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We describe our recent results on the resonant perturbation theory of decoherence and relaxation
for quantum systems with many qubits. The approach represents a rigorous analysis of the
phenomenon of decoherence and relaxation for general N-level systems coupled to reservoirs
of bosonic fields. We derive a representation of the reduced dynamics valid for all times t ≥ 0
and for small but fixed interaction strength. Our approach does not involve master equation
approximations and applies to a wide variety of systems which are not explicitly solvable.

1. Introduction

Quantum computers (QCs) with large numbers of quantum bits (qubits) promise to solve
important problems such as factorization of larger integer numbers, searching large unsorted
databases, and simulations of physical processes exponentially faster than digital computers.
Recently, many efforts were made for designing scalable (in the number of qubits) QC
architectures based on solid-state implementations. One of the most promising designs of a
solid-state QC is based on superconducting devices with Josephson junctions and solid-state
quantum interference devices (SQUIDs) serving as qubits (effective spins), which operate in
the quantum regime: �ω >> kBT , where T is the temperature and ω is the qubit transition
frequency. This condition is widely used in superconducting quantum computation and
quantum measurement, when T ∼ 10–20 mK and �ω ∼ 100–150 mK (in temperature units)
[1–8] (see also references therein). The main advantages of a QC with superconducting qubits
are: (i) the two basic states of a qubit are represented by the states of a superconducting
charge or current in the macroscopic (several μm size) device. The relatively large scale of this
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device facilitates the manufacturing, and potential controlling and measuring of the states of
qubits. (ii) The states of charge- and current-based qubits can be measured using rapidly
developing technologies, such as a single electron transistors, effective resonant oscillators
and microcavities with RF amplifiers, and quantum tunneling effects. (iii) The quantum
logic operations can be implemented exclusively by switching locally on and off voltages on
controlling microcontacts and magnetic fluxes. (iv) The devices based on superconducting
qubits can potentially achieve large quantum dephasing and relaxation times of milliseconds
and more at low temperatures, allowing quantum coherent computation for long enough
times. In spite of significant progress, current devices with superconducting qubits only have
one or two qubits operating with low fidelity even for simplest operations.

One of the main problems which must be resolved in order to build a scalable QC is
to develop novel approaches for suppression of unwanted effects such as decoherence and
noise. This also requires to develop rigorous mathematical tools for analyzing the dynamics
of decoherence, entanglement, and thermalization in order to control the quantum protocols
with needed fidelity. These theoretical approaches must work for long enough times and be
applicable to both solvable and not explicitly solvable (nonintegrable) systems.

Here we present a review of our results [9–11] on the rigorous analysis of the
phenomenon of decoherence and relaxation for general N-level systems coupled to
reservoirs. The latter are described by the bosonic fields. We suggest a new approach which
applies to a wide variety of systems which are not explicitly solvable. We analyze in detail
the dynamics of an N-qubit quantum register collectively coupled to a thermal environment.
Each spin experiences the same environment interaction, consisting of an energy conserving
and an energy exchange part. We find the decay rates of the reduced density matrix elements
in the energy basis. We show that the fastest decay rates of off-diagonal matrix elements
induced by the energy conserving interaction are of order N2, while the one induced by
the energy exchange interaction is of the order N only. Moreover, the diagonal matrix
elements approach their limiting values at a rate independent of N. Our method is based
on a dynamical quantum resonance theory valid for small, fixed values of the couplings, and
uniformly in time for t ≥ 0. We do not make Markov-, Born- or weak coupling (van Hove)
approximations.

2. Presentation of Results

We consider an N-level quantum system S interacting with a heat bath R. The former is
described by a Hilbert space hs = C

N and a Hamiltonian

HS = diag(E1, . . . , EN). (2.1)

The environment R is modelled by a bosonic thermal reservoir with Hamiltonian

HR =
∫

R3
a∗(k)|k|a(k)d3k, (2.2)

acting on the reservoir Hilbert space hR, and where a∗(k) and a(k) are the usual
bosonic creation and annihilation operators satisfying the canonical commutation relations
[a(k), a∗(l)] = δ(k − l). It is understood that we consider R in the thermodynamic limit of
infinite volume (R3) and fixed temperature T = 1/β > 0 (in a phase without condensate).
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Given a form factor f(k), a square integrable function of k ∈ R
3 (momentum representation),

the smoothed-out creation and annihilation operators are defined as a∗(f) =
∫
R3 f(k)a∗(k)d

3k

and a(f) =
∫
R3 f(k)a(k)d

3k, respectively, and the hermitian field operator is

φ
(
f
)
=

1√
2

[
a∗
(
f
)
+ a
(
f
)]
. (2.3)

The total Hamiltonian, acting on hS ⊗ hR, has the form

H = HS ⊗ 1R + 1S ⊗HR + λv, (2.4)

where λ is a coupling constant and v is an interaction operator linear in field operators. For
simplicity of exposition, we consider here initial states where S and R are not entangled, and
where R is in thermal equilibrium. (Our method applies also to initially entangled states, and
arbitrary initial states of R normal w.r.t. the equilibrium state; see [10]). The initial density
matrix is thus

ρ0 = ρ0 ⊗ ρR,β, (2.5)

where ρ0 is any state of S and ρR,β is the equilibrium state of R at temperature 1/β.
Let A be an arbitrary observable of the system (an operator on the system Hilbert

space hS) and set

〈A〉t := TrS
(
ρtA
)
= TrS+R

(
ρt(A ⊗ 1R)

)
, (2.6)

where ρt is the density matrix of S + R at time t and

ρt = TrRρt (2.7)

is the reduced density matrix of S. In our approach, the dynamics of the reduced density
matrix ρt is expressed in terms of the resonance structure of the system. Under the
noninteracting dynamics (λ = 0), the evolution of the reduced density matrix elements of
S, expressed in the energy basis {ϕk}Nk=1 of HS, is given by

[
ρt
]
kl
=
〈
ϕk, e−itHSρ0eitHSϕl

〉
= eitelk

[
ρ0

]
kl
, (2.8)

where elk = El − Ek. As the interaction with the reservoir is turned on, the dynamics (2.8)
undergoes two qualitative changes.

