

(
f (y)− f (x)

)
> 0. (2.12)

Thus, (2.10) holds for i = 0. Suppose for induction that (2.10) holds for some i ≥ 0. By
monotonicity, Ti+2(y)≥µ Ti+2(x). Moreover, in view of (2.10) and the definition of T , we
have (

Ti+2(y)
)

0−
(
Ti+2(x)

)
0 = f

(
Ti+1(y)

)− f
(
Ti+1(x)

)
> 0. (2.13)

Consequently, Ti+2(y) >µ Ti+2(x) and therefore (2.6) and (2.10) imply that

f
(
Ti+2(y)

)− f
(
Ti+2(x)

)
> µ

(
f
(
Ti+1(y)

)− f
(
Ti+1(x)

))
> 0. (2.14)

Thus, (2.10) holds for all i = 0,1,2, . . . . As noted before, (2.9) and (2.10) imply that
Tk(y)�µ Tk(x). �

The next result is similar to Proposition 2.2. It gives a sufficient condition for assump-
tion (2.6) of Theorem 2.3 to hold.

Proposition 2.4. Let µ > 0. Then, (2.6) holds if (2.4) holds and the inequality in (2.5) is
strict,

µ+
k∑
i=1

L−i µ
−i < L0. (2.15)

The proof of Proposition 2.4 is an obvious modification of the proof of [7, Proposition
2] and thus it is omitted.
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In the next theorem, we describe some further properties of T under the additional
assumption that f is continuous and positively homogeneous on Cµ. In particular, it can
be used to ensure the existence of a strongly positive eigenvector of T .

Theorem 2.5. Suppose that there exists µ ≥ 0 such that f is continuous on Cµ and (1.6)
and (2.3) hold on Cµ. Then, the following hold.

(i) T is a continuous, positively homogeneous, and monotone selfmapping of Cµ.
(ii) If, in addition, it is assumed that

f
(
µk,µk−1, . . . ,1

)
> µk+1, (2.16)

then the characteristic equation (1.8) has a unique root λ0 in (µ,∞). This root λ0

is an eigenvalue of T and uλ0 = (λk0,λk−1
0 , . . . ,1) is a corresponding strongly positive

eigenvector, that is,

T
(
uλ0

)= λ0uλ0 , uλ0 �µ 0. (2.17)

(iii) If instead of (2.3) the stronger condition (2.6) is assumed, then (2.16) holds.

Proof. (i) The continuity and the positive homogeneity of T are evident. The monotonic-
ity of T is a consequence of Theorem 2.1. The fact that T maps Cµ into itself follows from
the monotonicity of T and the equality T(0)= 0.

(ii) Define

h(λ)= λk+1− f
(
λk,λk−1, . . . ,1

)
, λ≥ µ. (2.18)

Since (λk,λk−1, . . . ,1)≥µ (0,0, . . . ,0) for λ≥ µ and f is continuous on Cµ, h is continuous
on [µ,∞). Further, by virtue of (2.16), h(µ) < 0 and, in view of (1.6), we have

h(λ)= λk
(
λ− f

(
1,λ−1, . . . ,λ−k

))−→∞ as λ−→∞. (2.19)

This implies the existence of λ0 > µ such that h(λ0) = 0. This λ0 is a root of (1.8) and
conclusion (2.17) is an immediate consequence of the definitions of T and the strong
ordering�µ. It remains to show that (1.8) has no other root in (µ,∞). Let λ > µ be a root
of (1.8). Define uλ = (λk,λk−1, . . . ,1). It is easily seen that

T
(
uλ
)= λuλ, uλ�µ 0. (2.20)

Thus, uλ is a strongly positive eigenvector of the continuous, positively homogeneous
and monotone selfmapping T of Cµ. According to a result of Kloeden and Rubinov [3,
Corollary 3.1], the corresponding eigenvalue λ coincides with the spectral radius of T and
hence it is uniquely determined.

