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The main purpose of the paper is to give discrete-time counterpart for some strong (ro-
bust) stability results concerning periodic linear Hamiltonian systems. In the continuous-
time version, these results go back to Liapunov and Žukovskii; their deep generalizations
are due to Kreı̆n, Gel’fand, and Jakubovič and obtaining the discrete version is not an
easy task since not all results migrate mutatis-mutandis from continuous time to discrete
time, that is, from ordinary differential to difference equations. Throughout the paper,
the theory of the stability zones is performed for scalar (2nd-order) canonical systems.
Using the characteristic function, the study of the stability zones is made in connection
with the characteristic numbers of the periodic and skew-periodic boundary value prob-
lems for the canonical system. The multiplier motion (“traffic”) on the unit circle of the
complex plane is analyzed and, in the same context, the Liapunov estimate for the central
zone is given in the discrete-time case.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction, motivation, and problem statement

(A) Stability analysis of linear Hamiltonian systems with periodic coefficients goes back to
Liapunov [21] and Žukovskii [27]. If the simplest case of the second-order scalar equation
is considered

y′′ + λ2p(t)y = 0, (1.1)

where p(t) is T-periodic, then we call λ0 a λ-point of stability of (1.1) if for λ = λ0 all
solutions of (1.1) are bounded on R. If moreover all solutions of any equation of (1.1)
type but with p(t) replaced by p1(t) sufficiently close to p(t) (in some sense) are also
bounded for λ= λ0, then λ0 is called a λ-point of strong (robust) stability.

Remark that we might take p1(t)= λp(t) with λ �= λ0. In this case it was established by
Liapunov himself [21] that the set of the λ-points of strong stability of (1.1) is open and
if it is nonempty, it decomposes into a system of disjoint open intervals called λ-zones of
strong stability.
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2 Stability zones for discrete Hamiltonian systems

Equation (1.1) belongs to the more general class of linear periodic Hamiltonian sys-
tems described by

ẋ = λJH(t)x, (1.2)

with H(t) a T-periodic Hermitian 2m× 2m matrix and

J =
(

0 Im
−Im 0

)
. (1.3)

For this system, the results of Liapunov have been generalized by Kreı̆n [19], Gel’fand
and Lidskiı̆ [11], Yakubovich, and many others; the final part of this long line of research
was the book of Yakubovich and Staržinskii [26]. As pointed out by Kreı̆n and Jakubovic̆
[20], this research is motivated by various problems in contemporary physics and engi-
neering (e.g., dynamic stability of structures, parametric resonance both in mechanical
and electrical engineering, quantum-mechanical treatment of the motion of the electron
in a periodic field—see the book of Eastham [5]—and others).

(B) The discrete-time Hamiltonian systems represent, from several points of view, a
more recent field of research, emerging from various sources. If, for instance, in the book
of Kratz [17] the first paper on discrete-time Hamiltonian systems is considered to be
that of Hartman [16] (because it deals with disconjugacy, principal solutions, etc., which
are directly connected with book’s topics), such systems are known earlier with particular
reference to linear quadratic optimization problems: we may cite here the genuine pio-
neering paper of Halanay [12] and the book of Tou [25]—a reference book that used to
be very popular among engineers of that time. Linear periodic discrete-time Hamiltonian
systems are met in the existence problem for forced oscillations (periodic and almost peri-
odic) in discrete-time periodic systems with sector restricted nonlinearities (see the paper
of Halanay and Răsvan [15]). A good reference on discrete-time Hamiltonian systems in
optimization and control is the book of Halanay and Ionescu [13]. As we already men-
tioned, another line of research in the field is that represented by disconjugacy, oscillation,
and associated boundary value problems. A good reference is the book of Ahlbrandt and
Peterson [1], the papers of Erbe and Yan [7–10] and the long list of papers by Bohner et
al. among which we cite the more recent ones [2–4].

