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Reproducing with elementary resources the correlations that arise when a quantum system
is measured (quantum state simulation) allows one to get insight on the operational and
computational power of quantum correlations. We propose a family of models that can simulate
von Neumann measurements in the x − y plane of the Bloch sphere on n-partite GHZ states.
For the tripartite and fourpartite states, the models use only bipartite nonlocal boxes; they can
be translated into classical communication schemes with finite average communication cost.

1. Introduction

Understanding the nonlocal correlations created upon measurement of some entangled
quantum system is a problem which runs up against our common representation of the
world, by the very definition of nonlocality, i.e. violation of a Bell inequality [1]. Indeed, no
explanation one would reasonably accept as possible, like agreement prior to measurement
or subluminal communication of inputs, seems to be used by nature in order to create these
correlations (see the numerous experimental violations of Bell inequalities [2]).

Still, some insight on the power of such correlations was gained when people came
out with models able to reproduce them in terms of classical resources. For instance, Toner
and Bacon [3] showed how to simulate von Neumann measurements on a singlet state with
one bit of communication. Such a result puts an upper bound on the required amount of
nonlocal resources needed for the reproduction of singlet correlations; it guarantees also that
the corresponding correlations are not a stronger resource of nonlocality than 1 bit of classical
communication.

A different kind of resources that was also considered are the so-called nonlocal
boxes [4]: these are simple nonlocal correlations which do not allow signaling. Successful
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simulation schemes using nonlocal boxes as unique nonlocal resources include the simulation
of the singlet [5] and of partially entangled two-qubit states [6].

Concerning multipartite systems, communication models reproducing Pauli mea-
surements on n-partite GHZ or on graph states have also been proposed [7, 8]. For
arbitrary possible measurements on the tripartite GHZ state, previous studies suggested
that its simulation with bounded communication might be impossible, taking as an example
correlations corresponding to measurements of this state in the x − y plane of the Bloch
sphere [9]. In this paper, we construct a model which analytically reproduces these equatorial
correlations, and whose only nonlocal resources are Popescu-Rohrlich (PR) boxes [10] and
Millionaire boxes [11]. Thus a finite number of bipartite nonlocal boxes are proven to be
sufficient to reproduce these genuinely tripartite nonlocal correlations. Note also that even
though our model does not give an upper bound on the worst-case communication cost, it
does provide a communication model with finite expected communication cost, simulating
for instance the tripartite GHZ state with an average total of 10 bits of communication
between the parties (c.f. Appendix B).

The paper is organized as follows: first, we recall the correlations of the GHZ state that
we want to simulate. We then present a model for the 3-partite case, and generalize it to more
parties. We discuss the construction and then conclude.

2. GHZ Correlations

Consider the n-partite GHZ state

|GHZn〉 =
1√
2
(|00 · · · 0〉 + |11 · · · 1〉). (2.1)

Our goal is to reproduce the correlations which are obtained when von Neumann
measurements are performed on this state, by using other nonlocal resources such as nonlocal
boxes (possibly supplemented with shared randomness).

For n = 2, the protocol presented in [5] for the singlet state allows one to reproduce the
correlations for any measurement settings, using one PR box. Here we recall the definition of
a PR box:

PR Box

A Popescu-Rohrlich (PR) box is a nonlocal box that admits two bits x, y ∈ {0, 1} as inputs and
produces locally random bits a, b ∈ {0, 1}, which satisfy the binary relation

a + b = xy. (2.2)

Going to n ≥ 3, we shall only consider measurements in the x − y plane (equatorial
measurements), which have the nice feature of producing unbiased marginals: all correlation
terms involving strictly fewer than n parties vanish. We write each party’s measurement
operator as: A = cosφaσX + sinφaσY , B = cosφbσX + sinφbσY , . . .. Denoting the binary result
of each measurement by α, β, . . . ∈ {−1, 1}, the correlations we are interested in are given by

〈α〉 = 〈β〉 = · · · = 〈αβ〉 = · · · = 0 (2.3)
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Figure 1: Simulation of |GHZ3〉 in a Svetlichny scenario: Alice and Bob form a group and can share their
information with each other, while Charlie is separated from them. In this scenario 1 PR box allows one to
reproduce the equatorial correlations.

for all sets of fewer than n parties, and

〈αβ · · ·ω〉 = cos
(
φa + φb + · · · + φz

)
(2.4)

for the full n-partite correlation term. In other words, outcomes appear to be random except
when all of them are considered together, in which case their correlation takes a form
reminiscent of the singlet state. To simulate such correlations, nonlocal boxes similar to the
Millionnaire box will be useful, so let us recall what a Millionnaire box is.

