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Let X be a Banach space over the field R or C, a1, . . . ,ap ∈ C, and (bn)n≥0 a sequence in X .
We investigate the Hyers-Ulam stability of the linear recurrence xn+p = a1xn+p−1 + ···+
ap−1xn+1 + apxn + bn, n≥ 0, where x0,x1, . . . ,xp−1 ∈ X .

1. Introduction

In 1940, S. M. Ulam proposed the following problem.

Problem 1.1. Given a metric group (G,·,d), a positive number ε, and a mapping f : G→
G which satisfies the inequality d( f (xy), f (x) f (y)) ≤ ε for all x, y ∈ G, do there exist an
automorphism a of G and a constant δ depending only on G such that d(a(x), f (x))≤ δ for
all x ∈G?

If the answer to this question is affirmative, we say that the equation a(xy)= a(x)a(y)
is stable. A first answer to this question was given by Hyers [5] in 1941 who proved that the
Cauchy equation is stable in Banach spaces. This result represents the starting point the-
ory of Hyers-Ulam stability of functional equations. Generally, we say that a functional
equation is stable in Hyers-Ulam sense if for every solution of the perturbed equation,
there exists a solution of the equation that differs from the solution of the perturbed
equation with a small error. In the last 30 years, the stability theory of functional equa-
tions was strongly developed. Recall that very important contributions to this subject
were brought by Forti [2], Găvruţa [3], Ger [4], Páles [6, 7], Székelyhidi [9], Rassias [8],
and Trif [10]. As it is mentioned in [1], there are much less results on stability for func-
tional equations in a single variable than in more variables, and no surveys on this subject.
In our paper, we will investigate the discrete case for equations in single variable, namely,
the Hyers-Ulam stability of linear recurrence with constant coefficients.

Let X be a Banach space over a field K and

xn+p = f
(
xn+p−1, . . . ,xn

)
, n≥ 0, (1.1)

a recurrence inX , when p is a positive integer, f : Xp → X is a mapping, and x0,x1, . . . ,xp−1

∈ X . We say that the recurrence (1.1) is stable in Hyers-Ulam sense if for every positive ε
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and every sequence (xn)n≥0 that satisfies the inequality

∥∥xn+p− f
(
xn+p−1, . . . ,xn

)∥∥ < ε, n≥ 0, (1.2)

there exist a sequence (yn)n≥0 given by the recurrence (1.1) and a positive δ depending
only on f such that

∥∥xn− yn
∥∥ < δ, n≥ 0. (1.3)

In [7], the author investigates the Hyers-Ulam-Rassias stability of the first-order linear
recurrence in a Banach space. Using some ideas from [7] in this paper, one obtains a
result concerning the stability of the n-order linear recurrence with constant coefficients
in a Banach space, namely,

xn+p = a1xn+p−1 + ···+ ap−1xn+1a+ apxn + bn, n≥ 0, (1.4)

where a1,a2, . . . ,ap ∈ K , (bn)n≥0 is a given sequence in X , and x0,x1, . . . ,xp−1 ∈ X . Many
new and interesting results concerning difference equations can be found in [1].

2. Main results

In what follows, we denote by K the field C of complex numbers or the field R of real
numbers. Our stability result is based on the following lemma.

Lemma 2.1. Let X be a Banach space over K , ε a positive number, a ∈ K \ {−1,0,1}, and
(an)n≥0 a sequence in X . Suppose that (xn)n≥0 is a sequence in X with the following property:

∥∥xn+1− axn− an
∥∥≤ ε, n≥ 0. (2.1)

Then there exists a sequence (yn)n≥0 in X satisfying the relations

yn+1 = ayn + an, n≥ 0, (2.2)
∥∥xn− yn

∥∥≤ ε∣∣|a|− 1
∣∣ , n≥ 0. (2.3)

Proof. Denote xn+1− axn− an := bn, n≥ 0. By induction, one obtains

xn = anx0 +
n−1∑

k=0

an−k−1(ak + bk
)
, n≥ 1. (2.4)

(1) Suppose that |a| < 1. Define the sequence (yn)n≥0 by the relation (2.2) with y0 = x0.
Then it follows by induction that

yn = anx0 +
n−1∑

k=0

an−k−1bk, n≥ 1. (2.5)
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By the relation (2.4) and (2.5), one gets

∥∥xn− yn
∥∥≤

∥∥∥∥∥

n−1∑

k=0

bka
n−k−1

∥∥∥∥∥≤
n−1∑

k=0

∥∥bk
∥∥|a|n−k−1

≤ ε
1−|a|n
1−|a| <

ε

1−|a| , n≥ 1.