It is worth mentioning that disconjugacy is a basic property of the Hamiltonian sys-
tems both in the case of linear quadratic optimization and in the studies of Erbe and Yan,
Bohner, Došlý, Kratz a.s.o. This shows the “calculus of variations flavor” of all this line of
research.

(C) When such problems as stability and oscillations for systems with sector restricted
nonlinearities or linear quadratic stabilization are considered, the associated linear dis-
crete-time periodic Hamiltonian systems have to be not only (strongly) disconjugate but
also totally unstable (exponentially dichotomic, i.e., of hyperbolic type). This last prop-
erty is robust with respect to structural perturbations of the Hamiltonian. On the con-
trary, the total stability discussed earlier is not robust—generally speaking—but, as al-
ready mentioned, it is preserved against such perturbations that do not affect the Hamil-
tonian structure; this is the strong stability introduced by Kreı̆n (e.g., [19]).
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The results that will be presented in this paper deal with strong stability (in the sense of
Kreı̆n) of discrete-time Hamiltonian systems. We will consider here the discretized (sam-
pled) version of (1.2). Since stability is, generally speaking, not preserved by sampling (not
always), considering strong stability for discrete-time Hamiltonian systems is not without
interest. On the other hand, not all results of the continuous-time fields may migrate, mu-
tatis mutandis, to the discrete-time field. In order to illustrate this last statement, consider
the sampled version of (1.2) with

H(t)=
(
A(t) B∗(t)
B(t) D(t)

)
, (1.4)

that is,

yk+1− yk = λ
(
Bk yk +Dkzk+1

)
, (1.5)

zk+1− zk =−λ
(
Akyk +B∗k zk+1

)
. (1.6)

Here some details and comments are necessary. First of all, the above structure of H(t)
in the continuous-time case combined with the fact that H(t) is Hermitian—see the ex-
planation for system (1.2)—will imply A(t) and D(t) to be also Hermitian (symmetric
if the entries of the matrices are real). Also the discretization is such that the periodicity
and the Hamiltonian character migrate in the discrete-time case: this may be achieved
if the discretization step is chosen as T/N , where T is the period in the continuous-time
case and N is a (sufficiently large) positive integer; the Hamiltonian character is preserved
by forward discretization in one equation and backward in the other. Consequently sys-
tem (1.5) results as Hamiltonian—see [2–4, 17] and other texts where systems with such
structure are defined as discrete-time Hamiltonian; in fact this follows from several of
their properties which in the continuous-time case are known as characterizing Hamil-
tonian systems, an important one being the J-unitary character or symplecticity. Indeed,
system (1.5) may be written also as follows:

xk+1 = Ck(λ)xk, (1.7)

where

x =
(
y
z

)
, Ck(λ)=

(
I −λDk

0 I + λB∗k

)−1(
I + λBk 0
−λAk I

)
, (1.8)

for those λ for which Ck(λ) exists, that is, the matrix(
I −λDk

0 I + λB∗k

)
(1.9)

is invertible; this happens if the matrix I + λB∗k is nonsingular, that is, for all λ∈ C except
those for which det(I + λB∗k )= 0: these are the symmetric with respect to the unit circle
of the complex plane (in the sense of inversion) of the eigenvalues of −Bk. Indeed, if μ is
an eigenvalue of −Bk, then

det
(
μI +Bk

)= 0. (1.10)
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The symmetric of μ with respect to the unit circle is λ = μ−1, where the bar denotes the
complex conjugate, hence

det
(
I + λB∗k

)= det
(
I +μ−1B∗k

)= (μ)−mdet
(
μI +Bk

)= 0. (1.11)

In this way, the solution of (1.7) can be constructed forward for both yk and zk, that
is, the initial value (Cauchy) problem has a well-defined solution. Further, it is easily
shown that C∗k (λ)JCk(λ) = J for real λ, that is, Ck(λ) is in this case J-unitary. If besides
λ all matrices are real, we deduce that Ck(λ) is symplectic. As pointed out in [2–4], in
the discrete-time case Hamiltonian systems are a subset of the symplectic systems; if we
refer to [26] where systems (1.5) with real coefficients are called canonical, we may say
that in the discrete-time case canonical systems are a subset of the symplectic systems and
Hamiltonian systems (with complex coefficients) are a subset of the J-unitary systems. On
the contrary, symplectic (or J-unitary) and canonical (or Hamiltonian) systems coincide
in the continuous-time case.

