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1. Introduction

Differential and integral calculus on time scales allows to develop a theory of dynamic
equations in order to unify and extend the usual differential equations and difference
equations. For single variable differential and integral calculus on time scales, we refer
the reader to the textbooks [4, 5] and the references given therein. Multivariable calcu-
lus on time scales was developed by the authors [2, 3]. In [3], we presented the process
of Riemann multiple delta (nabla and mixed types) integration on time scales. In the
present paper, we introduce the definitions of Lebesgue multi-dimensional delta (nabla
and mixed types) measures and integrals on time scales. A comparison of the Lebesgue
multiple delta integral with the Riemann multiple delta integral is given.

Beside this introductory section, this paper consists of two sections. In Section 2, fol-
lowing [3], we give the Darboux definition of the Riemann multiple delta integral and
present some needed facts connected to it. The main part of this paper is Section 3. There,
a brief description of the Carathéodory construction of a Lebesgue measure in an ab-
stract setting is given. Then the Lebesgue multi-dimensional delta measure on time scales
is introduced and the Lebesgue delta measure of any single-point set is calculated. When
we have a measure, integration theory is available according to the well-known general
scheme of the Lebesgue integration process. Finally, we compare the Lebesgue multiple
delta integral with the Riemann multiple delta integral. We indicate also a way to define,
along with the Lebesgue multi-dimensional delta measure, the nabla and mixed types
Lebesgue multi-dimensional measures on time scales.

Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2006, Article ID 26391, Pages 1–12
DOI 10.1155/ADE/2006/26391



2 Multiple Lebesgue integration on time scales

2. Multiple Riemann integration

In this section, following [3], we give the definition of the multiple Riemann integral
on time scales over arbitrary bounded regions as we will compare in the next section
the Riemann integral with the Lebesgue integral introduced therein. For convenience, we
present the exposition for functions of two independent variables.

Let T1 and T2 be two time scales. For i = 1,2, let σi, ρi, and Δi denote the forward
jump operator, the backward jump operator, and the delta differentiation operator, re-
spectively, on Ti. Suppose a < b are points in T1, c < d are points in T2, [a,b) is the half-
closed bounded interval in T1, and [c,d) is the half-closed bounded interval in T2. Let us
introduce a “rectangle” (or “delta rectangle”) in T1×T2 by

R= [a,b)× [c,d)= {(t,s) : t ∈ [a,b), s∈ [c,d)
}
. (2.1)

First we define Riemann integrals over rectangles of the type given in (2.1). Let

{
t0, t1, . . . , tn

}⊂ [a,b], where a= t0 < t1 < ··· < tn = b,
{
s0,s1, . . . ,sk

}⊂ [c,d], where c = s0 < s1 < ··· < sk = d.
(2.2)

The numbers n and k may be arbitrary positive integers. We call the collection of intervals

P1 =
{[
ti−1, ti

)
: 1≤ i≤ n

}
(2.3)

a Δ-partition (or delta partition) of [a,b) and denote the set of all Δ-partitions of [a,b) by
�([a,b)). Similarly, the collection of intervals

P2 =
{[
s j−1,s j

)
: 1≤ j ≤ k

}
(2.4)

is called a Δ-partition of [c,d) and the set of all Δ-partitions of [c,d) is denoted by
�([c,d)). Let us set

Rij =
[
ti−1, ti

)× [s j−1,s j
)
, where 1≤ i≤ n, 1≤ j ≤ k. (2.5)

We call the collection

P = {Rij : 1≤ i≤ n,1≤ j ≤ k
}

(2.6)

aΔ-partition of R, generated by theΔ-partitions P1 and P2 of [a,b) and [c,d), respectively,
and write P = P1×P2. The rectangles Rij , 1≤ i≤ n, 1≤ j ≤ k, are called the subrectangles
of the partition P. The set of all Δ-partitions of R is denoted by �(R).

