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The classical theory of homogeneous and inhomogeneous linear difference equations
with constant coefficients on the set of integers or nonnegative integers provides effective
solution methods for a wide class of problems arising from different fields of applications.
However, linear difference equations with nonconstant coefficients present another im-
portant class of difference equations with much less highly developed methods and theo-
ries. In this work we present a new approach to this theory via polynomial hypergroups.
It turns out that a major part of the classical theory can be converted into hypergroup
language and technique, providing effective solution methods for a wide class of linear
difference equations with nonconstant coefficients.

Copyright © 2006 Ágota Orosz. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

A linear difference equation with nonconstant coefficients has the following general form:

aN (n) fn+N + aN−1(n) fn+N−1 + ···+ a1(n) fn+1 + a0(n) fn = gn, (1.1)

where the functions a0,a1, . . . ,aN , g : N→ C are given with aN not identically zero, and
N , k are fixed nonnegative integers (in this paperN= {0,1,2, . . .}). The above equation is
supposed to hold for some unknown function f :N→ C or f : Z→ C, depending on the
nature of the problem. In what follows we will prefer the case f :N→ C and the notation
f (m) and g(m) instead of fm and gm.

By the classical theory of differential equations the solution space of the above equa-
tion can be described completely in the constant coefficient case, that is, if the functions
a0,a1, . . . ,aN are constants. In this case the solution space is generated by exponential
monomial solutions, which arise from the roots of the characteristic polynomial, called
characteristic roots.
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2 Difference equations on discrete polynomial hypergroups

Much less is known in the case of nonconstant coefficients. In this work we offer a
method to solve some types of homogeneous linear difference equations with noncon-
stant coefficients by transforming these equations into homogeneous linear difference
equations with constant coefficients over hypergroups. This method is based on some
theory of homogeneous linear difference equations with constant coefficients on hyper-
groups developed along the lines of the classical theory over N. The basic idea is that the
role of exponential functions is played by the generating polynomials of some polynomial
hypergroups.

Some results of this work have been presented at the 5th Debrecen-Katowice Winter
Seminar in Bȩdlewo (Poland) in 2005.

We remark that most of this work can be generalized to the case of signed hypergroups,
as they are presented in [1]. Nevertheless, in the forthcoming presentation we restrict
ourselves to polynomial hypergroups in the sense of [2].

2. Discrete polynomial hypergroups

Let (αn)n∈N, (βn)n∈N and (γn)n∈N be real sequences with the following properties: γn > 0,
βn ≥ 0, αn+1 > 0 for all n in N, moreover α0 = 0, and αn + βn + γn = 1 for all n in N. We
define the sequence of polynomials (Pn)n∈N by P0(x)= 1, P1(x)= x, and by the recursive
formula

xPn(x)= αnPn−1(x) +βnPn(x) + γnPn+1(x) (2.1)

for all n ≥ 1 and x in R. In this case there exists constants c(n,m,k) for all n, m, k in N
such that

PnPm =
n+m∑

k=|n−m|
c(n,m,k)Pk (2.2)

holds for all n, m in N (see [3, 4]). This formula is called linearization formula, and the
coefficients c(n,m,k) are called linearization coefficients. It is clear that Pn(1)= 1 for all n
in N, hence we have

n+m∑

k=|n−m|
c(n,m,k)= 1 (2.3)

for all n inN. If the linearization coefficients are nonnegative: c(n,m,k)≥ 0 for all n, m, k
inN, then we can define a hypergroup structure onN by identifying the natural numbers
with the Dirac-measures in virtue of the following rule:

δn∗ δm =
n+m∑

k=|n−m|
c(n,m,k)δk (2.4)

for all n, m in N, with involution as the identity mapping and with e as 0. The resulting
hypergroup K = (N,∗) is called the polynomial hypergroup associated with the sequence
(Pn)n∈N.
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Let f :N→ C is an arbitrary function and m is a natural number. The translate of f by
m is defined by

�m f (n)=
∫

N
f (k)d

(
δn∗ δm

)
(k) (2.5)

for all n in N. Although n∗m is not defined on the hypergroup, the following notation
is in use:

f (n∗m)=�m f (n)=
n+m∑

k=|n−m|
c(n,m,k) f (k) (2.6)

for each n, m in N. The function χ : N→ C is said to be an exponential function on the
polynomial hypergroup if

χ(n∗m)= χ(n)χ(m) (2.7)

holds for all n, m in N. If the hypergroup is generated by the sequence of polynomials
(Pn)n∈N, then a function χ :N→ C is an exponential function if and only if

χ(n)= Pn(λ) (2.8)

holds for some complex number λ (see [2]).