We will mention here also another argument for the assertion that not all results from
the continuous-time case may migrate automatically to the discrete-time one.

The results on λ stability in the continuous-time case, more precisely the estimates of
the central zone, strongly rely on the fact that only entire functions of λ are met (starting
with the transition matrix and going on with the monodromy and the matrices in the
boundary value problem). In the discrete-time case we may see from (1.5) that this is
no longer true: in fact the assumption on invertibility of I + λB∗k speaks for that. There
are, nevertheless, notable exceptions. For instance, in [14] we considered the discretized
version of

y′′ + λP(t)y = 0 (1.12)

which leads to a system (1.5) with Bk = 0, Dk = I , Ak = Pk. Since Bk = 0, the above-
mentioned assumption is automatically fulfilled. Moreover Ck(λ) is a polynomial matrix
function, hence it is of entire type.

Another case is suggested by [4]: starting from the Sturm-Liouville equations, the fol-
lowing symplectic system is considered:

xk+1 =
(
Sk − λŜk

)
xk, (1.13)

where

Sk =
(
Ak Bk

Ck Dk

)
(1.14)

is symplectic and

Ŝk =
(

0 0
WkAk WkBk

)
, Wk ≥ 0. (1.15)

The two cases cannot be reduced one to another because the structures of matrices are
different. Nevertheless, if we want to obtain results on λ-stability for (1.13), the approach
to be taken is exactly that of [14].
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(D) With all these facts in mind, a research programme started, aiming to extend the
results of Kreı̆n type to the discrete case with the final outcome the migration of the Lia-
punov programme (announced or suggested in his early paper) to discrete-time systems.
Besides the already cited reference of Halanay and Răsvan [14], we mention here [23, 24]
where the line of Kreı̆n [19, 18] is followed and attempts are made to adapt those tech-
niques borrowed from the continuous-time field that cannot migrate mutatis-mutandis
to the discrete-time one.

In this paper, we will perform a rather complete analysis of the real scalar discrete-
time case and show how the obtained results are connected to Liapunov and Kreı̆n pro-
grammes.

2. Stability zones for discrete-time 2nd-order canonical systems

We will consider here canonical systems of the form

yk+1− yk = λ
(
bk yk +dkzk+1

)
, (2.1)

zk+1− zk =−λ
(
ak yk + bkzk+1

)
, (2.2)

the scalar version of (1.5) with ak, bk, dk being real and N-periodic. This canonical system
is defined by

Hk =
(
Ak B∗k
Bk Dk

)
, J =

(
0 I
−I 0

)
(2.3)

and may be written as (1.7) with

Ck(λ)=
(

1 −λdk
0 1 + λbk

)−1(
1 + λbk 0
−λak 1

)
= 1

1 + λbk

((
1 + λbk

)2− λ2dkak λdk
−λak 1

)
. (2.4)

Obviously this is a matrix with rational items, having a real pole at λ=−1/bk. At the same
time detCk(λ)≡ 1, hence it is an unimodular matrix. As known, for periodic systems the
structure and the stability properties are given by system’s multipliers—the eigenvalues of
the monodromy matrix UN (λ) = CN−1(λ)···C1(λ)C0(λ). As a product of rational uni-
modular matrices, UN (λ) is also rational and unimodular (unlike the continuous-time case
when it is an entire matrix function). It follows that the characteristic equation of UN (λ)
in this case is