Let f : R→R be a bounded function. We set

M = sup
{
f (t,s) : (t,s)∈ R

}
, m= inf

{
f (t,s) : (t,s)∈ R

}
(2.7)

and for 1≤ i≤ n, 1≤ j ≤ k,

Mij = sup
{
f (t,s) : (t,s)∈ Rij

}
, mij = inf

{
f (t,s) : (t,s)∈ Rij

}
. (2.8)
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The upper Darboux Δ-sum U( f ,P) and the lower Darboux Δ-sum L( f ,P) of f with re-
spect to P are defined by

U( f ,P)=
n∑

i=1

k∑

j=1

Mij
(
ti− ti−1

)(
s j − s j−1

)
,

L( f ,P)=
n∑

i=1

k∑

j=1

mij
(
ti− ti−1

)(
s j − s j−1

)
.

(2.9)

Note that

U( f ,P)≤
n∑

i=1

k∑

j=1

M
(
ti− ti−1

)(
s j − s j−1

)=M(b− a)(d− c) (2.10)

and likewise L( f ,P)≥m(b− a)(d− c) so that

m(b− a)(d− c)≤ L( f ,P)≤U( f ,P)≤M(b− a)(d− c). (2.11)

The upper Darboux Δ-integral U( f ) of f over R and the lower Darboux Δ-integral L( f )
of f over R are defined by

U( f )= inf
{
U( f ,P) : P ∈�(R)

}
, L( f )= sup

{
L( f ,P) : P ∈�(R)

}
. (2.12)

In view of (2.11), U( f ) and L( f ) are finite real numbers. It can be shown that L( f ) ≤
U( f ).

Definition 2.1. The function f is called Δ-integrable (or delta integrable) over R provided
L( f ) = U( f ). In this case,

∫∫
R f (t,s)Δ1tΔ2s is used to denote this common value. This

integral is called the Riemann Δ-integral.

We need the following auxiliary result. The proof can be found in [5, Lemma 5.7].

Lemma 2.2. For every δ > 0 there exists at least one partition P1 ∈�([a,b)) generated by a
set

{
t0, t1, . . . , tn

}⊂ [a,b], where a= t0 < t1 < ··· < tn = b, (2.13)

such that for each i∈ {1,2, . . . ,n} either

ti− ti−1 ≤ δ (2.14)

or

ti− ti−1 > δ, ρ1
(
ti
)= ti−1. (2.15)

Definition 2.3. The set of all P1 ∈�([a,b)) that possess the property indicated in Lemma
2.2 is denoted by �δ([a,b)). Similarly, �δ([c,d)) is defined. Further, the set of all P∈�(R)
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such that

P = P1×P2, where P1 ∈�δ
(
[a,b)

)
, P2 ∈�δ

(
[c,d)

)
(2.16)

is denoted by �δ(R).

The following is a Cauchy criterion for Riemann delta integrability (see [3, Theorem
2.11]).

Theorem 2.4. A bounded function f on R is Δ-integrable if and only if for each ε > 0 there
exists δ > 0 such that

P ∈�δ(R) implies U( f ,P)−L( f ,P) < ε. (2.17)

Remark 2.5. In the two-variable time scales case, four types of integrals can be defined:
(i) ΔΔ-integral over [a,b)× [c,d), which is introduced by using partitions consisting

of subrectangles of the form [α,β)× [γ,δ);
(ii) ∇∇-integral over (a,b]× (c,d], which is defined by using partitions consisting of

subrectangles of the form (α,β]× (γ,δ];
(iii) Δ∇-integral over [a,b)× (c,d], which is defined by using partitions consisting of

subrectangles of the form [α,β)× (γ,δ];
(iv) ∇Δ-integral over (a,b]× [c,d), which is defined by using partitions consisting of

subrectangles of the form (α,β]× [γ,δ).
For brevity the first integral we call simply a Δ-integral, and in this paper we are dealing
mainly with such Δ-integrals.

For i= 1,2 let us introduce the setT0
i which is obtained fromTi by removing a possible

finite maximal point of Ti, that is, if Ti has a finite maximum t∗, then T0
i = Ti \ {t∗},

otherwise T0
i = Ti. Briefly we will write T0

i = Ti \ {maxTi}. Evidently, for every point t ∈
T0
i there exists an interval of the form [α,β)⊂ Ti (with α,β ∈ Ti and α < β) that contains

the point t.

