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We study a nonlocal boundary value problem of impulsive fractional differential equations. By
means of a fixed point theorem due to O’Regan, we establish sufficient conditions for the existence
of at least one solution of the problem. For the illustration of the main result, an example is given.

1. Introduction

Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in various fields, such as physics,
mechanics, aerodynamics, chemistry, and engineering and biological sciences, involves
derivatives of fractional order. Fractional differential equations also provide an excellent tool
for the description of memory and hereditary properties of many materials and processes. In
consequence, fractional differential equations have emerged as a significant development in
recent years, see [1-3].

As one of the important topics in the research differential equations, the boundary
value problem has attained a great deal of attention from many researchers, see [4-11] and the
references therein. As pointed out in [12], the nonlocal boundary condition can be more use-
ful than the standard condition to describe some physical phenomena. There are three note-
worthy papers dealing with the nonlocal boundary value problem of fractional differential
equations. Benchohra et al. [12] investigated the following nonlocal boundary value problem

‘D*u(t) + f(t,ut)) =0, 0<t<T, 1<a<?2,
u(0) = g(u), u(T) = ur,

(1.1)

where °D“* denotes the Caputo’s fractional derivative.
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Zhong and Lin [13] studied the following nonlocal and multiple-point boundary value
problem

‘D*u(t)+ f(t,u(t)) =0, O0<t<l, 1l<a<2,

m=2 (12)
u(0) =ug+gw),  w(l)=w+ 3 b (&)
i1

Ahmad and Sivasundaram [14] studied a class of four-point nonlocal boundary value
problem of nonlinear integrodifferential equations of fractional order by applying some fixed
point theorems.

On the other hand, impulsive differential equations of fractional order play an
important role in theory and applications, see the references [15-21] and references
therein. However, as pointed out in [15, 16], the theory of boundary value problems for
nonlinear impulsive fractional differential equations is still in the initial stages. Ahmad and
Sivasundaram [15, 16] studied the following impulsive hybrid boundary value problems for
fractional differential equations, respectively,

‘Diu(t) + f(tu(t)) =0, 1<q<2, tei=[01]\{t,t..., 1},
Au(te) = Ir(u(ty)), Au'(tx) = Jik(u(ty)), te(0,1), k=1,2,...,p, (1.3)
u(0)+u'(0)=0, u(l)+u'(1)=0,
‘Diu(t) + f(tu(t)) =0, 1<q<2, tei=[01]\{ti,t..., 1},

Au(ty) = Ik(u(ti)), Au’(tk) = ]k(u(t;)), tk€(0,1), k=1,2,.. P, (1.4)

1 1
au(0) + pu'(0) = fo q1(u(s))ds, au(l) + pu'(1) = fo g2 (u(s))ds.

Motivated by the facts mentioned above, in this paper, we consider the following
problem:

‘Diu(t) = f(t,ult),u'(t)), 1<q<2, te=[0,1]\{t,t.... 1},
Au(ty) = Ik(u(t;)), Au'(tk) = ]k(u(ti)), t€(0,1), k=1,2,...,p, (1.5)

au(0) +pu'(0) = g1(w),  au(l) +pu'(1) = & (u),

where | = [0,1], f : J x R x R — R is a continuous function, and I, Jx : R — R
are continuous functions, Au(ty) = u(t;) — u(t,) with u(t;) = limy_e-u(tx + h), u(t,) =
lim, .o-u(ty +h), k =1,2,...,p, 0 =tg <ty <ty <+ <ty <ty =1,a>0,p >0, and
g1, : PC(J,R) — R are two continuous functions. We will define PC(J, R) in Section 2.

To the best of our knowledge, this is the first time in the literatures that a nonlocal
boundary value problem of impulsive differential equations of fractional order is considered.
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In addition, the nonlinear term f(t, u(t), u'(t)) involves u'(t). Evidently, problem (1.5) not
only includes boundary value problems mentioned above but also extends them to a much
wider case. Our main tools are the fixed point theorem of O’Regan. Some recent results in the
literatures are generalized and significantly improved (see Remark 3.6)

The organization of this paper is as follows. In Section 2, we will give some lemmas
which are essential to prove our main results. In Section 3, main results are given, and an
example is presented to illustrate our main results.