(2.6)

(2) If |a| > 1, by using the comparison test, it follows that the series
∑∞

n=1(bn−1/an) is
absolutely convergent, since

∥∥∥∥
bn−1

an

∥∥∥∥≤
ε

|a|n , n≥ 1,

∞∑

n=1

ε

|a|n =
ε

|a|− 1
.

(2.7)

Denoting

s :=
∞∑

n=1

bn−1

an
, (2.8)

we define the sequence (yn)n≥0 by the relation (2.2) with y0 = x0 + s.
Then one obtains

∥∥xn− yn
∥∥
∥∥∥∥∥− ans+

n−1∑

k=0

bka
n−k−1

∥∥∥∥∥= |a|
n

∥∥∥∥∥− s+
n−1∑

k=0

bk
ak+1

∥∥∥∥∥

= |a|n
∥∥∥∥∥

∞∑

k=n

bk
ak+1

∥∥∥∥∥

≤ ε
∞∑

n=1

1
|a|n =

ε

|a|− 1
, n≥ 0.

(2.9)

The lemma is proved. �

Remark 2.2. (1) If |a| > 1, then the sequence (yn)n≥0 from Lemma 2.1 is uniquely deter-
mined.

(2) If |a| < 1, then there exists an infinite number of sequences (yn)n≥0 in Lemma 2.1
that satisfy (2.2) and (2.3).

Proof. (1) Suppose that there exists another sequence (yn)n≥0 defined by (2.2), y0 �= x0 + s,
that satisfies (2.3). Hence,

∥∥xn− yn
∥∥
∥∥∥∥∥a

n
(
x0− y0

)
+

n−1∑

k=0

bka
n−k−1

∥∥∥∥∥= |a|
n

∥∥∥∥∥x0− y0 +
n−1∑

k=0

bk
ak+1

∥∥∥∥∥, n≥ 1. (2.10)

Since

lim
n→∞

∥∥∥∥∥x0− y0 +
n−1∑

k=0

bk
ak+1

∥∥∥∥∥=
∥∥x0 + s− y0

∥∥ �= 0, (2.11)
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it follows that

lim
n→∞

∥∥xn− yn
∥∥=∞. (2.12)

(2) If |a| < 1, one can choose y0 = x0 +u, ‖u‖ ≤ ε. Then

∥∥xn− yn
∥∥=

∥∥∥∥∥− anu+
n−1∑

k=0

bka
n−k−1

∥∥∥∥∥≤ ε
n∑

k=0

|a|k

= ε
1−|a|n+1

1−|a| ≤ ε

1−|a| , n≥ 1.

(2.13)

�

The stability result for the p-order linear recurrence with constant coefficients is con-
tained in the next theorem.

Theorem 2.3. Let X be a Banach space over the field K , ε > 0, and a1,a2, . . . ,ap ∈ K such
that the equation

r p− a1r
p−1−···− ap−1r− ap = 0 (2.14)

admits the roots r1,r2, . . . ,rp, |rk| �= 1, 1 ≤ k ≤ p, and (bn)n≥0 is a sequence in X . Suppose
that (xn)n≥0 is a sequence in X with the property

∥∥xn+p− a1xn+p−1−···− ap−1xn+1− apxn− bn
∥∥≤ ε, n≥ 0. (2.15)

Then there exists a sequence (yn)n≥0 in X given by the recurrence

yn+p = a1yn+p−1 + ···+ ap−1yn+1 + ap yn + bn, n≥ 0, (2.16)

such that

∥∥xn− yn
∥∥≤ ε∣∣(∣∣r1

∣∣− 1
)···(∣∣rp

∣∣− 1
)∣∣ , n≥ 0. (2.17)

Proof. We prove Theorem 2.3 by induction on p.
For p = 1, the conclusion of Theorem 2.3 is true in virtue of Lemma 2.1. Suppose now

that Theorem 2.3 holds for a fixed p ≥ 1. We have to prove the following assertion.