3. Difference equations with 1-translation

In the classical theory of difference equations the translate of a function by n and the
translation of the function n-times by 1 give the same result for all n in N. But in the
hypergroup case there are two different ways to define difference equations along these
two interpretations. In this section we deal with the latter one. We introduce the notation

� f (n)=�1 f (n)= f (n∗ 1) (3.1)

for any f :N→ C and n inN, moreover �0 f = f and �N f =�(�N−1 f ) for each integer
N > 1. Obviously, � is a linear operator on the linear space CN of all complex valued
functions on N. If Q is any polynomial with complex coefficients, then Q(�) has the
obvious meaning. Let N be a positive integer, a0, . . . ,aN be complex numbers and suppose
that aN �= 0. We will consider functional equations of the form

Q(�) f = aN�N f (n) + aN−1�N−1 f (n) + ···+ a0 f (n)= 0, (3.2)

which is called a homogeneous linear difference equation of order N on the hypergroup K
with constant coefficients associated to the polynomial Q. The polynomial Q is called the
characteristic polynomial of (3.2) and its roots are called the characteristic roots of (3.2).
The solution space of (3.2) is the kernel of the linear operator Q(�), hence it is a linear
subspace of the function spaceCN. This solution space is translation invariant in the sense
that if f is a solution, then � f is a solution, too.
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Theorem 3.1. If Q is a complex polynomial of degree N ≥ 1, then the solution space of (3.2)
has dimension N .

Proof. Suppose that f :N→ C is a solution of (3.2). Since f (0∗ 1)= f (1) and for n≥ 1
we have

f (n∗ 1)=
n+1∑

k=n−1

c(n,1,k) f (k)= αn f (n− 1) +βn f (n) + γn f (n+ 1), (3.3)

where (αn)n∈N, (βn)n∈N and (γn)n∈N are the sequences appearing in the definition of the
polynomial hypergroup. Considering (3.2) for n= 0 we get

aNγN−1 ···γ1γ0 f (N) +
N−1∑

i=0

kN ,i f (i)= 0 (3.4)

with some complex numbers kN ,i (i = 0, . . . ,N − 1). Since obviously aNγN−1 ···γ0 �= 0,
hence f (N) is determined by f (0), . . . , f (N − 1) and it is easy to see by induction that
f (n) is uniquely determined by the values f (0), . . . , f (N − 1) for n≥N . �

Theorem 3.2. If the complex number λ is a characteristic root of (3.2) with multiplicity m,

then all the functions n �→ P(k)
n (λ) are solutions of (3.2) for k = 0,1, . . . ,m− 1.

Proof. By the exponential property of the function n �→ Pn(λ) we have

�Pn(λ)= Pn(λ)P1(λ)= λPn(λ), �tPn(λ)= λtPn(λ), (3.5)

thus we can see immediately that this function is a solution of (3.2):

Q(�)Pn(λ)= (λN + aN−1λ
N−1 + ···+ a1λ+ a0

)
Pn(λ)= 0. (3.6)

For proving that n �→ P(k)
n (λ) are also solutions for 1 ≤ k ≤m, we need the translates of

P(k)
n (λ). After some calculation we get that

�rP(k)
n (λ)=

min(r,k)∑

t=0

(
r

t

)
λr−t

k!
(k− t)!

P(k−t)
n (λ) (3.7)

for r in N, therefore we have

Q(�)P(k)
n (λ)=

N∑

r=0

ar�rP(k)
n (λ)

=
N∑

r=0

ar

(min(r,k)∑

t=0

(
r

t

)
λr−t

k!
(k− t)!

P(k−t)
n (λ)

)

=
k∑

t=0

(
k

t

)( N∑

r=t
ar

r!
(r− t)!