(iii) Clearly, (µk,µk−1, . . . ,1) >µ (0,0, . . . ,0). By virtue of (2.6), this together with f (0,
0, . . . ,0)= 0, implies (2.16). �

Remark 2.6. The previous proof shows that in case (ii) of Theorem 2.5, λ0 < 1 if and only
if µ < 1 and f (1,1, . . . ,1) < 1.
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We conclude this section with some corollaries of the previous results for (1.7), a spe-
cial case of (1.1) when

f
(
x0,x1, . . . ,xk

)= k∑
i=0

Kixi + bmax
{
x0,x1, . . . ,xr

}
. (2.21)

As in Section 1, we assume that k ≥ r in (1.7).

Corollary 2.7. Suppose that b ≥ 0 and µ > 0. Then, the following hold.

(i) Condition (2.3) holds for (1.7) if (1.12) holds.
(ii) Condition (2.6) holds for (1.7) if (1.12) holds with a strict inequality.

(iii) Condition (2.16) holds for (1.7) if (1.12) and one of the following hold:
(a) b > 0, or
(b) b = 0 and Ki > 0 for some i∈ {1,2, . . . ,k}, or
(c) b = 0, Ki ≤ 0 for i= 1,2, . . . ,k and the inequality in (1.12) is strict.

In that case, (1.14) has a unique root λ0 in (µ,∞). Furthermore, λ0 < 1 if and only if µ < 1
and (1.20) holds.

Proof. Clearly, for f defined by (2.21), condition (2.4) holds with Li = Ki for i= 0,1, . . . ,k.
Consequently, conclusions (i) and (ii) follow immediately from Propositions 2.2 and 2.4.
To prove (iii), observe that, in view of (1.12), we have

f
(
µk,µk−1, . . . ,1

)= µk
( k∑

i=0

Kiµ
−i + bmax

{
1,µ−1, . . . ,µ−r

})

≥ µk
(
K0−

k∑
i=1

K−i µ
−i
)
≥ µk+1.

(2.22)

If (a), (b), or (c) holds, then one of the above inequalities is strict and thus (2.16) holds.
The last two conclusions of (iii) follow from Theorem 2.5(ii) and Remark 2.6. �

3. Main results

In the theorems below, we assume that f is positively homogeneous and satisfies either
the monotonicity condition (2.3) or (2.6). Sufficient conditions for (2.3) and (2.6) to hold
were given in Section 2 (see Propositions 2.2 and 2.4). The first theorem gives an upper
estimate for the solutions of inequality (1.5).

Theorem 3.1. Suppose that there exists µ≥ 0 such that (1.6) and (2.3) hold. If the charac-
teristic equation (1.8) has a root λ0 in (µ,∞), then for every solution (yn)n≥−k of (1.5) there
exists a positive constant M =M(y0, y−1, . . . , y−k) such that

yn ≤Mλn0, n≥−k. (3.1)

The existence of a root λ0 of (1.8) in (µ,∞) can be guaranteed by Theorem 2.5(ii). We
have the following corollary of Theorems 2.5 and 3.1.
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Corollary 3.2. Suppose that there exists µ≥ 0 such that f is continuous on Cµ and condi-
tions (1.6), (2.3), and (2.16) hold. Then, (1.8) has a unique root λ0 in (µ,∞) and (3.1) holds
for every solution (yn)n≥−k of (1.5) with a positive constant M depending on the initial data
(y0, y−1, . . . , y−k).

Remark 3.3. According to Theorem 2.5(iii), condition (2.16) automatically holds if the
monotonicity assumption (2.3) in Corollary 3.2 is replaced with the strong monotonicity
condition (2.6).

Remark 3.4. Theorem 1.1 in Section 1 is a consequence of Corollaries 2.7 and 3.2.

Before we present the proof of Theorem 3.1, we establish a comparison theorem which
is interesting in its own right. Note that in this theorem we merely assume the monotonic-
ity condition (2.3).