(1) The “Bohr frequencies”

e ∈
{
E − E′ : E, E′ ∈ spec(HS)

}
(2.9)

in the exponent of (2.8) become complex, e �→ εe. It can be shown generally that the
resonance energies εe have nonnegative imaginary parts, Im εe ≥ 0. If Im εe > 0, then
the corresponding dynamical process is irreversible.



4 Advances in Mathematical Physics

(2) The matrix elements do not evolve independently any more. Indeed, the effective
energy of S is changed due to the interaction with the reservoirs, leading to a
dynamics that does not leave eigenstates ofHS invariant. (However, to lowest order
in the interaction, the eigenspaces of HS are left invariant and therefore matrix
elements with (m,n) belonging to a fixed energy difference Em − En will evolve
in a coupled manner.)

Our goal is to derive these two effects from the microscopic (hamiltonian) model and
to quantify them. Our analysis yields the thermalization and decoherence times of quantum
registers.

2.1. Evolution of Reduced Dynamics of an N-Level System

Let A ∈ B(hS) be an observable of the system S. We show in [9, 10] that the ergodic averages

〈〈A〉〉∞ := lim
T→∞

1
T

∫T
0
〈A〉tdt (2.10)

exist, that is, 〈A〉t converges in the ergodic sense as t → ∞. Furthermore, we show that for
any t ≥ 0 and for any 0 < ω′ < 2π/β,

〈A〉t − 〈〈A〉〉∞ =
∑
ε /= 0

eitεRε(A) +O
(
λ2e−[ω

′−O(λ)]t
)
, (2.11)

where the complex numbers ε are the eigenvalues of a certain explicitly given operatorK(ω′),
lying in the strip {z ∈ C | 0 ≤ Im z < ω′/2}. They have the expansions

ε ≡ ε(s)e = e + λ2δ
(s)
e +O

(
λ4
)
, (2.12)

where e ∈ spec(HS⊗1S−1S⊗HS) = spec(HS)−spec(HS) and δ(s)e are the eigenvalues of a matrix
Λe, called a level-shift operator, acting on the eigenspace of HS ⊗ 1S − 1S ⊗HS corresponding to
the eigenvalue e (which is a subspace of hS ⊗ hS). The Rε(A) in (2.11) are linear functionals
of A and are given in terms of the initial state, ρ0, and certain operators depending on the
Hamiltonian H. They have the expansion

Rε(A) =
∑

(m,n)∈Ie
κm,nAm,n +O

(
λ2
)
, (2.13)

where Ie is the collection of all pairs of indices such that e = Em − En, with Ek being the
eigenvalues of HS. Here, Am,n is the (m,n)-matrix element of the observable A in the energy
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basis of HS, and κm,n are coefficients depending on the initial state of the system (and on e,
but not on A nor on λ).

2.1.1. Discussion

(i) In the absence of interaction (λ = 0), we have ε = e ∈ R; see (2.12). Depending on
the interaction, each resonance energy ε may migrate into the upper complex plane,
or it may stay on the real axis, as λ/= 0.

(ii) The averages 〈A〉t approach their ergodic means 〈〈A〉〉∞ if and only if Im ε > 0
for all ε /= 0. In this case, the convergence takes place on the time scale [Im ε]−1.
Otherwise; 〈A〉t oscillates. A sufficient condition for decay is that Im δ

(s)
e > 0 (and

λ small, see (2.12)).

(iii) The error term in (2.11) is small in λ, uniformly in t ≥ 0, and it decays in time
quicker than any of the main terms in the sum on the r.h.s.: indeed, Im ε = O(λ2)
while ω′ −O(λ) > ω′/2 independent of small values of λ. However, this means that
we are in the regime λ2 � ω′ < 2π/β (see before (2.11)), which implies that λ2 must
be much smaller than the temperature T = 1/β. Using a more refined analysis, one
can get rid of this condition; see also remarks on page 376 of [10].

(iv) Relation (2.13) shows that to lowest order in the perturbation, the group of (energy
basis) matrix elements of any observable A corresponding to a fixed energy
difference Em − En evolve jointly, while those of different such groups evolve
independently.

It is well known that there are two kinds of processes which drive decay (or
irreversibility) of S: energy-exchange processes characterized by [v,HS]/= 0 and energy
preserving ones where [v,HS] = 0. The former are induced by interactions having
nonvanishing probabilities for processes of absorption and emission of field quanta
with energies corresponding to the Bohr frequencies of S and thus typically inducing
thermalization of S. Energy preserving interactions suppress such processes, allowing only
for a phase change of the system during the evolution (“phase damping”, [12–18]).

To our knowledge, energy-exchange systems have so far been treated using Born
and Markov master equation approximations (Lindblad form of dynamics) or they have
been studied numerically, while for energy conserving systems, one often can find an exact
solution. The present representation (2.11) gives a detailed picture of the dynamics of
averages of observables for interactions with and without energy exchange. The resonance
energies ε and the functionals Rε can be calculated for concrete models, as illustrated in the
next section. We mention that the resonance dynamics representation can be used to study
the dynamics of entanglement of qubits coupled to local and collective reservoirs, see [19].

The dynamical resonance method can be generalized to time-dependent Hamiltoni-
ans. See [20, 21] for time-periodic Hamiltonians.