λr−t
)
P(k−t)
n (λ)= 0,

(3.8)

as the tth derivative of the characteristic polynomial at λ is equal to zero for 0 ≤ t ≤
m− 1. �
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Lemma 3.3. Let k be a positive integer and l1, . . . , lk nonnegative integers. If λ1, . . . ,λk are

different complex numbers, then the functions P(i)
n (λj) are linearly independent for j =

1,2, . . . ,k and i= 0,1, . . . , l j .

Proof. First we show that Pn(λ1), . . . ,Pn(λk) are linearly independent if λ1, . . . ,λk are differ-
ent. If it is not the case, then there are complex numbers a1,a2, . . . ,ak, not all equal to zero,
with the property

∑k
i=1 aiPn(λi)= 0, which contradicts the fact that for some constant C

the following equation holds:

∣∣∣∣∣∣∣∣∣∣∣

P0
(
λ1
) ··· P0

(
λk
)

P1
(
λ1
) ··· P1

(
λk
)

. . .
Pk
(
λ1
) ··· Pk

(
λk
)

∣∣∣∣∣∣∣∣∣∣∣

= C

∣∣∣∣∣∣∣∣∣∣∣

1 ··· 1
λ1 ··· λk

. . .

λk1 ··· λkk

∣∣∣∣∣∣∣∣∣∣∣

�= 0. (3.9)

Now assume that there exist λ1, . . . ,λk different complex numbers such that the func-
tions n �→ P(i)

n (λj) are linearly dependent for j = 1,2, . . . ,k and i= 0,1, . . . , l j for some pos-
itive integers l1, . . . , lk. Suppose that k is the minimal positive integer with this property,
and also suppose that l1 + ···+ lk is minimal. It means, that there exist complex numbers
aj,i, not all equal to zero for j = 1, . . . ,k and i= 0, . . . , l j such that

k∑

j=1

l j∑

i=0

aj,iP
(i)
n

(
λj
)= 0 (3.10)

holds with aj,l j �= 0. Translating (3.10) by 1 we have

k∑

j=1

l j∑

i=1

aj,i
(
λjP

(i)
n

(
λj
)

+P(i−1)
n

(
λj
))

+
k∑

j=1

aj,0λjPn
(
λj
)= 0, (3.11)

and if we subtract (3.10) times λ1 from this equation we get an expression which does not

contain P(l1)
n (λ1):

l1−1∑

i=0

c1,iP
(i)
n

(
λ1
)

+
k∑

j=2

aj,l j

(
λ1− λj

)
P

(l j)
n
(
λj
)

+
k∑

j=2

l j−1∑

i=0

cj,iP
(i)
n

(
λj
)= 0 (3.12)

with some constants cj,i, and this means that either k or l1 + ···+ lk was not minimal.
�

Using Theorems 3.1, 3.2 and Lemma 3.3 we can characterize the solution space of (3.2)
completely.

Theorem 3.4. Let Q be a complex polynomial of degree N ≥ 1 with all different complex
zeros λ1,λ2, . . . ,λk, where the multiplicity of λj is l j ( j = 1,2, . . . ,k). Then the function f :
N→ C is a solution of (3.2) if and only if it is a linear combination of functions of the form

n �→ P(i)
n (λj) with j = 1,2, . . . ,k and i= 0,1, . . . , l j − 1.
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4. Difference equations with general translation

Let us consider the following equation for a function f :N→ C

aN�N f (n) + aN−1�N−1 f (n) + ···+ a0 f (n)= 0, (4.1)

where N is a positive integer and aN , . . . ,a0 are complex numbers. We note, that (4.1) can
be written in the form

aN f (n∗N) + aN−1 f
(
n∗ (N − 1)

)
+ ···+ a0 f (n)= 0. (4.2)

It is easy to see, that the solution space of (4.1) is a linear subspace of CN with dimension
N . We will show, that this solution space is generated by similar functions like in the case
of (3.2), but the characteristic polynomial is different: it depends on the basic generating
polynomials of the hypergroup.