Assertion 2.4. Let ε be a positive number and a1,a2, . . . ,ap+1 ∈ K such that the equation

r p+1− a1r
p−···− apr− ap+1 = 0 (2.18)

admits the roots r1,r2, . . . ,rp+1, |rk| �= 1, 1 ≤ k ≤ p + 1, and (bn)n≥0 is a sequence in X . If
(xn)n≥0 is a sequence in X satisfying the relation

∥∥xn+p+1− a1xn+p−···− apxn+1− ap+1xn− bn
∥∥≤ ε, n≥ 0, (2.19)

then there exists a sequence (yn)n≥0 in X , given by the recurrence

yn+p+1 = a1yn+p + ···+ ap yn+1 + ap+1yn + bn, n≥ 0, (2.20)
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such that

∥∥xn− yn
∥∥≤ ε∣∣(∣∣r1

∣∣− 1
)···(∣∣rp+1

∣∣− 1
)∣∣ , n≥ 0. (2.21)

The relation (2.19) can be written in the form

∥∥xn+p+1−
(
r1 + ···+ rp+1

)
xn+p−···+ (−1)p+1r1 ···rp+1xn− bn

∥∥≤ ε, n≥ 0. (2.22)

Denoting xn+1− rp+1xn = un, n≥ 0, one gets by (2.22)

∥∥un+p−
(
r1 + ···+ rp

)
un+p−1 + ···+ (−1)pr1r2 ···rpun− bn

∥∥≤ ε, n≥ 0. (2.23)

By using the induction hypothesis, it follows that there exists a sequence (zn)n≥0 in X ,
satisfying the relations

zn+p = a1zn+p−1 + ···+ apzn + bn, n≥ 0, (2.24)
∥∥un− zn

∥∥≤ ε∣∣(∣∣r1
∣∣− 1

)···(∣∣rp
∣∣− 1

)∣∣ , n≥ 0. (2.25)

Hence

∥∥xn+1− rp+1xn− zn
∥∥≤ ε∣∣(∣∣r1

∣∣− 1
)···(∣∣rp

∣∣− 1
)∣∣ , n≥ 0, (2.26)

and taking account of Lemma 2.1, it follows from (2.26) that there exists a sequence
(yn)n≥0 in X , given by the recurrence

yn+1 = rp+1yn + zn, n≥ 0, (2.27)

that satisfies the relation

∥∥xn− yn
∥∥≤ ε∣∣(∣∣r1

∣∣− 1
)···(∣∣rp+1

∣∣− 1
)∣∣ , n≥ 0. (2.28)

By (2.24) and (2.27), one gets

yn+p+1 = a1yn+p + ···+ ap+1yn + bn, n≥ 0. (2.29)

The theorem is proved. �

Remark 2.5. If |rk| > 1, 1≤ k ≤ p, in Theorem 2.3, then the sequence (yn)n≥0 is uniquely
determined.

Proof. The proof follows from Remark 2.2. �

Remark 2.6. If there exists an integer s, 1≤ s≤ p, such that |rs| = 1, then the conclusion
of Theorem 2.3 is not generally true.
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Proof. Let ε > 0, and consider the sequence (xn)n≥0, given by the recurrence

xn+2 + xn+1− 2xn = ε, n≥ 0, x0,x1 ∈ K. (2.30)

A particular solution of this recurrence is

xn = ε

3
n, n≥ 0, (2.31)

hence the general solution of the recurrence is

xn = α+β(−2)n +
ε

3
n, n≥ 0, α,β ∈ K. (2.32)

Let (yn)n≥0 be a sequence satisfying the recurrence

yn+2 + yn+1− 2yn = 0, n≥ 0, y0, y1 ∈ K. (2.33)

Then yn = γ+ δ(−2)n, n≥ 0, γ,δ ∈ K , and

sup
n∈N

∣∣xn− yn
∣∣=∞. (2.34)

�

Example 2.7. Let X be a Banach space and ε a positive number. Suppose that (xn)n≥0 is a
sequence in X satisfying the inequality

∥∥xn+2− xn+1− xn
∥∥≤ ε, n≥ 0. (2.35)

Then there exists a sequence ( fn)n≥0 in X given by the recurrence

fn+2− fn+1− fn = 0, n≥ 0, (2.36)

such that

∥∥xn− fn
∥∥≤ (2 +

√
5)ε, n≥ 0. (2.37)

Proof. The equation r2− r − 1= 0 has the roots r1 = (1 +
√

5)/2, r2 = (1−√5)/2. By the
Theorem 2.3, it follows that there exists a sequence ( fn)n≥0 in X such that

∥∥xn− fn
∥∥≤ ε∣∣(∣∣r1

∣∣− 1
)(∣∣r2

∣∣− 1
)∣∣ = (2 +

√
5)ε, n≥ 0. (2.38)

�
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