2.1.2. Contrast with Weak Coupling Approximation

Our representation (2.11) of the true dynamics of S relies only on the smallness of the
coupling parameter λ, and no approximation is made. In the absence of an exact solution,
it is common to make a weak coupling Lindblad master equation approximation of the
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dynamics, in which the reduced density matrix evolves according to ρt = etLρ0, where L is
the Lindblad generator, [22–24]. This approximation can lead to results that differ qualitatively
from the true behaviour. For instance, the Lindblad master equation predicts that the system
S approaches its Gibbs state at the temperature of the reservoir in the limit of large times.
However, it is clear that in reality, the coupled system S + R will approach equilibrium, and
hence the asymptotic state of S alone, being the reduction of the coupled equilibrium state,
is the Gibbs state of S only to first approximation in the coupling (see also illustration
below, and [9, 10]). In particular, the system’s asymptotic density matrix is not diagonal
in the original energy basis, but it has off-diagonal matrix elements of O(λ2). Features
of this kind cannot be captured by the Lindblad approximation, but are captured in our
approach.

It has been shown (see, e.g., [23–26]) that the weak coupling limit dynamics generated
by the Lindblad operator is obtained in the regime λ → 0, t → ∞, with λ2t fixed. One of
the strengths of our approach is that we do not impose any relation between λ and t, and
our results are valid for all times t ≥ 0, provided λ is small. It has been observed [25, 26]
that for certain systems of the type S + R, the second-order contribution of the exponents ε(s)e
in (2.12) correspond to eigenvalues of the Lindblad generator. Our resonance method gives
the true exponents, that is, we do not lose the contributions of any order in the interaction. If
the energy spectrum of HS is degenerate, it happens that the second-order contributions to
Im ε

(s)
e vanish. This corresponds to a Lindblad generator having several real eigenvalues. In

this situation, the correct dynamics (approach to a final state) can be captured only by taking
into account higher-order contributions to the exponents ε(s)e ; see [27]. To our knowledge, so
far this can only be done with the method presented in this paper, and is beyond the reach of
the weak coupling method.

2.1.3. Illustration: Single Qubit

Consider S to be a single spin 1/2 with energy gap Δ = E2 − E1 > 0. S is coupled to the heat
bath R via the operator

v =

[
a c

c b

]
⊗ φ
(
g
)
, (2.14)

where φ(g) is the Bose field operator (2.3), smeared out with a coupling function (form
factor) g(k), k ∈ R

3, and the 2 × 2 coupling matrix (representing the coupling operator in the
energy eigenbasis) is hermitian. The operator (2.14)—or a sum of such terms, for which our
technique works equally well—is the most general coupling which is linear in field operators.
We refer to [10] for a discussion of the link between (2.14) and the spin-boson model. We take
S initially in a coherent superposition in the energy basis,

ρ0 =
1
2

[
1 1

1 1

]
. (2.15)
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In [10] we derive from representation (2.11) the following expressions for the dynamics of
matrix elements, for all t ≥ 0:

[
ρt
]
m,m

=
e−βEm

ZS,β
+
(−1)m

2
tanh

(
βΔ
2

)
eitε0(λ) + Rm,m(λ, t), m = 1, 2, (2.16)

[
ρt
]

1,2 =
1
2

eitε−Δ(λ) + R1,2(λ, t), (2.17)

where the resonance energies ε are given by

ε0(λ) = iλ2π2|c|2ξ(Δ) +O
(
λ4
)
,

εΔ(λ) = Δ + λ2R +
i
2
λ2π2

[
|c|2ξ(Δ) + (b − a)2ξ(0)

]
+O
(
λ4
)
,

ε−Δ(λ) = −εΔ(λ),

(2.18)

with

ξ
(
η
)
= lim

ε↓0

1
π

∫
R3

d3k coth
(
β|k|

2

)∣∣g(k)∣∣2 ε(
|k| − η

)2 + ε2
,

R =
1
2

(
b2 − a2

)〈
g,ω−1g

〉

+
1
2
|c|2P.V.

∫
R×S2

u2∣∣g(|u|, σ)∣∣2 coth
(
β|u|

2

)
1

u −Δ .

(2.19)

The remainder terms in (2.17), (2.17) satisfy |Rm,n(λ, t)| ≤ Cλ2, uniformly in t ≥ 0, and they
can be decomposed into a sum of a constant and a decaying part,

Rm,n(λ, t) =
〈〈
pn,m
〉〉
∞ − δm,n

e−βEm

ZS,β
+ R′m,n(λ, t), (2.20)

where |R′m,n(λ, t)| = O(λ2e−γt), with γ = min{Im ε0, Im ε±Δ}. These relations show the
following.

(i) To second order in λ, convergence of the populations to the equilibrium values
(Gibbs law), and decoherence occur exponentially fast, with rates τT = [Im ε0(λ)]

−1

and τD = [Im εΔ(λ)]
−1, respectively. (If either of these imaginary parts vanishes then

the corresponding process does not take place, of course.) In particular, coherence
of the initial state stays preserved on time scales of the order λ−2[|c|2ξ(Δ) + (b −
a)2ξ(0)]−1; compare for example (2.18).

(ii) The final density matrix of the spin is not the Gibbs state of the qubit, and it is
not diagonal in the energy basis. The deviation of the final state from the Gibbs
state is given by limt→∞Rm,n(λ, t) = O(λ2). This is clear heuristically too, since
typically the entire system S + R approaches its joint equilibrium in which S and R
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are entangled. The reduction of this state to S is the Gibbs state of S modulo O(λ2)
terms representing a shift in the effective energy of S due to the interaction with the
bath. In this sense, coherence in the energy basis of S is created by thermalization.
We have quantified this in [10, Theorem 3.3].