Theorem 4.1. The function f : N→ C is a solution of (4.1) if and only if it is the linear

combination of functions of the form n �→ P(i)
n (λj) with j = 1,2, . . . ,k and i= 0,1, . . . , l j − 1,

where λ1,λ2, . . . ,λk are different complex zeros of the polynomial

λ �−→ aNPN (λ) + aN−1PN−1(λ) + ···+ a1P1(λ) + a0, (4.3)

and the multiplicity of λj is l j ( j = 1,2, . . . ,k).

Proof. It will be sufficient to show, that the functions n �→ P(i)
n (λj) with j = 1,2, . . . ,k and

i= 0,1, . . . , l j − 1 are solutions. Since

�m
(
P(i)
n (λ)

)=
i∑

t=0

(
i

t

)
P(t)
m (λ)P(i−t)

n (λ) (4.4)

for all m in N, substituting P(i)
n (λ) instead of f (n) in (4.1) we get

N∑

m=0

am�m
(
P(i)
n (λ)

)=
N∑

m=0

am

i∑

t=0

(
i

t

)
P(t)
m (λ)P(i−t)

n (λ)

=
i∑

t=0

(
i

t

)
P(i−t)
n (λ)

( N∑

m=0

amP
(t)
m (λ)

)
= 0,

(4.5)

which holds if λ is a root of (4.3) with a multiplicity higher than i. �

5. Examples

Example 5.1. We consider the equation

� f = 0. (5.1)

On the Chebyshev-hypergroup we have

� f (n)= 1
2

(
f (n+ 1) + f

(|n− 1|)), (5.2)
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hence (5.1) has the form

f (n+ 1) + f
(|n− 1|)= 0 (5.3)

for n= 0,1, . . . . With n= 0 we have f (1)= 0, and with n≥ 0 it follows f (n+ 2) + f (n)=
0, which implies f (2n+ 1)= 0 and f (2n)= (−1)n f (0). On the Legendre-hypergroup we
have

� f (n)= n+ 1
2n+ 1

f (n+ 1) +
n

2n+ 1
f
(|n− 1|), (5.4)

hence (5.1) has the form

(n+ 1) f (n+ 1) +n f
(|n− 1|)= 0 (5.5)

for n ≥ 0. With n = 0 we have f (1) = 0, and with n ≥ 0 it follows (n+ 2) f (n+ 2) + (n+
1) f (n)= 0, which implies f (2n+ 1)= 0, moreover f (2n)= (−1)n((2n−1)!!/(2n)!!) f (0).
(Here n!! denotes the double factorial of n.)

One observes that in the first case f (n)= f (0) ·Tn(0) and in the second case f (n)=
f (0) · Pn(0), where Tn, respectively Pn denotes the nth Chebyshev-polynomial, respec-
tively the nth Legendre-polynomial. This is a simple consequence of our previous results.
Indeed, the characteristic polynomial of (5.1) is Q(λ) = λ, hence the only characteristic
root is λ = 0 with multiplicity 1. Hence, on any polynomial hypergroup with generat-
ing polynomials (Pn)n∈N by Theorem 3.4, the general solution of the difference equation
(5.1) has the form f (n)= f (0) ·Pn(0).

Now we consider the following problem: find all solutions f :N→ C of the difference
equation

(n+ 2) f (n+ 2)− (2n+ 3) f (n+ 1) + (n+ 1) f (n)= 0 (5.6)

with f (0)= f (1). Observe, that by introducing g(n)= (n+ 1) f (n+ 1)− (n+ 1) f (n) for
n= 0,1, . . . we have g(n+ 1)− g(n)= 0, which means that g is constant and g(n)= g(0)=
f (1)− f (0)= 0. It follows (n+ 1) f (n+ 1)− (n+ 1) f (n)= 0, which implies again that f
is constant: f (n)= f (0) for each n in N. Then again one can realize that (5.6) is exactly
the difference equation

� f = f (5.7)

on the Legendre-hypergroup, which is a very special case of (3.2), and can be solved
with the method we offered above. Indeed, the characteristic polynomial has the form
Q(λ) = λ− 1 and the only characteristic root is λ = 1 with multiplicity 1. According to
Theorem 3.4, the general solution of the difference equation (5.6) has the form f (n) =
f (0) ·Pn(1), where Pn is the nth Legendre-polynomial. As Pn(1)= 1 for each n in N, we
have that all solutions of (5.6) satisfying f (0)= f (1) are constant.