Definition 2.6. Let E ⊂ T0
1×T0

2 be a bounded set and let f be a bounded function defined
on the set E. Let R= [a,b)× [c,d)⊂ T1×T2 be a rectangle containing E (obviously such
a rectangle R exists) and define F on R as follows:

F(t,s)=
⎧
⎨

⎩

f (t,s) if (t,s)∈ E,

0 if (t,s)∈ R \E.
(2.18)

Then f is said to be Riemann Δ-integrable over E if F is Riemann Δ-integrable over R in
the sense of Definition 2.1, and

∫∫

E
f (t,s)Δ1tΔ2s=

∫∫

R
F(t,s)Δ1tΔ2s. (2.19)

If E is an arbitrary bounded subset of T0
1 × T0

2, then even constant functions need
not be Riemann Δ-integrable over E. In connection with this we introduce the so-called
Jordan Δ-measurable subsets of T0

1 ×T0
2. The definition makes use of the Δ-boundary of
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a set E ⊂ T1 ×T2. First, we recall the definition of the usual boundary of a set as given
in [3].

Definition 2.7. Let E ⊂ T1×T2. A point x = (t,s)∈ T1×T2 is called a boundary point of E
if every open (two-dimensional) ball B(x;r)= {y ∈ T1×T2 : d(x, y) < r} of radius r and
center x contains at least one point of E and at least one point of (T1×T2) \E, where d
is the usual Euclidean distance. The set of all boundary points of E is called the boundary
of E and is denoted by ∂E.

Definition 2.8. Let E ⊂ T1×T2. A point x = (t,s)∈ T1×T2 is called a Δ-boundary point
of E if x ∈ T0

1 × T0
2 and every rectangle of the form [t, t′)× [s,s′) ⊂ T1 × T2 with t′ ∈

T1, t′ > t, and s′ ∈ T2, s′ > s, contains at least one point of E and at least one point of
(T1×T2) \E. The set of all Δ-boundary points of E is called the Δ-boundary of E, and it
is denoted by ∂ΔE.

Definition 2.9. A point (t0,s0) ∈ T0
1 ×T0

2 is called Δ-dense if every rectangle of the form
V = [t0, t)× [s0,s) ⊂ T1 ×T2 with t ∈ T1, t > t0, and s ∈ T2, s > s0, contains at least one
point of T1×T2 distinct from (t0,s0). Otherwise the point (t0,s0) is called Δ-scattered.

Note that in the single variable caseΔ-dense points are precisely the right-dense points,
and Δ-scattered points are precisely the right-scattered points. Also, a point (t0,s0)∈ T0

1×
T0

2 is Δ-dense if and only if at least one of t0 and s0 is right dense inT1 and T2, respectively.
Obviously, each Δ-boundary point of E is a boundary point of E, but the converse is

not necessarily true. Also, each Δ-boundary point of E must belong to T0
1×T0

2 and must
be a Δ-dense point in T1×T2.

Example 2.10. We consider the following examples.
(i) For arbitrary time scales T1 and T2, the rectangle of the form E = [a,b)× [c,d)⊂
T1 ×T2, where a,b ∈ T1, a < b, and c,d ∈ T2, c < d, has no Δ-boundary point,
that is, ∂ΔE =∅.

(ii) If T1 = T2 = Z, then any set E ⊂ Z×Z has no boundary as well as no Δ-boundary
points.

(iii) Let T1 = T2 =R and a,b,c,d ∈R with a < b and c < d. Let us set

E1 = [a,b)× [c,d), E2 = (a,b]× (c,d], E3 = [a,b]× [c,d]. (2.20)

Then all three rectangles E1, E2, and E3 have the boundary consisting of the union
of all four sides of the rectangle. Moreover, ∂ΔE1 is empty, ∂ΔE2 consists of the
union of all four sides of the rectangle E2, and ∂ΔE3 consists of the union of the
right and upper sides of E3.

(iv) Let T1 = T2 = [0,1]∪{2}, where [0,1] is the real number interval, and let E =
[0,1)× [0,1). Then the boundary ∂E of E consists of the union of the right and
upper sides of the rectangle E whereas ∂ΔE =∅.