2. Preliminaries

At first, we present here the necessary definitions for fractional calculus theory. These
definitions and properties can be found in recent literature.

Definition 2.1 (see [1-3]). The Riemann-Liouville fractional integral of order & > 0 of a
function v : (0, 0) — Ris given by

t
15y () = ﬁ fo (E- )" Ty(s)ds, 2.1)

where the right side is pointwise defined on (0, o).
Definition 2.2 (see [1-3]). The Caputo fractional derivative of order a > 0 of a function y :
(0,00) — R is given by
1 ' !
CD*u(t) = t—g) iyt 2.2

ut) = s | =9y s 22)
where n = [a]+1, [a] denotes the integer part of the number a, and the right side is pointwise
defined on (0, o0).

Lemma 2.3 (see [1-3]). Let « > O, then the fractional differential equation °Du(t) = 0 has
solutions

u(t) = co+crt+cot’ + -+ cpt"’, (2.3)
wherec; € R, i=0,1,...,n-1, n=[q] +1
Lemma 2.4 (see [1-3]). Let a > 0, then one has
I5.°D"u(t) = u(t) + co + cit + cot* + -+ + cpa ™, (2.4)

wherec; e R, i=0,1,...,n-1, n=[g] + 1.

Second, we define

PC(J,R) = {x:] = & x € C((tx,txn],R), k=0,1,...,p+1and x(t;), x(t,) exist
with x(t,) = x(t), k=1,...,p}.
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PC'(J,R) = {x € PC(J,R); ¥'(t) € C((tx, tkn],R), k = 0,1,...,p + 1, X(t]),
x'(t) exist,and x' is left continuous atty, k = 1,...,p}. Let C = PCl(], R); it
is a Banach space with the norm ||x|| = supte]{ lx(O)lpc, |2 ) |lpc }, where ||x|lpc =
suptejlx(t)|.

Like Definition 2.1 in [16], we give the following definition.

Definition 2.5. A function u € C with its Caputo derivative of order g existing on 2 is a
solution of (1.5) if it satisfies (1.5).

To deal with problem (1.5), we first consider the associated linear problem and give its
solution.

Lemma 2.6. Assume that

[to,t1], =0,
Ji=
(ti/ti+1]/ l = 1/2/---/]9/

0, te ]y,
() =
1, t € Jo.

(2.5)

For any o € C[0, 1], the solution of the problem

‘Diu(ty=0o(t), 1<q<2,teI=[01]\{t,t,..., 1},
Au(ty) = Ik(u(t;)), Au'(tk) = ]k(u(t;)), t€(0,1), k=1,2,...,p, (2.6)

au(0) + pu' (0) = g1(u),  au(l)+pu'(1) = g2(u)

is given by
( t=9)T"0(s)
u(t)_ t; r(q)
p YA-98)T"o(s), B[ A1-95)T"0(s)
(‘t>[ @ el Ty

" (=9 o(s) ]
" 0<tzk<1 <ftk1 I'(q) ds + I (”(tk>>>

t -5)120(s
Z@ “1-n) <f ey s fk<u<t;>>>]
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+ X(t) Z <J.tk Mdﬁ[k(u(tk)))

O<ty<t 1 r(q)
+X() D (t-t )<ftk mdﬁj (u(t))>
O<ty<t ¢ b1 F(q - 1) ¢ g
1
+ s [agi(u) + X(t)(at - B) (g2 (u) — g1(w))], forte i, i=0,1,...,p.
(2.7)
Proof. By Lemmas 2.3 and 2.4, the solution of (2.6) can be written as
p Pt —s)1!
u(t) = I.o(t) =bg —bit = | ~——~<—0(s)ds—by—bit, te]0,t], (2.8)
o I(q)

where by, b; € R. Taking into account that CDngJ/l(i') =u(t), IgJéiu(t) = Igfqu(t) forp,q>0,
we obtain

v [ (E=9)T0(s)
u'(t) = fo T_l)ds - b1. (2.9)