(iii) In a markovian master equation approach, the above phenomenon (i.e., variations
of O(λ2) in the time-asymptotic limit) cannot be detected. Indeed in that approach
one would conclude that S approaches its Gibbs state as t → ∞.

2.2. Evolution of Reduced Dynamics of an N-Level System

In the sequel, we analyze in more detail the evolution of a qubit register of size N. The
Hamiltonian is

HS =
N∑
i,j=1

JijS
z
i S

z
j +

N∑
j=1

BjS
z
j , (2.21)

where Jij are pair interaction constants and Bj is the value of a magnetic field at the location
of spin j. The Pauli spin operator is

Sz =

[
1 0

0 −1

]
(2.22)

and Szj is the matrix Sz acting on the jth spin only.
We consider a collective coupling between the register S and the reservoir R: the distance

between the N qubits is much smaller than the correlation length of the reservoir and as
a consequence, each qubit feels the same interaction with the reservoir. The corresponding
interaction operator is (compare with (2.4))

λ1v1 + λ2v2 = λ1

N∑
j=1

Szj ⊗ φ
(
g1
)
+ λ2

N∑
j=1

Sxj ⊗ φ
(
g2
)
. (2.23)

Here g1 and g2 are form factors and the coupling constants λ1 and λ2 measure the strengths
of the energy conserving (position-position) coupling, and the energy exchange (spin flip)
coupling, respectively. Spin-flips are implemented by the Sxj in (2.23), representing the Pauli
matrix

Sx =

[
0 1

1 0

]
(2.24)

acting on the jth spin. The total Hamiltonian takes the form (2.4) with λv replaced by (2.23).
It is convenient to represent ρt as a matrix in the energy basis, consisting of eigenvectors ϕσ
of HS. These are vectors in hS = C

2 ⊗ · · · ⊗ C
2 = C

2N indexed by spin configurations

σ = {σ1, . . . , σN} ∈ {+1,−1}N, ϕσ = ϕσ1 ⊗ · · · ⊗ ϕσN , (2.25)
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where

ϕ+ =

[
1

0

]
, ϕ− =

[
0

1

]
, (2.26)

so that

HSϕσ = E
(
σ
)
ϕσ with E

(
σ
)
=

N∑
i,j=1

Jijσiσj +
N∑
j=1

Bjσj . (2.27)

We denote the reduced density matrix elements as

[
ρt
]
σ,τ

=
〈
ϕσ, ρtϕτ

〉
. (2.28)

The Bohr frequencies (2.9) are now

e
(
σ, τ
)
= E
(
σ
)
− E
(
τ
)
=

N∑
i,j=1

Jij
(
σiσj − τiτj

)
+

N∑
j=1

Bj
(
σj − τj

)
, (2.29)

and they become complex resonance energies εe = εe(λ1, λ2) ∈ C under perturbation.

Assumption of Nonoverlapping Resonances

The Bohr frequencies (2.29) represent “unperturbed” energy levels and we follow their
motion under perturbation (λ1, λ2). In this work, we consider the regime of nonoverlapping
resonances, meaning that the interaction is small relative to the spacing of the Bohr
frequencies.

We show in [10, Theorem 2.1], that for all t ≥ 0,

[
ρt
]
σ,τ
−
〈〈[

ρ∞
]
σ,τ

〉〉
=
∑

{e:εe /= 0}
eitεe

⎡
⎣∑
σ ′,τ ′

wεe
σ,τ ;σ ′,τ ′

[
ρ0

]
σ ′,τ ′

+O
(
λ2

1 + λ
2
2

)⎤⎦

+O
((
λ2

1 + λ
2
2

)
e−[ω

′+O(λ)]t
)
.

(2.30)

This result is obtained by specializing (2.11) to the specific system at hand and considering
observables A = |ϕτ〉〈ϕσ |. In (2.30), we have in accordance with (2.10), 〈〈[ρ∞]σ,τ〉〉 =

limT→∞(1/T)
∫T

0 [ρt]σ,τdt. The coefficients w are overlaps of resonance eigenstates which
vanish unless e = −e(σ, τ) = −e(σ ′, τ ′) (see point (2) after (2.9)). They represent the dominant
contribution to the functionals Rε in (2.11); see also (2.13). The εe have the expansion

εe ≡ ε(s)e = e + δ(s)e +O
(
λ4

1 + λ
4
2

)
, (2.31)
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where the label s = 1, . . . , ν(e) indexes the splitting of the eigenvalue e into ν(e) distinct
resonance energies. The lowest order corrections δ(s)e satisfy

δ
(s)
e = O

(
λ2

1 + λ
2
2

)
. (2.32)

They are the (complex) eigenvalues of an operator Λe, called the level shift operator associated
to e. This operator acts on the eigenspace of LS associated to the eigenvalue e (a subspace of
the qubit register Hilbert space; see [10, 11] for the formal definition of Λe). It governs the
lowest order shift of eigenvalues under perturbation. One can see by direct calculation that
Im δ

(s)
e ≥ 0.

2.2.1. Discussion

(i) To lowest order in the perturbation, the group of reduced density matrix elements
[ρt]σ,τ associated to a fixed e = e(σ, τ) evolve in a coupled way, while groups of
matrix elements associated to different e evolve independently.

(ii) The density matrix elements of a given group mix and evolve in time according
to the weight functions w and the exponentials eitε(s)e . In the absence of interaction
(λ1 = λ2 = 0), all the ε(s)e = e are real. As the interaction is switched on, the ε(s)e
typically migrate into the upper complex plane, but they may stay on the real line
(due to some symmetry or due to an “inefficient coupling”).