Theorem 3.5. Suppose (2.3) holds for some µ≥ 0. Let (xn)n≥−k and (yn)n≥−k be solutions
of (1.1) and (1.5), respectively, such that(

y0, y−1, . . . , y−k
)≤µ

(
x0,x−1, . . . ,x−k

)
. (3.2)

Then, for all n≥ 0, (
yn, yn−1, . . . , yn−k

)≤µ
(
xn,xn−1, . . . ,xn−k

)
. (3.3)

In particular,

yn ≤ xn, n≥−k. (3.4)

Proof. We will prove (3.3) by induction on n. By assumption (3.2), (3.3) holds for n= 0.
Suppose for induction that (3.3) holds for some n ≥ 0. In view of the definition of the
ordering ≤µ, (3.3) implies that

xi− yi ≥ µ
(
xi−1− yi−1

)≥ 0 (3.5)

for i= n− k+ 1,n− k+ 2, . . . ,n. Using (1.1) and (1.5), we find for n≥ 0,

xn+1− yn+1 ≥ f
(
xn, . . . ,xn−k

)− f
(
yn, . . . , yn−k

)≥ µ
(
xn− yn

)
, (3.6)

the last inequality being a consequence of (2.3) and (3.3). Thus, (3.5) also holds for i =
n+ 1. Therefore, (

yn+1, yn, . . . , yn+1−k
)≤µ

(
xn+1,xn, . . . ,xn+1−k

)
. (3.7)

Thus, (3.3) is confirmed for all n≥ 0. Conclusion (3.4) follows from (3.3) and the defini-
tion of Cµ. �

We are in a position to give a proof of Theorem 3.1.

Proof of Theorem 3.1. Let (yn)n≥−k be a solution of (1.5). Consider the solution (xn)n≥−k
of (1.1) with initial data (

x0,x−1, . . . ,x−k
)= (y0, y−1, . . . , y−k

)
. (3.8)
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By Theorem 3.5, yn ≤ xn for n≥−k. Therefore, it is enough to show that

xn ≤Mλn0, n≥−k, (3.9)

for some M > 0. Since λ0>µ, the vector uλ0=(1,λ−1
0 , . . . ,λ−k0 ) is strongly positive, uλ0�µ 0.

Consequently, (
x0,x−1, . . . ,x−k

)≤µ Muλ0 =
(
M,Mλ−1

0 , . . . ,Mλ−k0

)
(3.10)

for all sufficiently large M. Since λ0 is a root of (1.8) and f is positively homogeneous,
(Mλn0)n≥−k is a solution of (1.1). Estimate (3.9) now follows from (3.10) and Theorem 3.5
applied to the solutions (xn)n≥−k and (Mλn0)n≥−k of (1.1). �

Remark 3.6. The constant M in (3.1) of Theorem 3.1 can be computed explicitly from
(3.10) (where xi = yi for i = −k,−k + 1, . . . ,0). Writing the system of inequalities corre-
sponding to (3.10) from the definition of the ordering≤µ, it can be shown that M in (3.1)
can be taken as

M = K max
{∣∣y0

∣∣,
∣∣y−1

∣∣, . . . ,
∣∣y−k∣∣}, (3.11)

where K is a positive constant independent of the initial data (y0, y−1, . . . , y−k).

Our next aim is to show that for the nontrivial solutions (xn)n≥−k of (1.1) starting from
Cµ, the exponential estimate (3.1) of Theorem 3.1 can be replaced with the more precise
limit relation

lim
n→∞

(
λ−n0 xn

)= L, (3.12)

where L is a positive constant depending on the initial data.

Theorem 3.7. Suppose that there exists µ > 0 such that f is continuous on Cµ and (1.6) and
(2.6) hold. Then, for every solution (xn)n≥−k of (1.1) with initial data (x0,x−1, . . . ,x−k) ∈
Cµ \ {0}, there exists a positive constant L= L(x0,x−1, . . . ,x−k) such that (3.12) holds, where
λ0 is the unique root of (1.8) in (µ,∞).

Note that if f in Theorem 3.7 is linear, then the value of the limit (3.12) can be given
explicitly in terms of the initial data (x0,x−1, . . . ,x−k) (see [2] or [4] for details).

The proof of Theorem 3.7 will be based on a nonlinear version of the Perron-Frobenius
theorem due to Kloeden and Rubinov [3] adapted to our situation. For further related re-
sults, see [5].