(v) Let T1 = T2 = [0,1]∪{(n+ 1)/n : n ∈N}, where [0,1] is the real number inter-
val, and let E = [0,1]× [0,1]. Then the boundary ∂E as well as the Δ-boundary
∂ΔE of E coincides with the union of the right and upper sides of E.
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Definition 2.11. Let E ⊂ T0
1×T0

2 be a bounded set and let ∂ΔE be its Δ-boundary. Let R=
[a,b)× [c,d) be a rectangle in T1 ×T2 such that E∪ ∂ΔE ⊂ R. Further, let �(R) denote
the set of all Δ-partitions of R of type (2.5) and (2.6). For every P ∈�(R) define J∗(E,P)
to be the sum of the areas (for a rectangle V = [α,β)× [γ,δ) ⊂ T1 ×T2, its “area” is the
number m(V)= (β−α)(δ− γ)) of those subrectangles of P which are entirely contained
in E, and let J∗(E,P) be the sum of the areas of those subrectangles of P each of which
contains at least one point of E∪ ∂ΔE. The numbers

J∗(E)= sup
{
J∗(E,P) : P ∈�(R)

}
, J∗(E)= inf

{
J∗(E,P) : P ∈�(R)

}
(2.21)

are called the (two-dimensional) inner and outer Jordan Δ-measure of E, respectively. The
set E is said to be Jordan Δ-measurable if J∗(E)= J∗(E), in which case this common value
is called the Jordan Δ-measure of E, denoted by J(E). The empty set is assumed to have
Jordan Δ-measure zero.

It is easy to verify that 0≤ J∗(E)≤ J∗(E) always and that

J∗(E)− J∗(E)= J∗
(
∂ΔE

)
. (2.22)

Hence E is Jordan Δ-measurable if and only if its Δ-boundary ∂ΔE has Jordan Δ-measure
zero.

Note that every rectangle R = [a,b)× [c,d) ⊂ T1 × T2, where a,b ∈ T1, a < b, and
c,d ∈ T2, c < d, is Jordan Δ-measurable with Jordan Δ-measure J(R) = (b− a)(d − c).
Indeed, it is easily seen that the Δ-boundary of R is empty, and therefore it has Jordan
Δ-measure zero.

For each point x = (t,s) ∈ T0
1 ×T0

2, the single point set {x} is Jordan Δ-measurable,
and its Jordan measure is given by

J
({x})= (σ1(t)− t

)(
σ2(s)− s

)= μ1(t)μ2(s). (2.23)

Example 2.12. Let T1 = T2 =R (or T1 = Z and T2 =R), let a < b be rational numbers in
T1, and let c < d be rational numbers in T2. Further, let [a,b] be the interval in T1, let
[c,d] be the interval in T2, and let E be the set of all points of [a,b]× [c,d] with rational
coordinates. Then E is not Jordan Δ-measurable. The inner Jordan Δ-measure of E is 0
(there is no nonempty Δ-rectangle entirely contained in E), while the outer Jordan Δ-
measure of E is equal to (σ1(b)− a)(d− c). The Δ-boundary of E coincides with E itself.

If E ⊂ T0
1×T0

2 is any bounded Jordan Δ-measurable set, then the integral
∫∫
E 1Δ1tΔ2s

exists, and we have

∫∫

E
1Δ1tΔ2s= J(E). (2.24)
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In the case T1 = T2 = Z, for any bounded set E ⊂ Z×Z we have ∂ΔE = 0, and therefore
E is Jordan Δ-measurable. In this case, for any function f : E→R, we have

∫∫

E
f (t,s)Δ1tΔ2s=

∑

(t,s)∈E
f (t,s), (2.25)

and the Jordan Δ-measure of E coincides with the number of points of E.

Remark 2.13. Suppose that T1 has a finite maximum τ(1)
0 . Since by definition σ1(τ(1)

0 ) =
τ(1)

0 , it is reasonable in view of (2.23) to assume that J({x})= 0 for any point x of the form

x = (τ(1)
0 ,s), where s∈ T2. Also, if T2 has a finite maximum τ(2)

0 , then we can assume that
J({y})= 0 for any point y of the form y = (t,τ(2)

0 ), where t ∈ T1.