ρ2− 2A(λ)ρ + 1= 0, (2.5)

where 2A(λ)= tr(UN (λ))—the trace of the unimodular monodromy matrix of (2.1); the
function A(λ) is called characteristic function of the canonical system. Its properties are
essential for defining and computing the λ-zones. In the continuous-time case, A(λ) is
an entire function while in the case of (2.1), it is a rational function with its poles are the
real numbers −1/bk, k = 0,N − 1 (these poles may not be distinct). In the following we
will see, once more, that not all properties of A(λ) in the continuous-time case are valid
mutatis mutandis in the discrete-time case.
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In the following, we will assume that (2.1) is of positive type in the sense of Krĕın [19],
that is, Hk ≥ 0,∀k,

∑N−1
0 Hk > 0. We will start with some basic properties of A(λ).

Proposition 2.1. All zeros of A(λ)−α, where |α| ≤ 1, are real.

The proof follows the line of [18, 26]. Let λ∗ be some zero of the rational function
A(λ)− α with |α| ≤ 1. We deduce that system’s multipliers ρ1(λ∗) and ρ2(λ∗) are given
by ρ1,2(λ∗)= α± ı

√
1−α2 and are located on the unit disk, that is, |ρi(λ∗)| = 1, i= 1,2.

Consider the boundary value problem for (1.7) defined by xN = ρi(λ∗)x0. As known from
the more general results of Kreı̆n [19] for continuous-time systems and of [14, 23] for
discrete-time systems, the characteristic numbers of the boundary value problem for the
Hamiltonian systems (1.5) of positive type, defined by xN = Gx0 with J-unitary G, are
real. If G= ρI with ρρ= 1, it is obviously J-unitary and the boundary value problem has
a nontrivial solution if and only if

det
(
UN (λ)− ρI)= ρ2− 2A(λ)ρ + 1= 0, (2.6)

hence if and only if ρ= ρi(λ) is a multiplier. Substituting ρi(λ∗) in the above equation, we
obtain A(λ∗)−α= 0 hence λ∗ is a characteristic number of the boundary value problem,
being thus real.

In the following we will need also the following result of a rather general character

Lemma 2.2. Let λ be some real number and let u be an eigenvector of UN (λ), the monodromy
matrix of (2.1), corresponding to some nonreal root of (2.5) such that |ρ| = 1 (but ρ �= ±1).
Then the scalar product (Ju,u) �= 0.

Proof. Since UN (λ) is real, we will have

UN (λ)u= ρ(λ)u, UN (λ)u= ρ(λ)u (2.7)

hence u is the eigenvalue associated to ρ and is linearly independent of u. Therefore the
matrix (u u) is nonsingular; we have, by direct computation

(u u)∗J(u u)=
(

(Ju,u) 0
0 (Ju,u)

)
. (2.8)

Since the left-hand side of the above equality is a nonsingular matrix, the right-hand side
matrix is such and the lemma is proved. �

According to the definition of [19], the multipliers having this property are called
definite. Using the terminology of [6], the multiplier is called K-positive if ı(Ju,u) > 0 and
K-negative if ı(Ju,u) < 0.

Proposition 2.3. All zeros of the rational function A(λ)− α, |α| ≤ 1, are simple, that is,
A′(λ) �= 0 for those λ such that |A(λ)| < 1.

Outline of proof. Let λ∗ be some zero of A(λ)−α for some α such that |α| < 1; according
to Proposition 2.1, λ∗ is real. The multipliers of the system will be

ρ1,2(λ)= A(λ)±
√
A2(λ)− 1= α± ı

√
1−α2 (2.9)
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and are nonreal, simple and of modulus 1; according to Proposition 2.1 the multipliers
are definite. Therefore, as showed in [19, 26], ρ j(λ) are analytic in a neighborhood of λ∗
and

ρ j(λ)= ρ j
(
λ∗
)[

1 + δj
(
λ− λ∗

)
+ o
(
λ− λ∗

)]
, (2.10)

where it can be shown, using the properties of discrete-time Hamiltonian systems, that

δj =− 1
ı
(
Juj ,uj

) N−1∑
0

[(
y
j
k(λ∗)