Theorem 3.8. Let µ ≥ 0. Suppose that T : Cµ → Rk+1 is a continuous, positively homoge-
neous map with the following properties:

(i) T(Cµ)⊂ Cµ,
(ii) there exist λ > 0 and u�µ 0 such that T(u)= λu,

(iii) T is monotone on Cµ, that is,

T(y)≥µ T(x) whenever x, y ∈ Cµ satisfy x ≤µ y, (3.13)
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(iv) some iterate Ts (s≥ 1) of T is strongly monotone on Cµ, that is,

Ts(y)�µ T
s(x) whenever x, y ∈ Cµ satisfy x <µ y, (3.14)

Then, for every x ∈ Cµ \ {0}, there exists a positive constant K = K(x) such that

λ−nTn(x)−→ Ku as n−→∞. (3.15)

Theorem 3.8 is a consequence of [3, Corollary 5.2 and Remark 5.1] applied to the
scaled map T̃ = λ−1T .

Proof of Theorem 3.7. We will prove Theorem 3.7 by applying Theorem 3.8 to the map T
defined by (1.2). Theorems 2.3 and 2.5 show that the hypotheses of Theorem 3.8 hold
with λ= λ0 and u= (λk0,λk−1

0 , . . . ,1), where λ0 is the unique root of (1.8) in (µ,∞). By the
application of Theorem 3.8, we conclude that if (x0,x−1, . . . ,x−k)∈ Cµ \ {0}, then

λ−n0 Tn
(
x0,x−1, . . . ,x−k

)−→ K
(
λk0,λk−1

0 , . . . ,1
)

as n−→∞ (3.16)

for some K > 0. By virtue of (1.3), the last limit relation is equivalent to (3.12) with L=
Kλk0. �

Remark 3.9. Theorem 1.2 in Section 1 is a consequence of Theorem 3.7 and Corollary 2.7.

Now, we present a theorem concerning the behavior of the solutions of (1.10). We
will assume that the linear part of (1.10) generates a monotone system with respect to
the ordering ≤µ and we use the variation-of-constants formula to obtain an exponential
estimate for the growth of the solutions. As in Section 1, we assume that k ≥ r in (1.10).

Theorem 3.10. Suppose that there exist µ > 0 and a function h : Rr+1
+ → R+ such that for

n≥ 0 and x, y ∈Rr+1,∣∣g(n,x0,x1, . . . ,xr
)∣∣≤ h

(∣∣x0
∣∣,
∣∣x1

∣∣, . . . ,
∣∣xr∣∣), (3.17)

h(y)≥ h(x) whenever 0≤ xi ≤ yi for i= 0,1, . . . ,r, (3.18)

h is continuous and positively homogeneous on Cµ, (3.19)

µ+
k∑
i=1

K−i µ
−i ≤ K0, K−i =max

{
0,−Ki

}
(3.20)

and one of the following holds:

(a) h(µr ,µr−1, . . . ,1) > 0, or
(b) h(µr ,µr−1, . . . ,1)= 0 and Ki > 0 for some i∈ {1,2, . . . ,k}, or
(c) h(µr ,µr−1, . . . ,1)= 0, Ki ≤ 0 for i= 1,2, . . . ,k and the inequality in (3.20) is strict.

Then, for every solution (xn)n≥−k of (1.10) there exists a positive constant M =M(x0,
x−1, . . . ,x−k) such that ∣∣xn∣∣≤Mλn0, n≥−k, (3.21)
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where λ0 is the unique root of the equation

λk+1 =
k∑
i=0

Kiλ
k−i +h

(
λk,λk−1, . . . ,λk−r

)
(3.22)

in the interval (µ,∞).