Using au(0) + pu’(0) = g1(u), we get

tp o\g-1
u(t) = fo %o(s)ds +b (g - t> + %gl(u), te[0,t]. (2.10)

If t € (t1,t2], then we have

L (t-5)""0(s)

“O=] T

dS—CQ—Cl(t—tl), (2.11)

where cg, c1 € R. In view of the impulse conditions Au(t1) = u(t])-u(t]) = Li(u(t))), Au'(t1) =
u'(t) —u'(t]) = J1(u(t])), we have

b gl by oG-l
uty= | ui_)(q—q;j(s)ds+ 0 %‘;)"(S)dsw(g—t) b i) + I (u (7))
1 _ -2
+ (t —t1)|: ; %q_l(;(s)ds +]1(u(t1))], te (tl,tz].

(2.12)
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Repeating the process in this way, the solution u(t) for t € (f, tx.+1] can be written as

u(t) = : %{;;G(S)ds+bl<§ —t> + %gl(u)

tr bo— q-1

-1

ti g2
+Z(t—tk)<f %ds+]k(u(tk))>, t € (t, tksa)-

O<ti<t te1
Applying the boundary condition au(1) + pu' (1) = g (u), we find that

(1 -s)7 10(5)
yo D@

ﬂ L (1-9)"20(s) 20(5)
b, T(q- S T(g-1)

f (tk—S)q_lo(S) - 2.14
+0<tzk<l<£ R ds+Ik(u(tk))> (2.14)

k-1

p (- s)T20(s) B
+0<tzk<l<; who tk) <ftk1 st + ]k(u(tk))>

F (810 - 20)).

Substituting the value of b; into (2.10) and (2.13), we obtain (2.7). O

Now, we introduce the fixed point theorem which was established by O’Regan in [22].
This theorem will be applied to prove our main results in the next section.

Lemma 2.7 (see [13, 22]). Denote by U an open set in a closed, convex set Y of a Banach space E.
Assume that 0 € U. Also assume that F(U) is bounded and that F : U — Y is given by F = F1 + F»,

in which F; : U — E is continuous and completely continuous and F, : U — E is a nonlinear
contraction (i.e., there exists a nonnegative nondecreasing function ¢ : [0,00) — [0, 00) satisfying

¢(z) < z for z > 0, such that || Fo(x) — F2(y)|| < ¢(llx —yll) forall x,y € ﬁ), then either

(C1) F has a fixed point u € U, or

(Cy) there exists a point u € OU and A € (0,1) with u = AF(u), where U, 0U represent the
closure and boundary of U, respectively.
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3. Main Results

In order to apply Lemma 2.7 to prove our main results, we first give F, F;, F, as follows. Let

Q,={ueC:|ul|<r}, r>0,

(M (=97 f(s,x(s),x(s))
[Fuud] (1) = f i ds
B[ Q=97 f(s,x(s),x(s) , P (" (1=95)T"F(s,x(5),%(5))
(s t>[% I(q) “ral, rg-1)

tr _q)q-1 ’
o 3 () LD e

O<tx<1 ti-1 F(q)

t bo— q-2 , , ! ~
+o;k<1<§+1_tk><f (t =) f (5, x(5) x(s))ds+]k(u(tk))>]

e F(q— 1)

tr (tk - S)q_lf(s, X(S), xl(s)) i
’ ”“ﬁ%(f @ ds + 1k<u<tk>>>

(b - 8)T2 f (s, x(s),x/(5)) )
' %(t)0<t2k<t(t - <Lk1 F(q - 1) ds I (u(tk))>’

for te];, i=0,1,...,p,

ds

[Fou](t) = %[agl(u) + X (t) (at - B) (g2(u) - gl(u))], forteJ;, i=0,1,...,p,

F=F +F,.
(3.1)

Clearly, for any teJ;, i=0,1,...,p,

-2 !
[Fru] () = f: (o) F{;S’_xl()s)’x ©) 4
) [ FA-9) f(sx(0),X(s) P (T (=9 f (5, x(5),X(5)
by I'(9) @i, I'(q-1)

i (tk — S)qilf(s, x(s), xl(s)) .
+0<tzk<1<ftk1 I'(q) ds+[k(”(tk))>

p f (tk—s)q_zf(s,x(s),x'(s)) )
+0<tZk<1<;+1_tk) <ftk1 I(g-1) ds+]k(”(tk))>]

e (te - s) T2 f (s, x(s), %' (5))
t
! ’X( )0<tzk<t<ftk1 r(q h 1)