)∗(
Ak y

j
k

(
λ∗
)

+B∗k z
j
k+1

(
λ∗
))

+
(
z
j
k+1

(
λ∗
))∗(

Bk y
j
k

(
λ∗
)

+D∗k z
j
k+1

(
λ∗
))] �= 0,

(2.11)

where uj is an eigenvector of ρ j(λ∗) and (y
j
k(λ∗), z

j
k(λ∗)) is a solution of the Hamiltonian

system with λ= λ∗ and having uj as initial condition.
From the symmetry properties of the multipliers, we deduce

2A(λ)= ρ1(λ) + ρ2(λ)= ρ j(λ) +
1

ρ j(λ)
, (2.12)

2A′(λ)=
(

1− 1
ρ2
j (λ)

)
ρ′j(λ) �= 0 (2.13)

in some neighborhood of λ∗. The proof is complete. �

We have thus shown that in the band (−1,1), the function A(λ) has no critical points
and the zeros of A(λ)−α are simple for all α, |α| < 1.

As already mentioned, stability of the canonical system means boundedness on Z of
all its solutions. We deduce in our case that the multipliers have to be located on the unit
circle and be simple. This requires |A(λ)| < 1. Therefore, we may define a stability zone
as an interval where λ is confined in order to have −1 < A(λ) < 1. In this simple case, we
may describe stability and instability zones using the properties of the characteristic function
A(λ) discussed above and some additional ones. Its general form as a rational function is as
follows:

A(λ)=
(
1− λ/λ1

)ν1 ···(1− λ/λq
)νq(

1 + λb1
)μ1 ···(1 + λbr

)μr , (2.14)

with
∑

νi and
∑
μi equal to the degree of the numerator and of the denominator of A(λ),

respectively. A straightforward computation gives

d

dλ

(
A′(λ)
A(λ)

)
= ( lnA(λ)

)′′ = −
q∑
1

νi(
λ− λi

)2 +
r∑
1

μjb
2
j(

1 + λbj
)2 . (2.15)

From now on, we have to consider two cases.
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A(λ)

1

λ−5 λ−4 λ−3 λ−2 λ−1 λ1 λ2 λ3 λ4 λ5

λ

−1

Figure 2.1. The graphic of an entire A(λ).

(A) Let bk = 0, for all k = 0,N − 1; in this case the denominator is identically equal to 1
and A(λ) is a polynomial, that is, of entire type. The required properties are as in [19, 26].
Indeed, it follows from (2.15) that (lnA(λ))′′ < 0 which gives A(λ∗)A′′(λ∗) < 0 for each
critical point. Consequently, the following geometric and analytic properties of A(λ) may
be deduced:

(i) the zeros of A(λ)− 1 and A(λ) + 1 have their multiplicities at most 2;
(ii) each critical point of A(λ) is an extremum: more precisely, it is a local maxi-

mum if A(λ∗) > 1 and it is a local minimum if A(λ∗) <−1.
We deduce the representation of A(λ) as in Figure 2.1. Note that a stability zone is

delimited by those parts of function’s representation where |A(λ)| < 1 while the instabil-
ity zones are delimited by those parts where either A(λ) > 0 or A(λ) < −1. The extrema
are enclosed in the instability zone, except, possibly, a maximum at λ= 0 representing a
double root of A(λ)= 1. The fact that (λ−1,λ1) with λ−1 < 0, λ1 > 0, is a (central) stability
zone is ensured by a general theorem which ensures existence of the central stability zone
for Hamiltonian systems of positive type (see [19] also [14] in the discrete-time case).