We can modify (5.7) to consider

� f = c · f , (5.8)
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where c is a complex parameter. This is the eigenvalue problem for the translation oper-
ator � on any polynomial hypergroup with generating polynomials (Pn)n∈N. In this case
the characteristic polynomial is Q(λ) = λ− c having the only characteristic root λ = c
with multiplicity 1. Hence each complex number c is an eigenvalue with the correspond-
ing eigenfunction n �→ Pn(c).

Example 5.2. The study of higher order difference equations leads naturally to the study
of generalized polynomial functions on polynomial hypergroups. We will consider this
problem in more details elsewhere, here we work out a simple special case only. Consider
the difference equation

�2 f − 2� f + f = 0, (5.9)

or Δ2 f = 0, where we use the notation Δ = �− I , and I is the identity operator. The
generating polynomials of the underlying polynomial hypergroup are the polynomials
(Pn)n∈N. The characteristic polynomial of (5.9) is Q(λ)= λ2− 2λ+ 1= (λ− 1)2, hence the
only characteristic root is λ= 1 with multiplicity 2. By Theorem 3.4 the general solution
of (5.9) has the form

f (n)= A ·Pn(1) +B ·P′n(1)=A+B ·P′n(1), (5.10)

with arbitrary complex constants A, B. We know from the results of [5] that n �→ B ·
P′n(1) represents a general additive function on the given hypergroup, hence (5.9) can be
considered as a characterization of affine functions on polynomial hypergroups—exactly
as in the group case.

Example 5.3. Our last example illustrates the application of Theorem 4.1. We consider
the difference equation

�2 f − 2�1 f + f = 0 (5.11)

on the hypergroup which is generated by the sequences (αn)n∈N, (βn)n∈N and (γn)n∈N. By
Theorem 4.1 the general solution of (5.11) can be described with the help of the roots of
the polynomial

λ �−→ P2(λ)− 2P1(λ) + 1, (5.12)

where Pn denotes the nth basic polynomial for all n in N. Using the recursive formula for
n= 1 and the property αn +βn + γn = 1 we get

γ1
(
P2(λ)− 2P1(λ) + 1

)= (λ− 1)
(
λ− (γ1−α1

))
, (5.13)

hence the solutions are the functions

f (n)=APn(1) +BPn
(
γ1−α1

)= A+BPn
(
γ1−α1

)
(5.14)
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with arbitrary complex numbers A, B. On the Chebyshev-hypergroup, where the recur-
sive formula for the Chebyshev-polynomials (Tn)n∈N is

λTn(λ)= 1
2
Tn+1(λ) +

1
2
T|n−1|(λ) (5.15)

with T0(λ)= 1 and T1(λ)= λ the above equation has the form

f (n+ 4)− 2 f (n+ 3) + 2 f (n+ 2)− 2 f (n+ 1) + f (n)= 0 (5.16)

with the initial conditions

f (2)= 2 f (1)− f (0), f (3)= f (1). (5.17)

The general solution has the form

f (n)=A+B ·Tn(0) (5.18)

with arbitrary complex numbers A, B, and more explicitly, we can write f (2n) = A +
B(−1)n and f (2n+ 1)= 0 for each n in N. As in this case the problem reduces to a linear
homogeneous difference equation with constant coefficients, the same result can be de-
rived from the classical theory. Nevertheless, in the case of the Legendre-hypergroup one
obtains a linear homogeneous difference equation with nonconstant coefficients, and the
classical methods cannot be directly applied but by the virtue of (5.14) we know that the
solutions are the functions

f (n)= A+B ·Pn
(

1
3

)
, (5.19)

where Pn is the nth Legendre-polynomial. Similarly, in the case of the Chebyshev-
hypergroup of the second kind the recursive formula has the form

λUn(λ)= n+ 2
2n+ 2

Un+1(λ) +
n

2n+ 2
U|n−1|(λ) (5.20)

with U0(λ)= 1 and U1(λ)= λ, thus the solutions of (5.11) are the functions

f (n)= A+B ·Un

(
1
2

)
. (5.21)
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