[Faul (1) = = [X()(g:20) - 81 ()],

ds

(3.2)

ds +]k(u(tk))>,

Now, we make the following hypotheses.
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(A1) f 1 [0,1] x R x R — R is continuous. There exists a nonnegative function p(t) €
CJ0,1] w1th p(t) > 0 on a subinterval of [0,1]. Also there exists a nondecreasing

function ¢ : [0,00) — [0,00) such that |f(t,u,v)| < p(t)y(|u]) for any (t,u,v) €
[0,1] xR x R.

(Az) There exist two positive constants I3, 1, such that ((a + f)/a®)(lh + L) = L < 1.
Moreover, g1(0) =0, £(0) =0, and

|g1(1) - g1(0)| <hllu-ol, |g20)-g@)| <hblu-vl, YuveCl. (3.3)

(A3) Ik, Jk : R — R are continuous. There exists a positive constant M such that

L) <M, |Jxw)|<M, k=1,2,...,p. (3.4)

Let

2
H, = <§ +1>Mp+ <§ +1> Mp +2pM,

szMp+<§+1>Mp+pM,
a—@q%@>
K= f T

p FA-9Tps) L BT A=9)p(s)
+<a+1>|:tp T(q) ds+a . F(q 1)

(e —s)"'p(s) p (= 5)"7p(s) ]
— 4 - — L T d
+0<iEZk<1 ‘[tkl F(q> S+0<ifzk<1<0{ +1) ftkl F(q_l) ’

(e —s)T'p(s) e (t—s)"%p(s)
—_—d ———— s,
" O<tr<l J‘tkl F(q) o O<tr<1 J‘tkl F(q - 1) ’
P *_[1(1—SW1P®) ﬂ L A-9Tp(s)
27 T(q) I(q) y T(g-1)
e (tk - 5)T ' p(s) p “<u—®q%@>]
— - 7a | — 74
+0<tzk<l ftkl F(‘?) 50<tzk<1<“ " ) ftkl F(q - 1) ’
e (tk - 5)Tp(s)
= s,
+0<tk<1 J.tkl r(q - 1) ’

(3.5)

where P = maxgejo,11p(s).
Now, we state our main results.
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Theorem 3.1. Assume that (A1), (Az), and (Asz) are satisfied; moreover, sup,q .\(r/(H +
Ky(r))) >1/(1 - L), where H = max{H1, H>}, K = max{Kjy, K>}, then the problem (1.5) has at
least one solution.

Proof. The proof will be given in several steps.

Step 1. The operator F; : Q, — C is completely continuous.
Let M, = maxseo,11{|f (s, x(s), x'(s))|, x € Q,}. In fact, by (A1), M, can be replaced by
Py (r). For any u € Q,, we have

)T f (s, x(s), x (O
I'(q)

p (=) f(s,x(), ¥ ()]
+<“+1>[Itp I'(q)

B (1 (1-9)T2|f(s,x(s), aQ)
+_f I'(g-1)

b (tk—s)q 1|f(S,X(S),X’(S))| i >
+0<tzk<1<J‘tk1 I'(q) ds + |Ic (u(te))|

+ Z <E+1—tk>
O<ti<1 a

§ < f (b =) |f(5,x(5), X'())]|
te1 r(q - 1)

t
< [

as ue) )]

cxn 3 ([ ST OO b )
i) 3 o[ LX)
Mf (11“((4);1

() B 0

(e —s)T >
M, < ds+M
" 0<tzk<1< ftkl T'(q) o
+o<tzk<1<“ + 1> <Lk1 F(q - 1) ds + M>]
(=) M, >
— ds+M
" 0<tzk<l<J‘tk1 F(q) o