M Box

A Millionaire box is a nonlocal box that admits two continuous inputs x, y ∈ [0, 1[ and
produces locally random bits a, b ∈ {0, 1}, such that

a + b = sg
(
x − y

)
, (2.5)

where the sign function is defined as sg(x) = 0 if x > 0 and sg(x) = 1 if x ≤ 0.
It is worth mentioning that even though we restrict the set of possible measurements

on the GHZ states, the correlations we consider can still exhibit full n-partite nonlocality.
Indeed, the Svetlichny inequality for n parties can be maximally violated with settings in the
x − y plane [12, 13]. This implies that in order to simulate these correlations, any model must
truly involve all n parties together [14].

3. Simulation Model for the 3-Partite GHZ State

Let us consider the above correlations for n = 3 parties, for which the outcomes of all parties
need to be correlated according to 〈αβγ〉 = cos(φa + φb + φc).

As a first step towards the simulation of these correlations, let us relax some of
the constraints and allow two parties to cooperate in a Svetlichny-like scenario [15] (see
Figure 1): for instance Alice and Bob would be allowed to communicate with each other,
but not with Charlie who is kept isolated from them. In such a scenario, the three parties
could create correlations of the desired form with one PR box by using the protocol of [5]
to generate outputs α̃ and γ̃ that have a cosine correlation of the form 〈α̃γ̃〉 = cos(φab + φc),
with a fictitious measurement angle φab = φa + φb. By then setting either α = α̃, β = +1 or
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α = −α̃, β = −1 (each with probability 1/2), and γ = γ̃ , they would recover the desired
tripartite correlations 〈αβγ〉 = cos(φa + φb + φc).

Of course, letting Alice and Bob share their inputs is not satisfactory yet, as this would
require signaling between them. We shall now see that it is actually possible to reseparate
them, while keeping the tripartite correlation term unchanged.

In order to do so, let us recall that the model used above to create the bipartite cosine
correlation with a PR box works by asking the parties (here, Alice-Bob together and Charlie)
to input in the box terms of the form [5]

x = sg
(
cos
(
φab − ϕ1

))
+ sg
(
cos
(
φab − ϕ2

))
,

z = sg
(
cos
(
φc − ϕ+

))
+ sg
(
cos
(
φc − ϕ−

))
,

(3.1)

where ϕ1, ϕ2, ϕ+, ϕ− are hidden variables shared by all parties (that we shall define later).
One can see that in the Svetlichny scenario, Alice and Bob do not really need to share their
measurement angles, but only the terms sg(cos(φa + φb − ϕλ)). Hopefully, there is a way for
Alice and Bob to compute this function nonlocally by using the forementioned Millionaire box
(M box). For convenience, let us define the following nonlocal box.

Cosine Box

A bipartite Cosine box (C box) is a nonlocal box that admits two angles φa, φb ∈ [0, 2π[ as
inputs and produces locally random binary outcomes a, b ∈ {0, 1}, correlated according to

a + b = sg
(
cos
(
φa + φb

))
. (3.2)

We show in Appendix A that a bipartite C box is equivalent to an M box. C boxes are
exactly what we need for our problem, as the following result shows.

Result 1. Equatorial von Neumann measurements on the tripartite GHZ state can be
simulated with 2 C boxes and 2 PR boxes.

Proof. The simulation can be realized with the following model; we refer to Figure 2 for the
distribution of the nonlocal boxes between the three parties Alice, Bob, and Charlie, and
for the numbering of their inputs (denoted xi, yi and zi for each party, resp.) and outputs
(denoted ai, bi and ci).

Let Bob and Charlie share two independent random vectors
−→
λ1,
−→
λ2 uniformly

distributed on the sphere S2. We define
−→
λ± =

−→
λ1 ±

−→
λ2 and refer to ϕ1, ϕ2, φ+, ϕ− for their

phase angle in polar coordinates. Let the parties input the following variables into their boxes:

x1 = φa, x2 = φa, x3 = a1 + a2,

y1 = φb + ϕ1, y2 = φb + ϕ2, y3 = b1 + b2,

z1 = z2 = sg
(
cos
(
φc − ϕ+

))
+ sg
(
cos
(
φc − ϕ−

))
.