3. Multiple Lebesgue integration

First, for the convenience of the reader, we briefly describe the Carathéodory construction
of a Lebesgue measure in an abstract setting (see [1, 6–8]). Let X be an arbitrary set. A
collection (family) � of subsets of X is called a semiring if

(i) ∅∈�;
(ii) A,B ∈�, then A∩B ∈�;

(iii) A,B ∈� and B ⊂ A, then A \B can be represented as a finite union

A \B =
n⋃

k=1

Ck (3.1)

of pairwise disjoint sets Ck ∈�.
A (set) function m : �→ [0,∞] whose domain is � and whose values belong to the ex-
tended real half-line [0,∞] is said to be a measure on � if

(i) m(∅)= 0;
(ii) m is (finitely) additive in the sense that if A ∈ � such that A = ∪n

i=1Ai, where
A1, . . . ,An ∈� are pairwise disjoint, then

m(A)=
n∑

i=1

m
(
Ai
)
. (3.2)

A measure m with domain of definition � is said to be countably additive (or σ-additive)
if, for every sequence {Ai} of disjoint sets in � whose union is also in �, we have

m

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

m
(
Ai
)
. (3.3)

Let �(X) be the collection of all subsets of X , � a semiring of subsets of X , and m : �→
[0,∞] a σ-additive measure of �. Define the set function

m∗ : �(X)−→ [0,∞] (3.4)
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as follows. Let E be any subset of X . If there exists at least one finite or countable system
of sets Vi ∈�, i= 1,2, . . . , such that E ⊂∪iVi, then we put

m∗(E)= inf
∑

i

m
(
Vi
)
, (3.5)

where the infimum is taken over all coverings of E by a finite or countable system of sets
Vi ∈�. If there is no such covering of E, then we put m∗(E) =∞. The set function m∗

defined above is called an outer measure on �(X) (or on X) generated by the pair (�,m).
The outer measure m∗ is defined for each E ⊂ X , however, it cannot be taken as a measure
on X because it is not additive in general. In order to guarantee the additivity of m∗ we
must restrict m∗ to the collection of the so-called measurable subsets of X . A subset A of
X is said to be m∗-measurable (or measurable with respect to m∗) if

m∗(E)=m∗(E∩A) +m∗(E∩AC
)
, E ⊂ X , (3.6)

where AC = X \A denotes the complement of the set A. A fundamental fact of measure
theory is that (see [6, Theorem 1.3.4]) the familyM(m∗) of all m∗-measurable subsets of
X is a σ-algebra (i.e., M(m∗) contains X and is closed under the formation of countable
unions and of complements) and the restriction of m∗ to M(m∗), which we denote by
μ, is a σ-additive measure on M(m∗). We have � ⊂M(m∗) and μ(V) =m(V) for each
V ∈ �. The measure μ is called the Carathéodory extension of the original measure m
defined on the semiring �. The measure μ obtained in this way is also called the Lebesgue
measure on X generated by the pair (�,m). Note that the main difference between the Jor-
dan and Lebesgue-Carathéodory constructions of measure of a set is that the Jordan con-
struction makes use only of finite coverings of the set by some “elementary” sets whereas
the Lebesgue-Carathéodory construction together with the finite coverings admits count-
able coverings as well. Due to this fact the notion of the Lebesgue measure generalizes the
notion of the Jordan measure.

Passing now on to time scales, let n∈N be fixed. For each i∈ {1, . . . ,n}, let Ti denote
a time scale and let σi, ρi, and Δi denote the forward jump operator, the backward jump
operator, and the delta differentiation operator on Ti, respectively. Let us set

Λn = T1×···×Tn =
{
t = (t1, . . . , tn

)
: ti ∈ Ti, 1≤ i≤ n

}
. (3.7)

We call Λn an n-dimensional time scale. The set Λn is a complete metric space with the
metric d defined by

d(t,s)=
( n∑

i=1

∣
∣ti− si

∣
∣2
)1/2

for t,s∈Λn. (3.8)

Denote by � the collection of all rectangular parallelepipeds in Λn of the form

V = [a1,b1
)×···× [an,bn

)= {t = (t1, . . . , tn
)∈Λn : ai ≤ ti < bi, 1≤ i≤ n

}
(3.9)

with a = (a1, . . . ,an), b = (b1, . . . ,bn) ∈ Λn, and ai ≤ bi for all 1 ≤ i ≤ n. If ai = bi for
some values of i, then V is understood to be the empty set. We will call V also an
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(n-dimensional) left-closed and right-open interval in Λn and denote it by [a,b). Let
m : �→ [0,∞) be the set function that assigns to each parallelepiped V = [a,b) its vol-
ume:

m(V)=
n∏

i=1

(
bi− ai

)
. (3.10)

Then it is not difficult to verify that � is a semiring of subsets of Λn and m is a σ-additive
measure on �. By μΔ we denote the Carathéodory extension of the measure m defined on
the semiring � and call μΔ the Lebesgue Δ-measure on Λn. The m∗-measurable subsets
of Λn will be called Δ-measurable sets and m∗-measurable functions will be called Δ-
measurable functions.