+ Z <J.tk (e —s)” M, 9T M, ds + M>
O<tr<l ti-1 r(q - 1)
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1 p 1 B 1 1
<M+ (5+1) [Mfr<q+1> ) “"(M’r(qn) +M>
i 1
+p<; + 1) <M,7r(q) +M>]

1 1
M,———+M M,——+M ), forte];, i=0,1,...,p,
+p< 1H(qu1)+ >+p< 1"(q)+ > or Ji, i p

t q-2
R R

+[ A=) |f (s x6), X 6D, B[ A=9)T|f(s,x(5), % (5)]
ds +
b I'(9) xJ, I'(q-1)

(b= 8) " f (s, x(s), X/(5)) )
+0<tzk<l<J‘tk1 k=S |]1i(5q)xs xX'(s |ds+|Ik(u(tk))|>

p (b —s)T2| f(s,x(5), X ()| )
+0<tZk<1<E+1_tk> <£k1 I'(g-1) ds + | Je(u(t))|

< fk (ke —9)T2| f (s, x(s), X' ()] |
te r(q 1)

ds

+X(t) D,

O<ty<t

- |fk<u<tk>>|>

(1-9)7"'M, 1M p ' (1-9)"M, 2M

- F(q) [ C T(e) , T(g-1)

b (t - 5)T M, >
—_——ds+ M
" 0<tZk<1 <J‘tkl F(q) ot
Poq_ (b= 5)" M,
+0<tzk<1<“ +1 tk> <J.tk1 NCED) ds+M>]

+ > <J.tk e S)‘H_Mr ds + M>
O<ti<1 b1 r(q - 1)

<M ! 1

L+ —+E L+ —+
=M [M’r<q+1> 2T ”<M’r<q+1> M>

p(h)(Mmﬂ

+p<M F(lq) +M> forte J;, i=0,1,...,p.

(3.6)
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These imply that ||[[Fiu](f)|| < B, where B is a positive constant, that is, F; is uniformly
bounded. In addition, for any u € Q,, for all 71, € J;, 71 < T», we can obtain

[[Fiu](71) — [F1u](72)]
< J‘TZ (TZ - S)q_llf(sl X(S), x’(s))| ds

T r(q)
@ (=9 - =972 )]
' f I(9) ’
[ a=97 S (s x(s), X))
+(m—-7) |:Lp F(q) ds
N f (=91 f(5,x(5), X))
al, I'(g-1)
e (b —5) T f(s,x(s),%(9))| )
o <f @) s + 1k (1)
B o (k= 9)T | f(s,x(5), X'(9)) ] ]
+0<tZk<l<a +1 tk) <Lkl NEE) ds + | Jx (u(t))|
o (te—5) 72| f(s,x(s),X(5))] .
LS m( [ e ds + T (u(ty))|
(m—-m)1
<M, F(q+1) +Mr[—(T2—Tl)q+(Tz)‘7_(7—1)fi] F(q+1)
! (1 - S)qier ﬁ ! (1 — S)qizMr
+(Tz—71)|:tp7r(q) ds+; t,,ir(q—l) ds

b (t —5)T M,
" 0<tZk<1 <J‘tkl F(q) dor M
P . (b - 5)TM,
+0<tzk<1<“ +1 tk) <ftk1 e ds+M>]
e g2
+ Z (72— 1) <J‘ %ds + M>,

0<tr<m; 1

|[Fru]'(71) = [Fiu]'(72)|
< (F 2= 9T f (5, x(), X' ()]

B 7| r(q - 1) s
n (1 =97 = (=97 [f(s,x(5),¥(5))|
+ f ds
t; r(q - 1)
(1 —m)"" M4 (2 )+ (1) - (- )T
T T I'(q) :

(3.7)
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Taking into account the uniform continuity of the function #7, ti1 on [0,1], we get that F; is
equicontinuity on Q,. By the Lemma 5.4.1 in [23], we have F;(Q,) as relatively compact. Due
to the continuity of f, I, J, it is clear that F; is continuous. Hence, we complete the proof of
Step 1.