(B) Assume now that at least one bk �= 0. Under these circumstances, A(λ) is rational
and (2.15) shows that (lnA(λ))” may change the sign. Also existence of vertical asymp-
totes shows that a representation of the type of Figure 2.1 is no longer valid. On the other
hand, an asymptote at λ = 0 is not possible which confirms once more existence of the
central stability zone; here the graphic is exactly as in Figure 2.1. Also any stability zone is
delimited as in the previous case. The instability zones are nevertheless more complicated
from the point of view of the representation of A(λ) there. An instability zone may con-
tain asymptotic points and more than one critical point of A(λ). Moreover an asymptote
coordinate (λ = −1/bk) belongs only to an instability zone and it may happen to a whole
interval (−1/bk,−1/bk+1) to be included in some instability zone. All these properties fol-
low from specific features of A(λ) in each case and we will not insist on this topic (see
Figure 2.2).
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A(λ)

1

λ−4

λ−3

λ−2

λ−1 λ1 λ2

λ3

λ4

λ

−1

Figure 2.2. The graphic of A(λ) having real poles.

3. Multiplier traffic rules

We have already mentioned that strong (robust) stability of Hamiltonian systems in the
case of total stability (boundedness on R) means stability preservation against structural
perturbations that do not affect the Hamiltonian structure. In this case, system’s multi-
pliers do not always leave the unit circle but rather “move” on it for a while. For instance,
in the 2nd-order case, if the perturbation is the modification of λ within a stability zone,
the multipliers will move on the circle and remain simple up to the point when λ will
enter an instability zone. The fact that the multipliers are of definite type but of differ-
ent kinds allowed Kreı̆n [19] to formulate his famous “traffic rules”; these rules are valid
in the discrete-time case also [14, 23] and in the present case when there are only two
multipliers, these rules are particularly simple [26]. Let first |A(λ)| < 1. In this case, the
multipliers are complex conjugate, of modulus 1.

ρ1(λ)= exp
(
ıϕ(λ)

)= ρ2(λ), 0 < ϕ(λ) < π. (3.1)

If we take into account (2.11) and compute ϕ′(λ), we find

ϕ′(λ)= 1
ı
(
Ju1(λ),u1(λ)

) N−1∑
0

[
ak
∣∣y1

k(λ)
∣∣2

+ 2bk�
(
y1
k(λ)z1

k+1(λ)
)

+dk
∣∣z1

k+1(λ)
∣∣2
]

(3.2)

which has a strictly positive numerator. The sign of ϕ′(λ) is given by the sign of the de-
nominator. For a positive denominator, the multiplier is of 1st kind (K-positive); for λ
increasing within a stability zone, it moves on the upper semicircle, counterclockwise,
from the point (1,0) to the point (−1,0); the other multiplier is of 2nd kind (K-negative)
and it moves on the lower semicircle, clockwise, also from the point (1,0) to the point
(−1,0). Note that in (1,0) and (−1,0) there are encounters of multipliers of different
kinds: this means ending of a λ-stability zone and splitting of the double multiplier in



10 Stability zones for discrete Hamiltonian systems

two multipliers: a K-positive one (outside the unit disk) and a K-negative one (inside the
unit disk), respectively.

Indeed, if |A(λ)| > 1, the multipliers given by (2.9) are real. Moreover,

dρ1

dA
= 1 +

A√
A2− 1

> 0,
dρ2

dA
= 1− A√

A2− 1
< 0. (3.3)

These equations show that the multipliers move on the real axis outside or inside the
unit disk, keeping the well-known symmetry with respect to the unit circle. In the case
of Figure 2.1, they will move up to some extremal positions on the real axis and further
will recover the critical point where they originated, thus meeting a new stability zone.
In the case of Figure 2.2, the extremal positions might be also ±∞ and the origin which
correspond to asymptote value crossing.

4. Some Liapunov-like results in the discrete-time case

It has been shown in the previous section that the stability and instability zones of (2.1)
alternate. As seen from Figures 2.1 and 2.2, (λ±2,λ±3), (λ±4,λ±5), . . . , (λ±2k,λ±(2k+1)), . . . are
stability zones while (λ±1,λ±2),(λ±3,λ±4), . . . , (λ±(2k−1),λ±2k), . . . are instability zones: also
(λ−1,λ1) defines the central stability zone.