Theorem 3.1. Let T0
i = Ti \ {maxTi}. For each point

t = (t1, . . . , tn
)∈ T0

1×···×T0
n (3.11)

the single-point set {t} is Δ-measurable, and its Δ-measure is given by

μΔ
({t})=

n∏

i=1

(
σi
(
ti
)− ti

)=
n∏

i=1

μi
(
ti
)
. (3.12)

Proof. If ti < σi(ti) for all 1≤ i≤ n, then

{t} = [t1,σ1
(
t1
))×···× [tn,σn

(
tn
))∈�. (3.13)

Therefore {t} is Δ-measurable and

μΔ
({t})=m

([
t1,σ1

(
t1
))×···× [tn,σn

(
tn
)))=

n∏

i=1

(
σi
(
ti
)− ti

)
, (3.14)

which is the desired result. Further consider the case when ti = σi(ti) for some values
of i ∈ {1, . . . ,n} and ti < σi(ti) for the other values of i. To illustrate the proof, suppose
ti = σi(ti) for 1 ≤ i ≤ n− 1 and tn < σn(tn). In this case for each i ∈ {1, . . . ,n− 1} there
exists a decreasing sequence {t(k)

i }k∈N of points of Ti such that t(k)
i > ti and t(k)

i → ti as
k→∞. Consider the parallelepipeds in Λn,

V (k) = [t1, t(k)
1

)×···× [tn−1, t(k)
n−1

)× [tn,σn
(
tn
))

for k ∈N. (3.15)

Then

V (1) ⊃V (2) ⊃ ··· , {t} =
∞⋂

k=1

V (k). (3.16)

Hence {t} is Δ-measurable as a countable intersection of Δ-measurable sets, and by the
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continuity property of the σ-additive measure μΔ, we have

μΔ
({t})= lim

k→∞
μΔ
(
V (k))= lim

k→∞
(
t(k)
1 − t1

)···(t(k)
n−1− tn−1

)(
σn
(
tn
)− tn

)= 0, (3.17)

and so (3.12) holds in this case as well. �

Example 3.2. In the case T1 = ··· = Tn =R, the measure μΔ coincides with the ordinary
Lebesgue measure on Rn. In the case T1 = ··· = Tn = Z, for any E ⊂ Zn, μΔ(E) coincides
with the number of points of the set E.

Example 3.3. The set E given above in Example 2.12 is Lebesgue Δ-measurable and its
(two-dimensional) Lebesgue Δ-measure is equal to zero.

Having the σ-additive measure μΔ on Λn, we possess the corresponding integration
theory for functions f : E ⊂Λn→R, according to the general Lebesgue integration theory
(see, e.g., [6]). The Lebesgue integral associated with the measure μΔ on Λn is called the
Lebesgue Δ-integral. For a Δ-measurable set E ⊂Λn and a Δ-measurable function f : E→
R, the corresponding Δ-integral of f over E will be denoted by

∫

E
f
(
t1, . . . , tn

)
Δ1t1 ···Δntn,

∫

E
f (t)Δt, or

∫

E
f dμΔ. (3.18)

So all theorems of the general Lebesgue integration theory, including the Lebesgue dom-
inated convergence theorem, hold also for Lebesgue Δ-integrals on Λn. Finally, we com-
pare the Lebesgue Δ-integral with the Riemann Δ-integral.

Theorem 3.4. Let V = [a,b) be a rectangular parallelepiped in Λn of the form (3.9) and let
f be a bounded real-valued function on V . If f is Riemann Δ-integrable over V , then f is
Lebesgue Δ-integrable over V , and

R
∫

V
f (t)Δt = L

∫

V
f (t)Δt, (3.19)

where R and L indicate the Riemann and Lebesgue Δ-integrals, respectively.