Step 2. F (1) is bounded.
From supre(olw)(r/(H + K¢(r))) > 1/(1 - L), it follows that there exists a positive
constant ry, such that

To S 1
H+Kg(ro) = 1-L

(3.8)

Now, we verify the validity of all the conditions in Lemma 2.6 with respect to the operator
Fy, F>,and F. Let Q, = U. From (A;), we have

IF2) 0] < 5 [(@1 =)+ B) g1(0) ~ £1(0)] + |t = Pl [g2(0) ~ g2(O)]
< %((X + ﬁ) (111’0 + 121‘0), for t € J;, (39)

1
|[F2u]’(t)| = ;[127‘0 + 111‘0], fort e ]i/ i=0,1,. - P

Combining with the property that F;(%) is bounded (Step 1), we have F bounded on .
Hence, we can assume that ||F(%)|| < G, G > 0 is a constant.

Step 3. F, is a nonlinear contraction.

Let Y = Q,, nn = max{G,n}, E = C. By (A»), we obtain |[Fou](t) — [Fv](t)| <
(1/a®)[I(a(1 = t) + B)(g1(u) = g1(0)| + |(at = B)(g2(1) = g2(v))]] < ((a+B)/a®)(lh + L) |lu o],
and [[Fou]'(t) = [Foo]’ ()] < /) [lh + L]llu -] < L|lu—-ov|, for te€ J;.Since L <1, we have
|F2(u) — F2(v)|| < ¢(|lu —v||), that is, F; is a nonlinear contraction (¢(z) = Lz).

Step 4. (Cy) in Lemma 2.7 does not occur.
To this end, we perform the argument by contradiction. Suppose that (C) holds, then
there exist A € (0,1), u € 0Q,,, such that u = AFu. Hence, we can obtain ||u|| = ry and

L (t-5)T"p(s)g(r0)
'”'SL O

p A=9)Tp(s)gr) B (" (L= p(s)g(n)
+<a”>[£,, () d”aL -

e (b —s)T ' p(s)g(r0) >
ds+ M
" 0<tZk<l<J.tk1 F(Q) ot

p e (b — )T p(s) g (ro)
+0<tzk<1<a +1—tk> <£H ReED) ds+M>]
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. V=]
+X(t) D, <J‘t e =5y p(s)qj(m)ds+M>

O<ty<t 1 r(q)
e (tk - 5)Tp(s)¢ (o) >
- ds+ M
n %(t)(ktzk(t(t t) < f N T s+

1
+ ; (a + ﬂ) (111‘0 + 121‘0)

< %(aﬁ[ﬁ)(ll + D)o + [(g + 1>Mp+ <§ + 1>2MP +2pM]

1 Yt
+‘P(1’0){ 07(1 ls_)(q)p(s)ds
( )[ A=9)""p(s) ,_ ﬁ L A=9)Tp(s)
n o D(g) , T(g-1)
e (b — )T p(s)
— — da
" O<tr<l J.tkl r(q) ’

p e (t - 5)T%p(s)
- — 74
+0<tzk<1<bt " 1) ftkl T(q-1) S]

b (t — s)q_lp(s) (b - S)q_zp(s) }
———"d ——"d
+0<iEZk<1 ftkl r(q) o 0<tZk<1 ftkl r(q - 1) ’

< Lry+ Hy + Ky (rp),

' (t=9)Tp(s)g(r0)
|| < f . ds
(a-1)
+[ L9 )y B (T A=) P (n)
. I'(q) al,  T(g-1)

e (tk - 5)T p(s)gp(ro) >
ds+ M
" 0<tzk<1<J‘tk1 I'(q) o

B " (tk = 5)"p(s)g (r0)
+o<tzk<1<“ +1 tk> <ftk1 F(q—l) ds+M>]

e (ti — 8)T7p(s)y(r0)
' %(t)0<tzk<t<J.fk1 F(q - 1)

ds + M> + %(llro + 127'0)

< %(awﬂ)(ll +Dh)ry + [Mp+ (g +l)Mp+pM]

13
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P LA-9)T"p(s) , B (" (1=5)"7p(s)
HP(rO){@JFI:tpiF(q) ds+; tpil"(q—l) ds
e (t - 5)T ' p(s)
-— - ’d
' O<tr<l J‘tkl F(q) ’
5 (P (¢ B9 ()
0<tzk<1<bt ’ 1) ftkl I'(q-1) ds]

b (tk - 5)T7p(s) }
-———d
+0<iEZk<1 ftkl F(q - 1) ’

< LTQ + Hz + KZ(,U(TO)~
(3.10)

Therefore, ry < Lry + H + K¢ (r9). However, it contradicts with (3.8).
Hence, by using Steps 1-4, Lemmas 2.6 and 2.7, F has at least one fixed point u € €,
which is the solution of problem (1.5). O

Next, we will give some corollaries.