Now let λ∗ be such that ρ(λ∗)= 1, that is, A(λ∗)= 1 which defines a “border” between
a stability and an instability zone. But in this case, we deduce that for this λ∗ we have

det
(
UN
(
λ∗
)− I

)= 0, (4.1)

hence the periodic boundary value problem defined by (2.1) and

yN = y0, zN = z0 (4.2)

have a nontrivial solution, that is, λ∗ is a characteristic number of the periodic boundary
value problem.

If λ∗∗ is such that ρ(λ∗∗)=−1, that is, A(λ∗∗)=−1, then we have

det
(
UN
(
λ∗∗

)
+ I
)= 0 (4.3)

and λ∗∗ is a characteristic number of the skew-periodic boundary value problem defined
by (2.1) and

yN =−y0, zN =−z0. (4.4)

It is now obvious that the characteristic numbers of the boundary value problems defined
by (2.1) and (4.2), (4.4), respectively, alternate in pairs. An open interval (λi,λi+1) is a
stability zone if and only if its endpoints are characteristic numbers of distinct boundary
value problems.

If we consider now the 2nd-order scalar equation

yk+1− 2yk + yk−1 + λ2pk yk = 0, (4.5)
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we may introduce

yk+1− yk = λzk+1 (4.6)

to obtain the system

yk+1− yk = λzk+1, (4.7)

zk+1− zk =−λpk yk, (4.8)

which is alike (2.1) but with bk = 0; in this case A(λ) is polynomial and we may refer to
Figure 2.1 and to considerations made at Section 2, Case (A). Moreover, as pointed out
in [24], the endpoints of the central stability zone being the first (largest) negative and
the first (smallest) positive characteristic numbers of the skew-periodic boundary value
problem defined by (4.7) and (4.4), the estimates for the width of the central stability
zone of Kreı̆n type given in [24] are valid. Among them, we would like to mention the
discrete version of the well-known Liapunov criterion formulated for (1.1) [21].

Proposition 4.1 [24]. All solutions of (4.5) are bounded provided pk ≥ 0,
∑N−1

0 pk > 0 and
λ2 < 4/(

∑N−1
0 pk).

In this way, all assertions of Liapunov’s paper [21] have been extended to the discrete-
time case using the general framework developed by Kreı̆n [19]. Worth mentioning that
even in this case the Liapunov criterion is only a sufficient estimate of the stability zone
while not very conservative. The exact width of the central stability zone is given by the
inequality [14]

λ2 <
π2(∑N−1

0 pk
) . (4.9)

As pointed out by Kreı̆n [19], the results of Liapunov for the central stability zone of
(1.1) have been extended to the case when p(t) has values of both signs [22] but the cited
reference contained no proofs. The proofs are to be found following the line of [19] (see
Section 9 of this reference or [26]); the discrete version can be obtained in an analogous
way following the hints contained in the cited references and using the results of [14].

5. Conclusions and some further research problems

Following the programme announced in [14, 23], we obtained in this paper some dis-
crete-time counterparts of the results of Liapunov and Kreı̆n about λ-zones of stability for
linear periodic Hamiltonian systems of positive type. Within the programme mentioned
above, several new steps may be foreseen. One of them could be the counterpart of the
results of Yakubovich about asymptotics of the characteristic numbers of the periodic
and skew-periodic boundary value problems and, further, the discrete-time parametric
resonance.



12 Stability zones for discrete Hamiltonian systems

References

[1] C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems. Difference Equations, Contin-
ued Fractions, and Riccati Equations, Kluwer Texts in the Mathematical Sciences, vol. 16, Kluwer
Academic Publishers, Dordrecht, 1996.

[2] M. Bohner, Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions, Jour-
nal of Mathematical Analysis and Applications 199 (1996), no. 3, 804–826.

[3] M. Bohner and O. Došlý, Disconjugacy and transformations for symplectic systems, The Rocky
Mountain Journal of Mathematics 27 (1997), no. 3, 707–743.
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