(iii) The matrix elements [ρt]σ ,τ of a group e approach their ergodic means if and

only if all the nonzero ε
(s)
e have strictly positive imaginary part. In this case, the

convergence takes place on a time scale of the order 1/γe, where

γe = min
{

Im ε
(s)
e : s = 1, . . . , ν(e) s.t. ε(s)e /= 0

}
(2.33)

is the decay rate of the group associated to e. If an ε
(s)
e stays real, then the matrix

elements of the corresponding group oscillate in time. A sufficient condition for
decay of the group associated to e is γe > 0, that is, Im δ

(s)
e > 0 for all s, and λ1, λ2

small.

2.2.2. Decoherence Rates

We illustrate our results on decoherence rates for a qubit register with Jij = 0 (the general case
is treated in [11]). We consider generic magnetic fields defined as follows. For nj ∈ {0,±1,±2},
j = 1, . . . ,N, we have

N∑
j=1

Bjnj = 0⇐⇒ nj = 0 ∀j. (2.34)

Condition (2.34) is satisfied generically in the sense that it does not hold only for very special
choices of Bj (one such special choice is Bj = constant). For instance, if the Bj are chosen to
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be independent, and uniformly random from an interval [Bmin, Bmax], then (2.34) is satisfied
with probability one. We show in [11, Theorem 2.3], that the decoherence rates (2.33) are
given by

γe =

{
λ2

1y1(e) + λ2
2y2(e) + y12(e), e /= 0

λ2
2y0, e = 0

}
+O
(
λ4

1 + λ
4
2

)
. (2.35)

Here, y1 is contributions coming from the energy conserving interaction; y0 and y2 are due to
the spin flip interaction. The term y12 is due to both interactions and is of O(λ2

1 + λ
2
2). We give

explicit expressions for y0, y1, y2, and y12 in [11, Section 2]. For the present purpose, we limit
ourselves to discussing the properties of the latter quantities.

(i) Properties of y1(e): y1(e) vanishes if either e is such that e0 :=
∑n

j=1(σj −τj) = 0 or the
infrared behaviour of the coupling function g1 is too regular (in three dimensions
g1 ∝ |k|p with p > −1/2). Otherwise, y1(e) > 0. Moreover, y1(e) is proportional to
the temperature T .

(ii) Properties of y2(e): y2(e) > 0 if g2(2Bj,Σ)/= 0 for all Bj (form factor g2(k) = g2(|k|,Σ)
in spherical coordinates). For low temperatures, T , y2(e) ∝ T , for high temperatures
y2(e) approaches a constant.

(iii) Properties of y12(e): if either of λ1, λ2 or e0 vanish, or if g1 is infrared regular as
mentioned above, then y12(e) = 0. Otherwise, y12(e) > 0, in which case y12(e)
approaches constant values for both T → 0,∞.

(iv) Full decoherence: if γe > 0 for all e /= 0, then all off-diagonal matrix elements approach
their limiting values exponentially fast. In this case, we say that full decoherence
occurs. It follows from the above points that we have full decoherence if λ2 /= 0 and
g2(2Bj,Σ)/= 0 for all j, and provided λ1, λ2 are small enough (so that the remainder
term in (2.35) is small). Note that if λ2 = 0, then matrix elements associated to
energy differences e such that e0 = 0 will not decay on the time scale given by the
second order in the perturbation (λ2

1).
We point out that generically, S + R will reach a joint equilibrium as t → ∞,
which means that the final reduced density matrix of S is its Gibbs state modulo
a peturbation of the order of the interaction between S and R; see [9, 10]. Hence
generically, the density matrix of S does not become diagonal in the energy basis as
t → ∞.

(v) Properties of y0: y0 depends on the energy exchange interaction only. This reflects the
fact that for a purely energy conserving interaction, the populations are conserved
[9, 10, 17]. If g2(2Bj,Σ)/= 0 for all j, then y0 > 0 (this is sometimes called the “Fermi
Golden Rule Condition”). For small temperatures T , y0 ∝ T , while y0 approaches a
finite limit as T → ∞.

In terms of complexity analysis, it is important to discuss the dependence of γe on the
register sizeN.

(i) We show in [11] that y0 is independent of N. This means that the thermalization
time, or relaxation time of the diagonal matrix elements (corresponding to e = 0),
is O(1) in N.
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(ii) To determine the order of magnitude of the decay rates of the off-diagonal density
matrix elements (corresponding to e /= 0) relative to the register size N, we assume
the magnetic field to have a certain distribution denoted by 〈·〉. We show in [11]
that

〈
y1
〉
= y1 ∝ e2

0,
〈
y2
〉
= CBD

(
σ − τ

)
,
〈
y12
〉
= cB(λ1, λ2)N0(e), (2.36)

where CB and cB = cB(λ1, λ2) are positive constants (independent of N), with
cB(λ1, λ2) = O(λ2

1 + λ2
2). Here, N0(e) is the number of indices j such that σj = τj

for each (σ, τ) s.t. e(σ, τ) = e, and

D
(
σ − τ

)
:=

N∑
j=1

∣∣σj − τj∣∣ (2.37)

is the Hamming distance between the spin configurations σ and τ (which depends
on e only).

(iii) Consider e /= 0. It follows from (2.35)–(2.37) that for purely energy conserving
interactions (λ2 = 0), γe ∝ λ2

1e
2
0 = λ2

1[
∑N

j=1(σj − τj)]
2, which can be as large as

O(λ2
1N

2). On the other hand, for purely energy exchanging interactions (λ1 = 0),
we have γe ∝ λ2

2D(σ − τ), which cannot exceed O(λ2
2N). If both interactions are

acting, then we have the additional term 〈y12〉, which is of order O((λ2
1 + λ2

2)N).
This shows the following:
The fastest decay rate of reduced off-diagonal density matrix elements due to the energy
conserving interaction alone is of order λ2

1N
2, while the fastest decay rate due to the energy

exchange interaction alone is of the order λ2
2N. Moreover, the decay of the diagonal matrix

elements is of order λ2
1, that is, independent of N.