Corollary 3.2. Assume that (A1), (Az), and (Ajz) are satisfied; moreover, lim supre(o/w)(r J(H +
Ky (r))) = +o0, where H = max{Hi, Hy}, K = max{Ky, Ky}; then the problem (1.5) has at least
one solution.

Assume that,

(A}) (sublinear growth), f : [0,1] x Rx R — R is continuous. There exists a nonnegative
function p(t) € C[0,1] with p(t) > 0 on a subinterval of [0,1]. Also there exists a
constant y € [0,1), such that |f(t,u,v)| < p(t)|u|]" for any (t,u,v) € [0,1] x R x R.

Corollary 3.3. Assume that (A7), (A2), and (A3) are satisfied, then the problem (1.5) has at least
one solution.

Assume that

(B1) f:[0,1] x R — R is continuous. There exists a nonnegative function p(t) € C[0,1]
with p(t) > 0 on a subinterval of [0, 1]. Also there exists a constant y € [0,1) such
that | f(t, u)| < p(t)|u|" for any (t,u) € [0,1] x R,

(By) there exist two positive constants I1,l, such that ((a + g)/a®)(lh + ) = L < 1.
Moreover, g1(0) =0, g2(0) =0, and

lg1(w) =g ()| < hllu-oll, |q2() - q(v)| < bllu-o|, Yu,veC, (3.11)

(B3) Ik, Jk : R — R are continuous. There exists a positive constant M, such that

@) <M, |Js@|<M, k=1,2,...,p. (3.12)
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Corollary 3.4. Assume that (B1), (By), and (Bs) are satisfied, then the problem (1.4) has at least one
solution.

Assume that

(By) f :10,1] x R — R is continuous. There exists a nonnegative function p(t) € C[0,1]
with p(t) > 0 on a subinterval of [0, 1]. |f(t,u)| < p(t) for any (¢t,u) € [0,1] x R.

Corollary 3.5. Assume that (B}), (Bz), and (B3) are satisfied, then the problem (1.4) has at least one
solution.

Remark 3.6. Compared with Theorem 3.2 in [16], Corollary 3.5 does not need conditions
£ (t,u) = f(t,0)|| < Lallu = o], [[Ik(u) = (V)| < La|lu = 0|, and [[Jx (1) = Jk(V)|| < La|ju - 2.
Moreover, we only need ((a + f)/a?)(l; + ) = L < 1.

Example 3.7. Consider the following problem:

‘D¥2u(t) = OuPsin® (W' (t)), O<t<1, te D =[0,1]\ {%}

1) i Q@) i
O N L T N Ly 3.13
(3)-1. P 2) " 24l (3.13)

u(O) + u’(O) — J‘l Mds u(l) +ul(1) _ fl |u(S)| ds

o 8+u(s)) o 8+u(s)l

where 6 > 0. Here,a = =1, p=1, g =3/2. Let p(s) =0 = P and ¢(u) = 1, then we can
see that (A1) holds. Choosing Iy =1, =1/8, L =1/2, we can easily obtain that (A,) holds. Let
M = 1, then we have that (A3) also holds. Moreover, H = 8, K = ((4+26+/2)/3+/7)60. Hence,

we get sup, . .\ (r/(H + Kg(r))) = 1/2\/(89(4 +261/2))/3+/7 >1/(1 - L) = 2 for any given
0 < 0 < 3y/7/(128(4 + 26+/2)). Therefore, By Theorem 3.1, the above problem (3.13) has at
least one solution for 0 < 8 < 3/7r/(128(4 + 26+/2)).
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