
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2011, Article ID 109570, 7 pages
doi:10.1155/2011/109570

Research Article
Nonlocal Conditions for Lower Semicontinuous
Parabolic Inclusions

Abdelkader Boucherif

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals,
P. O. Box 5046 Dhahran, 31261, Saudi Arabia

Correspondence should be addressed to Abdelkader Boucherif, aboucher@kfupm.edu.sa

Received 4 December 2010; Accepted 11 February 2011

Academic Editor: John Graef

Copyright q 2011 Abdelkader Boucherif. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We discuss conditions for the existence of at least one solution of a discontinuous parabolic
equation with lower semicontinuous right hand side and a nonlocal initial condition of integral
type. Our technique is based on fixed point theorems for multivalued maps.

1. Introduction

Let Ω be an open bounded domain in �N , N ≥ 2, with a smooth boundary ∂Ω. We denote
the norm (usually the Euclidean norm) of x ∈ Ω by ‖x‖. Let T be a positive real number. Set
QT = Ω × (0, T) and ΓT = ∂Ω × [0, T]. For u : D → � we denote its partial derivatives (when
they exist) by ut = ∂u/∂t, uxi = ∂u/∂xi, uxixj = ∂2u/∂xi∂xj , i, j = 1, . . . ,N.

Let X = C(QT ) denote the Banach space of continuous functions u : QT → �,
endowed with the norm

|u|0 = sup{|u(x, t)|; (x, t) ∈ QT}

u ∈ C2,1(QT ) ifu(·, t) ∈ C2(Ω), t ∈ (0, T), u(x, ·) ∈ C1(0, T), x ∈ Ω.
(1.1)

For 1 ≤ p < +∞, we say that u : QT → � is in Lp(QT ) if u is measurable and∫
QT

|u(x, t)|pdxdt < +∞, in which case we define its norm by

|u|LP =

(∫

QT

|u(x, t)|pdxdt
)1/p

. (1.2)
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Consider the linear nonhomogeneous problem

ut + Lu = f(x, t), (x, t) ∈ QT, (1.3)

u(x, t) = 0, (x, t) ∈ ΓT , (1.4)

with the following nonlocal initial condition:

u(x, 0) =
∫T

0
k(x, t, u(x, t))dt, x ∈ Ω. (1.5)

Here, L is an elliptic operator given by

Lu = −
N∑

i,j=1

aij(x, t)uxixj + c(x, t)u. (1.6)

We will assume throughout this paper that the functions aij , c : QT → � are Hölder
continuous, aij = aji, and moreover, there exist positive numbers λ0, λ1 such that

λ0‖ξ‖2 ≤
N∑

i,j=1

aij(x, t)ξiξj ≤ λ1‖ξ‖2, ∀ξ ∈ �N , ∀(x, t) ∈ QT. (1.7)

Let u0 : Ω → � be continuous. For the problem (1.3), (1.4) together with initial
condition

u(x, 0) = u0(x), x ∈ Ω, (1.8)

we have the following classical result.

Lemma 1.1 (see [1–4]). Assume that the function f is Hölder continuous on QT and u0 is
continuous on Ω. Then problem (1.3), (1.4), (1.8) has a unique solution u ∈ C2,1(QT ) ∩ C(QT ),
which for each (x, t) ∈ QT , is given by

u(x, t) =
∫

Ω
G
(
x, t;y, 0

)
u0
(
y
)
dy +

∫ t

0

∫

Ω
G
(
x, t;y, s

)
f
(
y, s

)
dyds, (1.9)

whereG(x, t;y, s), is the Green’s function corresponding to the linear homogeneous problem.
This function has the following properties (see [1, 4]).

(i) DtG + LG = δ(t − s)δ(x − y), s < t, x, y ∈ Ω.

(ii) G(x, t;y, s) = 0, s > t, x, y ∈ Ω.

(iii) G(x, t;y, s) = 0, (x, t), (y, s) ∈ ΓT .

(iv) G(x, t;y, s) > 0 for (x, t) ∈ QT .
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(v) G,Gt, Gx, Gxx are continuous functions of (x, t), (y, s) ∈ QT, t − s > 0.

In addition to the above, G(x, t;y, s) satisfies the following important estimate.

(vi) |G(x, t;y, s)| ≤ C(t − s)−N/2 exp((−a‖x − y‖2)/(t − s)), for some positive constants
C, a (see [2]).