Remarks. (1) For λ2 = 0, the model can be solved explicitly [17], and one shows that the fastest
decaying matrix elements have decay rate proportional to λ2

1N
2. Furthermore, the model with

a noncollective, energy-conserving interaction, where each qubit is coupled to an independent
reservoir, can also be solved explicitly [17]. The fastest decay rate in this case is shown to be
proportional to λ2

1N.
(2) As mentioned at the beginning of this section, we take the coupling constants λ1, λ2

so small that the resonances do not overlap. Consequently, λ2
1N

2 and λ2
2N are bounded above

by a constant proportional to the gradient of the magnetic field in the present situation; see
also [11]. Thus the decay rates γe do not increase indefinitely with increasing N in the regime
considered here. Rather, γe are attenuated by small coupling constants for largeN. They are of
the order γe ∼ Δ. We have shown that modulo an overall, common (N-dependent) prefactor,
the decay rates originating from the energy conserving and exchanging interactions differ by
a factor N.

(3) Collective decoherence has been studied extensively in the literature. Among the
many theoretical, numerical, and experimental works, we mention here only [12, 14, 17, 28,
29], which are closest to the present work. We are not aware of any prior work giving explicit
decoherence rates of a register for not explicitly solvable models, and without making master
equation technique approximations.
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3. Resonance Representation of Reduced Dynamics

The goal of this section is to give a precise statement of the core representation (2.11), and to
outline the main ideas behind the proof of it.

The N-level system is coupled to the reservoir (see also (2.1), (2.2)) through the
operator

v =
R∑
r=1

λrGr ⊗ φ
(
gr
)
, (3.1)

where each Gr is a hermitian N ×N matrix, the gr(k) are form factors, and the λr ∈ R are
coupling constants. Fix any phase χ ∈ R and define

gr,β(u, σ) :=
√

u

1 − e−βu
|u|1/2

⎧⎨
⎩
gr(u, σ) if u ≥ 0,

−eiχgr(−u, σ) if u < 0,
(3.2)

where u ∈ R and σ ∈ S2. The phase χ is a parameter which can be chosen appropriately as to
satisfy the following condition.

(A) The map ω �→ gr,β(u +ω, σ) has an analytic extension to a complex neighbourhood
{|z| < ω′} of the origin, as a map from C to L2(R3,d3k).

Examples of g satisfying (A) are given by g(r, σ) = rpe−r
m
g1(σ), where p = −1/2 + n,

n = 0, 1, . . ., m = 1, 2, and g1(σ) = eiφg1(σ).
This condition ensures that the technically simplest version of the dynamical

resonance theory, based on complex spectral translations, can be implemented. The technical
simplicity comes at a price: on one hand, it limits the class of admissible functions g(k), which
have to behave appropriately in the infrared regime so that the parts of (3.2) fit nicely together
at u = 0, to allow for an analytic continuation. On the other hand, the square root in (3.2) must
be analytic as well, which implies the condition ω′ < 2π/β.

It is convenient to introduce the doubled Hilbert spaceHS = hS⊗hS, whose normalized
vectors accommodate any state on the system S (pure or mixed). The trace state, or infinite
temperature state, is represented by the vector

ΩS =
1√
N

N∑
j=1

ϕj ⊗ ϕj (3.3)

via

B(hS) � A �−→ 〈ΩS, (A ⊗ 1)ΩS〉. (3.4)

Here ϕj are the orthonormal eigenvectors of HS. This is just the Gelfand-Naimark-Segal
construction for the trace state. Similarly, letHR and ΩR,β be the Hilbert space and the vector
representing the equilibrium state of the reservoirs at inverse temperature β. In the Araki-
Woods representation of the field, we have HR = F ⊗ F, where F is the bosonic Fock space
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over the one-particle space L2(R3,d3k) and ΩR,β = Ω ⊗ Ω, with Ω being the Fock vacuum of
F (see also [10, 11] for more detail). Let ψ0 ⊗ΩR,β be the vector inHS ⊗HR representing the
density matrix at time t = 0. It is not difficult to construct the unique operator in B ∈ 1S ⊗ hS

satisfying

BΩS = ψ0. (3.5)

(See also [10] for concrete examples.) We define the reference vector

Ωref := ΩS ⊗ΩR,β (3.6)

and set

λ = max
r=1,...,R

|λr |. (3.7)

Theorem 3.1 (Dynamical resonance theory [9–11]). Assume condition (A) with a fixed ω′

satisfying 0 < ω′ < 2π/β. There is a constant c0 s.t.; if λ ≤ c0/β, then the limit 〈〈A〉〉∞, (2.10),
exists for all observables A ∈ B(hS). Moreover, for all such A and for all t ≥ 0, we have

〈A〉t − 〈〈A〉〉∞ =
∑

e,s:ε(s)e /= 0

ν(e)∑
s=1

eitε
(s)
e

〈(
B∗ψ0

)
⊗ΩR,β, Q

(s)
e (A ⊗ 1S)Ωref

〉

+O
(
λ2e−[ω

′+O(λ)]t
)
.

(3.8)

The ε(s)e are given by (2.12), 1 ≤ ν(e) ≤ mult(e) counts the splitting of the eigenvalue e into distinct
resonance energies ε(s)e , and the Q(s)

e are (nonorthogonal) finite-rank projections.

This result is the basis for a detailed analysis of the reduced dynamics of concrete
systems, like the N-qubit register introduced in Section 2.2. We obtain (2.30) (in particular,
the overlap functions w) from (3.8) by analyzing the projections Q(s)

e in more detail. Let us
explain how to link the overlap 〈(B∗ψ0) ⊗ ΩR,β, Q

(s)
e (A ⊗ 1S)Ωref〉 to its initial value for a

nondegenerate Bohr energy e, and where A = |ϕn〉〈ϕm|. (The latter observables used in (2.11)
give the matrix elements of the reduced density matrix in the energy basis.)