Proof. First, we show that (3.22) has a unique root in (µ,∞). We will apply Theorem
2.5(ii) to the equation

xn+1 =
k∑
i=0

Kixn−i +h
(
xn,xn−1, . . . ,xn−r

)
, n≥ 0. (3.23)

Equation (3.23) is a special case of (1.1) when

f
(
x0,x1, . . . ,xk

)= k∑
i=0

Kixi +h
(
x0,x1, . . . ,xr

)
. (3.24)

Conditions (3.18) and (3.20) imply that assumptions (2.4) and (2.5) of Proposition 2.2
hold for (3.23) on Cµ with Li = Ki for i= 0,1, . . . ,k. By Proposition 2.2, the monotonicity
condition (2.3) holds for (3.23) on Cµ. By virtue of (3.19), f is continuous and positively
homogeneous on Cµ. Further, by virtue of (3.19) and (3.20), we have

f
(
µk,µk−1, . . . ,1

)= µk
( k∑

i=0

Kiµ
−i +µ−rh

(
µr ,µr−1, . . . ,1

))

≥ µk
(
K0−

k∑
i=1

K−i µ
−i
)
≥ µk+1.

(3.25)

Since any of the conditions (a), (b), or (c) implies that one of the last two inequalities is
strict, (2.16) holds. The existence and uniqueness of λ0 now follows from Theorem 2.5(ii).

Now, we prove (3.21). Let (xn)n≥−k be an arbitrary solution of (1.10). Consider the so-
lution (yn)n≥−k of the linear equation (1.11) with the same initial data, (y0, y−1, . . . , y−k)=
(x0,x−1, . . . ,x−k). Since λ0 > µ, we have(

1,λ−1
0 , . . . ,λ−k0

)�µ (0,0, . . . ,0). (3.26)

Consequently, (
y0, y−1, . . . , y−k

)≤µ M1
(
1,λ−1

0 , . . . ,λ−k0

)
(3.27)

for all sufficiently large M1 > 0. By Proposition 2.2, (3.20) implies that the monotonicity
condition (2.3) holds for the linear equation (1.11). Therefore, we can apply Theorem 3.5
to (1.11) and from (3.27) we obtain

yn ≤M1wn, n≥−k, (3.28)
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where (wn)n≥−k is the solution of (1.11) with initial data (w0,w−1, . . . ,w−k) = (1,λ−1
0 , . . . ,

λ−k0 ). The same argument applied to the solution (−yn)n≥−k of (1.11) yields the existence
of M2 > 0 such that

−yn ≤M2wn, n≥−k. (3.29)

Consequently,

∣∣yn∣∣≤M3wn, n≥−k, (3.30)

where M3 = max{M1,M2}. Here, we have used the fact that wn ≥ 0 for n ≥ −k which
follows from Theorem 3.5 and (3.26). We will show that (3.21) holds with

M =max
{
M3,

∣∣x0
∣∣,
∣∣x−1

∣∣λ0,
∣∣x−2

∣∣λ2
0, . . . ,

∣∣x−k∣∣λk0}. (3.31)

By the definition of M, we have

∣∣xi∣∣≤Mλi0 for i=−k,−k+ 1, . . . ,0. (3.32)

Suppose that n≥ 1 and

∣∣xi∣∣≤Mλi0 for i=−k,−k+ 1, . . . ,n− 1. (3.33)

By the induction principle, the proof will be complete if we show that (3.33) also holds
for i = n. By the variation-of-constants formula (see [11, Lemma 1]), the solution xn of
(1.10) can be written in the form

xn = yn +
n−1∑
i=0

vn−i−1g
(
i,xi,xi−1, . . . ,xi−r

)
, n≥ 0, (3.34)

where yn has the meaning as before and (vn)n≥−k is the (fundamental) solution of the
linear equation (1.11) with initial data (v0,v−1, . . . ,v−k)= (1,0, . . . ,0). Since (1,0, . . . ,0)≥µ

(0,0, . . . ,0), Theorem 3.5 implies that vn ≥ 0 for n ≥ 0. Using (3.17), (3.18), (3.30), and
(3.33) in (3.34), we find

∣∣xn∣∣≤Mwn +
n−1∑
i=0

vn−i−1h
(
Mλi0,Mλi−1

0 , . . . ,Mλi−r0

)
. (3.35)

Writing the variation-of-constants formula for the solution (λn0)n≥−k of (3.23), we obtain
for n≥ 0,

λn0 =wn +
n−1∑
i=0

vn−i−1h
(
λi0,λi−1

0 , . . . ,λi−r0

)
, (3.36)
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where wn and vn are the solutions of (1.11) defined as before. This and the positive ho-
mogeneity of h imply that the right-hand side of (3.35) is equal to Mλn0. Thus, we have
shown that (3.33) implies that |xn| ≤Mλn0. �

The same argument as in Remark 2.6 shows that the constants M1 and M2 in the pre-
vious proof and hence M in (3.21) can be written in the form (3.11) (with y replaced with
x). Consequently, Theorem 3.10 combined with Remark 2.6 yields the following stability
criterion.