Proof. Suppose that f is Riemann Δ-integrable over V = [a,b). Then, by Theorem 2.4,
for each k ∈ N we can choose δk > 0 (with δk → 0 as k →∞) and a Δ-partition P(k) =
{R(k)

i }N(k)
i=1 of V such that P(k) ∈�δk (V) and U( f ,P(k))−L( f ,P(k)) < 1/k. Hence

lim
k→∞

L
(
f ,P(k))= lim

k→∞
U
(
f ,P(k))= R

∫

V
f (t)Δt. (3.20)

By replacing the partitions P(k) with finer partitions if necessary, we can assume that for
each k ∈N the partition P(k+1) is a refinement of the partition P(k). Let us set

m(k)
i = inf

{
f (t) : t ∈ R(k)

i

}
, M(k)

i = sup
{
f (t) : t ∈ R(k)

i

}
(3.21)

for i = 1,2, . . . ,N(k), and define sequences {ϕk}k∈N and {φk}k∈N of functions on V by
letting

ϕk(t)≡m(k)
i , φk(t)≡M(k)

i for t ∈ R(k)
i , 1≤ i≤N(k). (3.22)
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Then {ϕk} is a nondecreasing and {φk} is a nonincreasing sequence of simple Δ-measur-
able functions. For each k ∈N, we have

ϕk ≤ ϕk+1, φk ≥ φk+1, (3.23)

ϕk ≤ f ≤ φk, (3.24)

L
∫

V
ϕk(t)Δt = L

(
f ,P(k)), L

∫

V
φk(t)Δt =U

(
f ,P(k)). (3.25)

Since f is bounded, the sequences {ϕk} and {φk} are bounded by (3.21) and (3.22). Addi-
tionally taking the monotonicity (3.23) into account, we conclude that the limit functions

ϕ(t)= lim
k→∞

ϕk(t), φ(t)= lim
k→∞

φk(t) for t ∈V (3.26)

exist and that

ϕ(t)≤ f (t)≤ φ(t), t ∈V. (3.27)

The functions ϕ and φ are Δ-measurable as limits (3.26) of the Δ-measurable functions
ϕk and φk, respectively. Lebesgue’s dominated convergence theorem implies that ϕ and φ
are Lebesgue Δ-integrable over V and

lim
k→∞

L
∫

V
ϕk(t)Δt = L

∫

V
ϕ(t)Δt, lim

k→∞
L
∫

V
φk(t)Δt = L

∫

V
φ(t)Δt. (3.28)

Therefore passing on to the limit in (3.25) as k→∞ and taking (3.20) into account, we
obtain

L
∫

V
ϕ(t)Δt = L

∫

V
φ(t)Δt = R

∫

V
f (t)Δt. (3.29)

From (3.29) we find

L
∫

V

[
φ(t)−ϕ(t)

]
Δt = 0. (3.30)

Since in addition φ(t)−ϕ(t)≥ 0 for all t ∈V , (3.30) implies

ϕ(t)= φ(t) Δ-almost everywhere onV. (3.31)

So (3.27) and (3.31) show that f (t)= ϕ(t) Δ-almost everywhere on V . It follows that f is
Lebesgue Δ-integrable together with ϕ and that the Lebesgue Δ-integrals of f and ϕ over
V coincide. Now from (3.29) we get that the Lebesgue Δ-integral of f over V coincides
with the Riemann Δ-integral of f over V . �

Remark 3.5. Let E be a bounded Jordan Δ-measurable set in T0
1×···×T0

n and f : E→R
a bounded function. Using Definition 2.6 and Theorem 3.4 we get that if f is Riemann Δ-
integrable over E, then f is Lebesgue Δ-integrable over E, and the values of the integrals
coincide.
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Remark 3.6. We can define Lebesgue nabla measure (and hence Lebesgue nabla integral)
on Λn by replacing the family � of parallelepipeds of the form (3.9) by the family �′ of
parallelepipeds of the form

V ′ = (a1,b1
]×···×(an,bn

]
, (3.32)

with the same volume formula

m(V ′)=
n∏

i=1

(
bi− ai

)
. (3.33)

Similarly we can define mixed types of Lebesgue measures on Λn by taking the families
of parallelepipeds in which one part of the constituent intervals of the parallelepipeds
is left closed and right open and the other part is left open and right closed (see also
Remark 2.5).
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