The Q
(s)
e is the spectral (Riesz) projection of an operator Kλ associated with the

eigenvalue ε(s)e ; see (3.19) (In reality, we consider a spectral deformation Kλ(ω), where ω is a
complex parameter. This is a technical trick to perform our analysis. Physical quantities do not
depend on ω and therefore, we do not display this parameter here). If a Bohr energy e, (2.9),
is simple, then there is a single resonance energy εe bifurcating out of e, as λ/= 0. In this case,
the projection Qe ≡ Q(s)

e has rank one, Qe = |χe〉〈χ̃e|, where χe and χ̃e are eigenvectors of Kλ

and its adjoint, with eigenvalue εe and its complex conjugate, respectively, and 〈χe, χ̃e〉 = 1.
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From perturbation theory, we obtain χe = χ̃e = ϕk ⊗ ϕl ⊗ΩR,β +O(λ), where HSϕj = Ejϕj and
Ek − El = e. The overlap in the sum of (3.8) becomes

〈(
B∗ψ0

)
⊗ΩR,β, Qe(A ⊗ 1S)Ωref

〉

=
〈(
B∗ψ0

)
⊗ΩR,β,

∣∣ϕk ⊗ ϕl ⊗ΩR,β
〉〈
ϕk ⊗ ϕl ⊗ΩR,β

∣∣(A ⊗ 1S)Ωref
〉
+O
(
λ2
)

=
〈
B∗ψ0,

∣∣ϕk ⊗ ϕl〉〈ϕk ⊗ ϕl∣∣(A ⊗ 1S)ΩS
〉
+O
(
λ2
)
.

(3.9)

The choice A = |ϕn〉〈ϕm| in (2.6) gives 〈A〉t = [ρt]m,n, the reduced density matrix element.
With this choice of A, the main term in (3.9) becomes (see also (3.3))

〈
B∗ψ0,

∣∣ϕk ⊗ ϕl〉〈ϕk ⊗ ϕl∣∣(A ⊗ 1S)ΩS
〉
=

1√
N
δknδlm

〈
B∗ψ0, ϕn ⊗ ϕm

〉

= δknδlm
〈
B∗ψ0,

(∣∣ϕn〉〈ϕm∣∣ ⊗ 1S
)
ΩS
〉

= δknδlm
〈
ψ0,
(∣∣ϕn〉〈ϕm∣∣ ⊗ 1S

)
BΩS
〉

= δknδlm
[
ρ0

]
mn
.

(3.10)

In the second-last step, we commute B to the right through |ϕn〉〈ϕm| ⊗ 1S, since B belongs to
the commutant of the algebra of observables of S. In the last step, we use BΩS = ψ0.

Combining (3.9) and (3.10) with Theorem 3.1 we obtain, in case e = Em−En is a simple
eigenvalue,

[
ρt
]
mn
−
〈〈[

ρ∞
]
mn

〉〉
=

∑
{e,s:ε(s)e /= 0}

eitε(s)e
[
δknδlm

[
ρ0

]
mn

+O
(
λ2
)]

+O
(
λ2e−[ω

′+O(λ)]t
)
. (3.11)

This explains the form (2.30) for a simple Bohr energy e. The case of degenerate e (i.e., where
several different pairs of indices k, l satisfy Ek − El = e) is analyzed along the same lines; see
[11] for details.

3.1. Mechanism of Dynamical Resonance Theory, Outline of
Proof of Theorem 3.1

Consider any observable A ∈ B(hS). We have

〈A〉t = TrS
[
ρtA
]

= TrS+R
[
ρtA ⊗ 1R

]

=
〈
ψ0, eitLλ[A ⊗ 1S ⊗ 1R]e−itLλψ0

〉
.

(3.12)

In the last step, we pass to the representation Hilbert space of the system (the GNS Hilbert
space), where the initial density matrix is represented by the vector ψ0 (in particular, the
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Figure 1: Spectrum of K0(ω).

Hilbert space of the small system becomes hS ⊗ hS); see also before (3.3), (3.4). As mentioned
above, in this review we consider initial states where S and R are not entangled. The initial
state is represented by the product vector ψ0 = ΩS⊗ΩR,β, where ΩS is the trace state of S, (3.4),
〈ΩS, (A⊗1S)ΩS〉 = (1/N)Tr(A), and where ΩR,β is the equilibrium state of R at a fixed inverse
temperature 0 < β < ∞. The dynamics is implemented by the group of automorphisms eitLλ ·
e−itLλ . The self-adjoint generator Lλ is called the Liouville operator. It is of the form Lλ = L0+λW ,
where L0 = LS + LR represents the uncoupled Liouville operator, and λW is the interaction
(3.1) represented in the GNS Hilbert space. We refer to [10, 11] for the specific form of W .