Theorem 3.11. In addition to the hypotheses of Theorem 3.10, suppose that µ < 1 and

k∑
i=0

Ki +h(1,1, . . . ,1) < 1. (3.37)

Then, the zero solution of (1.10) is globally exponentially stable.

Remark 3.12. Theorems 1.3 and 1.4 in Section 1 follow from Theorems 3.10 and 3.11,
respectively, when h(x0,x1, . . . ,xr)= bmax{x0,x1, . . . ,xr}.

Acknowledgments

The first author was partially supported by the M.C.T. (Spain) and FEDER under the
project BFM 2001-3884-C02-02. The second author was partially supported by the Hun-
garian National Foundation for Scientific Research (OTKA) Grant no. T 046929.

References

[1] C. T. H. Baker and A. Tang, Generalized Halanay inequalities for Volterra functional differen-
tial equations and discretized versions, Volterra Equations and Applications (Arlington, Tex,
1996), Stability Control Theory Methods Appl., vol. 10, Gordon and Breach, Amsterdam,
2000, pp. 39–55.

[2] R. D. Driver, G. Ladas, and P. N. Vlahos, Asymptotic behavior of a linear delay difference equation,
Proc. Amer. Math. Soc. 115 (1992), no. 1, 105–112.

[3] P. E. Kloeden and A. M. Rubinov, A generalization of the Perron-Frobenius theorem, Nonlinear
Anal. Ser. A: Theory Methods 41 (2000), no. 1-2, 97–115.

[4] I.-G. E. Kordonis and Ch. G. Philos, On the behavior of the solutions for linear autonomous
neutral delay difference equations, J. Differ. Equations Appl. 5 (1999), no. 3, 219–233.

[5] U. Krause, Relative stability for ascending and positively homogeneous operators on Banach spaces,
J. Math. Anal. Appl. 188 (1994), no. 1, 182–202.

[6] , The asymptotic behavior of monotone difference equations of higher order, Comput.
Math. Appl. 42 (2001), no. 3–5, 647–654.

[7] U. Krause and M. Pituk, Boundedness and stability for higher order difference equations, J. Dif-
ference Equ. Appl. 10 (2004), no. 4, 343–356.

[8] E. Liz and J. B. Ferreiro, A note on the global stability of generalized difference equations, Appl.
Math. Lett. 15 (2002), no. 6, 655–659.

[9] E. Liz, A. Ivanov, and J. B. Ferreiro, Discrete Halanay-type inequalities and applications, Nonlin-
ear Anal. 55 (2003), no. 6, 669–678.

[10] S. Mohamad and K. Gopalsamy, Continuous and discrete Halanay-type inequalities, Bull. Aus-
tral. Math. Soc. 61 (2000), no. 3, 371–385.



E. Liz and M. Pituk 55

[11] M. Pituk, Global asymptotic stability in a perturbed higher-order linear difference equation, Com-
put. Math. Appl. 45 (2003), no. 6–9, 1195–1202.

[12] H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Co-
operative Systems, Mathematical Surveys and Monographs, vol. 41, American Mathematical
Society, Rhode Island, 1995.

[13] H. L. Smith and H. R. Thieme, Monotone semiflows in scalar non-quasi-monotone functional-
differential equations, J. Math. Anal. Appl. 150 (1990), no. 2, 289–306.
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Mihály Pituk: Department of Mathematics and Computing, University of Veszprem, P.O. Box 158,
8201 Veszprem, Hungary

E-mail address: pitukm@almos.vein.hu

mailto:eliz@dma.uvigo.es
mailto:pitukm@almos.vein.hu