Since u ∈ C2,1(QT ) ∩C(QT ), it is clear that the functions (x, t) → ∫
Ω G(x, t;y, 0)dy and

(x, t) → ∫ t
0

∫
Ω G(x, t;y, s)dyds are continuous. Let d0 := max(x,t)∈QT

∫
Ω G(x, t;y, 0)dy and let

δ := max(x,t)∈QT

∫ t
0

∫
Ω G(x, t;y, s)dyds. Also, property (vi) above shows that G ∈ L2(QT ×QT ).

In this paper, we consider a nonlocal problem for a class of nonlinear parabolic
equations with a lower semicontinuous multivalued right hand side. More specifically, we
consider the following problem,

ut + Lu ∈ F(x, t, u), (x, t) ∈ QT,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) =
∫T

0
k(x, t, u(x, t))dt, x ∈ Ω.

(1.10)

Parabolic problems with discontinuous nonlinearities arise as simplified models in
the description of porous medium combustion [5], chemical reactor theory [6]. Also, best
response dynamics arising in game theory can be modeled by a parabolic equation with
a discontinuous right hand side [7, 8]. Parabolic problems with discontinuous nonlinearities
have been also investigated in the papers [9–13]. On the other hand, parabolic problems
with integral boundary conditions appear in the modeling of concrete problems, such as heat
conduction [14, 15] and thermoelasticity [16]. Also, the importance of nonlocal conditions
and their applications in different field has been discussed in [17, 18]. Several papers have
been devoted to the study of parabolic problems with integral conditions [19, 20]. Next, we
state some important facts about multivalued functions and results that will be used in the
remainder of the paper.

A subset Σ ⊂ QT ×� is L⊗Bmeasurable if Σ belongs to the σ-algebra generated by all
sets of the formD×J whereD is Lebesgue measurable inQT andJ is Borel measurable in �.
Let (X, | · |X) and (Y, | · |Y ) be Banach spaces. ℘(Y) denotes the set of all nonempty subsets of
Y . The domain of amultivaluedmap� : X → ℘(Y) is the set Dom(�) = {u ∈ X;�(u)/= ∅}. �
has closed values if �(u) is a closed subset of Y for each u ∈ X and we write �(u) ∈ ℘c(Y).
Also, ℘cc(Y) denotes the set of all nonempty closed and convex subsets of Y . � is bounded if
sup{|y|; y ∈ �(u)} < +∞. � is called lower semicontinuous (lsc) on X if �−1(B) is open in X
whenever B is open in Y , or the set {u ∈ X;�(u) ⊂ B} is closed in X whenever B is closed in
Y . For more details on multivalued maps, we refer the interested reader to the books [21–24].

Let β denote the Kuratowski measure of noncompactness. See [25] for definitions and
details.

Theorem 1.2 (see [26, Theorem 3.1]). Let E be a separable Banach space. Assume the following
conditions hold. There exists M > 0, independent of λ, with |u|Lp /=M for any solution u ∈
L2([0, T], E) to u ∈ λFu a.e. on [0, T] for each λ ∈ (0, 1), F : X = {u ∈ L2([0, T], E); |u|Lp ≤ M} →
℘cc(L2([0, T], E)) is a closed map, F(X) is a bounded subset of L2([0, T], E), and β(F(V )) ≤ β(V )
for all V ⊆ X with strict inequality if β(V )/= 0. Then the inclusion u ∈ Fu has a solution u ∈ X.
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2. Main Result

By a solution of problem (1.10), (7), (8)we mean a function u ∈ L2(QT ) such that there exists
a function f ∈ L2(QT ) with f(x, t) ∈ F(x, t, u(x, t)) for each (x, t) ∈ QT and (1.3), (1.4), (1.5)
hold.

Theorem 2.1. Assume that the following conditions are satisfied.

(HF) F : QT × � → ℘cc(�) is L ⊗B measurable, u �→ F(x, t, u) is lsc for a.e.(x, t) ∈ QT , there
exist a > 0, b > 0 such that |F(x, t, u)| ≤ a + b|u| with 2Vol(QT )(b|G|L2(QT×QT ))

2 < 1 and
there exists 	0 ∈ L2(QT ) such that β(F(x, t, B)) ≤ 	0(x, t)β(B) for any bounded set B ⊂ �,

(Hk) k : QT × � → � is continuous, bounded and there exists 	1 ∈ C(QT ) such that
β(k(x, t, B)) ≤ 	1(x, t)β(B).