We borrow a trick from the analysis of open systems far from equilibrium: there is a
(nonself-adjoint) generator Kλ s.t.

eitLλAe−itLλ = eitKλAe−itKλ for all observables A, t ≥ 0, and

Kλψ0 = 0.
(3.13)

Kλ can be constructed in a standard way, given Lλ and the reference vector ψ0. Kλ is of the
form Kλ = L0 + λI, where the interaction term undergoes a certain modification (W → I);
see for example [10]. As a consequence, formally, we may replace the propagators in (3.12)
by those involving K. The resulting propagator which is directly applied to ψ0 will then just
disappear due to the invariance of ψ0. One can carry out this procedure in a rigorous manner,
obtaining the following resolvent representation [10]

〈A〉t = −
1

2πi

∫
R−i

〈
ψ0, (Kλ(ω) − z)−1[A ⊗ 1S ⊗ 1R]ψ0

〉
eitzdz, (3.14)

where Kλ(ω) = L0(ω) + λI(ω), I is representing the interaction, and ω �→ Kλ(ω) is a spectral
deformation (translation) of Kλ. The latter is constructed as follows. There is a deformation
transformation U(ω) = e−iωD, where D is the (explicit) self-adjoint generator of translations
[10, 11, 30] transforming the operator Kλ as

Kλ(ω) = U(ω)KλU(ω)−1 = L0 +ωN + λI(ω). (3.15)

Here,N =N1⊗1+1⊗N1 is the total number operator of a product of two bosonic Fock
spaces F⊗F (the Gelfand-Naimark-Segal Hilbert space of the reservoir), and where N1 is the
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usual number operator on F. N has spectrum N ∪ {0}, where 0 is a simple eigenvalue (with
vacuum eigenvector ΩR,β = Ω ⊗ Ω). For real values of ω, U(ω) is a group of unitaries. The
spectrum of Kλ(ω) depends on Imω and moves according to the value of Imω, whence the
name “spectral deformation”. Even though U(ω) becomes unbounded for complex ω, the
r.h.s. of (3.15) is a well-defined closed operator on a dense domain, analytic in ω at zero.
Analyticity is used in the derivation of (3.14) and this is where the analyticity condition
(A) after (3.2) comes into play. The operator I(ω) is infinitesimally small with respect to
the number operator N. Hence we use perturbation theory in λ to examine the spectrum of
Kλ(ω).

The point of the spectral deformation is that the (important part of the) spectrum
of Kλ(ω) is much easier to analyze than that of Kλ, because the deformation uncovers the
resonances of Kλ. We have (see Figure 1)

spec(K0(ω)) =
{
Ei − Ej

}
i,j=1,...,N

⋃
n≥1

{ωn + R}, (3.16)

because K0(ω) = L0 + ωN, L0 and N commute, and the eigenvectors of L0 = LS + LR are
ϕi ⊗ ϕj ⊗ ΩR,β. Here, we have HSϕj = Ejϕj . The continuous spectrum is bounded away
from the isolated eigenvalues by a gap of size Imω. For values of the coupling parameter
λ small compared to Imω, we can follow the displacements of the eigenvalues by using
analytic perturbation theory. (Note that for Imω = 0, the eigenvalues are imbedded into the
continuous spectrum, and analytic perturbation theory is not valid! The spectral deformation
is indeed very useful!)

Theorem 3.2 (see [10] and Figure 2). Fix Imω s.t. 0 < Imω < ω′ (where ω′ is as in Condition
(A)). There is a constant c0 > 0 s.t. if |λ| ≤ c0/β then, for all ω with Im ω > 7ω′/8, the spectrum
of Kλ(ω) in the complex half-plane {Im z < ω′/2} is independent of ω and consists purely of the
distinct eigenvalues

{
ε
(s)
e : e ∈ spec(LS), s = 1, . . . , ν(e)

}
, (3.17)

where 1 ≤ ν(e) ≤ mult(e) counts the splitting of the eigenvalue e. Moreover,

lim
λ→ 0

∣∣∣ε(s)e (λ) − e
∣∣∣ = 0 (3.18)

for all s, and we have Im ε
(s)
e ≥ 0. Also, the continuous spectrum of Kλ(ω) lies in the region {Im z ≥

3ω′/4}.

Next we separate the contributions to the path integral in (3.14) coming from the
singularities at the resonance energies and from the continuous spectrum. We deform the
path of integration z = R − i into the line z = R + iω′/2, thereby picking up the residues
of poles of the integrand at ε(s)e (all e, s). Let C(s)e be a small circle around ε

(s)
e , not enclosing
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Figure 2: Spectrum of Kλ(ω). Resonances ε(s)e are uncovered.
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z = R + iω′/2

z = R − i

0

C(s)e

Figure 3: Contour deformation:
∫
R−i dz =

∑
e,s

∫
C(s)e dz +

∫
R+iω′/2 dz.

or touching any other spectrum of Kλ(ω). We introduce the generally nonorthogonal Riesz
spectral projections

Q
(s)
e = Q(s)

e (ω, λ) = − 1
2πi

∫
C(s)e

(Kλ(ω) − z)−1dz. (3.19)

It follows from (3.14) that

〈A〉t =
∑
e

ν(e)∑
s=1

eitε(s)e
〈
ψ0, Q

(s)
e [A ⊗ 1S ⊗ 1R]ψ0

〉
+O
(
λ2e−ω

′t/2
)
. (3.20)

Note that the imaginary parts of all resonance energies ε(s)e are smaller than ω′/2, so that the
remainder term in (3.20) is not only small in λ, but it also decays faster than all of the terms in
the sum. (See also Figure 3.) We point out also that instead of deforming the path integration
contour as explained before (3.19), we could choose z = R + i[ω′ −O(λ)], hence transforming
the error term in (3.20) into the one given in (3.8).
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Finally, we notice that all terms in (3.20) with ε
(s)
e /= 0 will vanish in the ergodic mean

limit, so

〈〈A〉〉∞ = lim
T→∞

1
T

∫T
0
〈A〉tdt =

∑
s:ε(s)0 =0

〈
ψ0, Q

(s)
0 [A ⊗ 1R ⊗ 1R]ψ0

〉
. (3.21)

We now see that the linear functionals (2.13) are represented as

R
ε
(s)
e
(A) =

〈
ψ0, Q

(s)
e [A ⊗ 1S ⊗ 1R]ψ0

〉
. (3.22)

This concludes the outline of the proof of Theorem 3.1.
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