Then problem (1.10), (7), (8) has a solution provided that d0|	1|0 + |	0|L2(QT )|G|L2(QT×QT ) < 1.

Proof. We shall follow the ideas developed in [27]. It follows from the integral representation
(1.9) that any solution u ∈ L2(QT ) of (1.10), (7), (8) is a solution of the operator inclusion

u ∈ F(u), (2.1)

for λ = 1, where

F(u) = k(u) +GNF(u), (2.2)

where k is given by

k(u) =
∫T

0

∫

Ω
G
(
x, t;y, 0

)
k
(
y, s, u

(
y, s

))
dyds, (2.3)

while GNF(u) is given by

GNF(u)(x, t) =
∫ t

0

∫

Ω
G
(
x, t;y, s

)
NF

(
u
(
y, s

))
dyds, (x, t) ∈ QT. (2.4)

First, we show that solutions of (2.1) are a priori bounded. We have

u(x, t) = λ

∫T

0

∫

Ω
G
(
x, t;y, 0

)
k
(
y, s, u

(
y, s

))
dyds + λ

∫ t

0

∫

Ω
G
(
x, t;y, s

)
f
(
y, s

)
dyds, (2.5)

where f ∈ NF(u), that is f(x, t) ∈ F(x, t, u) for each (x, t) ∈ QT . Since k is bounded there
exists Ck > 0 such that |k(y, s, u(y, s))| ≤ Ck . It follows from the properties of the Green’s
function and the assumption (HF) that

|u(x, t)| ≤ TCkd0 +
∫ t

0

∫

Ω
G
(
x, t;y, s

)(
a + b

∣
∣u
(
y, s

)∣∣)dyds. (2.6)
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Hence

|u(x, t)| ≤ TCkd0 + aδ + b|G|L2(QT×QT )|u|L2(QT ). (2.7)

Equation (2.7) implies that

|u(x, t)|2 ≤ 2(TCkd0 + aδ)2 + 2
(
b|G|L2(QT×QT )|u|L2(QT )

)2
, (2.8)

or

|u|2L2(QT ) ≤
2Vol(QT )(TCkd0 + aδ)2

1 − 2Vol(QT )
(
b|G|L2(QT×QT )

)2 . (2.9)

Therefore, there existsM > 0, independent of λ, but depending on QT, a, b, Ck and the
Green’s function such that any possible solution of (2.1) satisfies

|u|L2(QT ) ≤ M. (2.10)

LetU = {u ∈ L2(QT ); |u|L2(QT ) ≤ M}. ThenU is nonempty, closed, and bounded subset
of L2(QT ).

Since the multifunction F has nonempty, closed and convex values, it follows that NF

has nonempty, closed, and convex values. Since k is a continuous single valued operator,
it is clear that F has nonempty, closed, and convex values. Next, we can easily show that
F : U → ℘cc(L2(QT )) is a closed map (i.e., has a closed graph) and F(U) is a bounded subset
of L2(QT ).

Finally, we show that β(F(B)) ≤ β(B) for any bounded subset B ⊂ U. So, let u ∈ B.
Then, since F(B) = {F(u);u ∈ B}, we have

F(B) = k(B) +GNF(B) = {k(u) +GNF(u); u ∈ B}. (2.11)

Hence

β(F(B)) = β({k(u) +GNF(u); u ∈ B}). (2.12)

It follows from the assumption that

β(F(B)) ≤
∫T

0

∫

Ω
G
(
x, t;y, 0

)
	1
(
y, s

)
β(B)dyds +

∫ t

0

∫

Ω
G
(
x, t;y, s

)
	0
(
y, s

)
β(B)dyds

≤
(∫T

0

∫

Ω
G
(
x, t;y, 0

)
	1
(
y, s

)
dyds +

∫ t

0

∫

Ω
G
(
x, t;y, s

)
	0
(
y, s

)
dyds

)

β(B)

≤
(
d0|	1|0 + |	0|L2(QT )|G|L2(QT×QT )

)
β(B)

< β(B).

(2.13)
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This shows that F is a condensing multivalued map.
By Theorem 3.1 in [26], F has a fixed point inU, which is a solution of problem (1.10),

(7), (8). This completes the proof of the main result.
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