(3.3)
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Figure 2: Setup for the simulation of |GHZ3〉 in the x-y plane. The Alice-Bob group was split by using two
C boxes and a second PR box.

The three parties then output

α = (−1)A, withA = a1 + a3

β = (−1)B, withB = b1 + b3

γ = (−1)C, withC = c1 + c2 + sg
(
cos
(
φc − ϕ+

))
.

(3.4)

The output of each party is the XOR of outputs received from nonlocal boxes shared
with all other parties. Since these boxes are no-signaling, a single output of any nonlocal
box is necessarily random. The only way as not to get a random average correlation is thus
to consider all parties together since missing one produces a random term. All correlations
involving fewer than 3 parties thus average to zero.

Concerning the 3-party correlations, we have

A + B + C = (a1 + b1) + (a3 + c1) + (b3 + c2) + sg
(
cos
(
φc − ϕ+

))

= (a1 + b1) + x3z1 + y3z2 + sg
(
cos
(
φc − ϕ+

))

= (a1 + b1) + (a1 + b1 + a2 + b2)z1 + sg
(
cos
(
φc − ϕ+

))

= (a1 + b1) + sg
(
cos
(
φc − ϕ+

))

+
[
sg
(
cos
(
φa + φb + ϕ1

))
+ sg
(
cos
(
φa + φb + ϕ2

))]

×
[
sg
(
cos
(
φc − ϕ+

))
+ sg
(
cos
(
φc − ϕ−

))]

= sg
(−→vab ·

−→
λ1

)
+ sg
(−→c ·

−→
λ+

)

+
[
sg
(−→vab ·

−→
λ1

)
+ sg
(−→vab ·

−→
λ2

)][
sg
(−→c ·

−→
λ+

)
+ sg
(−→c ·

−→
λ−
)]
,

(3.5)

where we defined −→vab = (cos(−φa −φb), sin(−φa −φb), 0) and with −→c = (cosφc, sinφc, 0) being
Charlie’s setting. Following the proof of [5] (see also [3]), we find that the average of this
quantity over the values of the hidden variables

−→
λ1 and

−→
λ2 is

〈A + B + C〉 = 1 − −→vab · −→c
2

=
1 − cos

(
φa + φb + φc

)

2
(3.6)
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which leads, as requested, to

〈αβγ〉 = cos
(
φa + φb + φc

)
. (3.7)

Coming back to the Svetlichny construction, we see that it was indeed possible to split
the Alice-Bob group by allowing them to share two C boxes. Concerning the PR box, it had to
be split also, into two new PR boxes, in order to recover the desired result: the computation
made by the PR box in the Svetlichny setup is now performed nonlocally, by the 2 PR boxes,
using inputs distributed over the 3 parties.

We restricted here to measurements in the x-y plane, but with a slight modification,
Charlie could actually simulate any measurement basis. Indeed a way to understand the
appearance of the model for the singlet state (the bipartite cosine correlation), in the
Svetlichny scenario, is to realize that the fictitious measurement angle φab = φa + φb that
Alice and Bob used above corresponds to the direction in which they would prepare a state
for Charlie if they were to measure their part of the original GHZ state in their respective
bases. In other words, in the quantum scenario, when Alice and Bob measure the GHZ state,
they prepare one of the two states

|z±〉 =
1√
2

(
|0〉 ± e−i(φa+φb)|1〉

)
, (3.8)

for Charlie. But a way for them to prepare one of these states, if they share a singlet (or
rather, a bipartite GHZ or |Φ+〉 state) with Charlie, is by measuring their part of the |Φ+〉
state along φab, which is what they effectively do in our model. So in fact they prepare a state
|z±〉 for Charlie, which he can measure in the direction he wants (in particular, outside the
x − y plane). The only modification in the model needed for that is that Charlie should use
z1 = z2 = sg(−→c ·

−→
λ+) + sg(−→c ·

−→
λ−) and C = c1 + c2 + sg(−→c ·

−→
λ+) to allow his measurement to

point outside the x − y plane.
We do not claim that the above model is optimal. It could be that strictly fewer nonlocal

boxes are actually enough to reproduce the same correlations. It is nonetheless remarkable
that truly tripartite correlations can be simulated with bipartite nonlocal resources only.

It is also quite surprising that the model we presented here does not need more shared
randomness than in the bipartite case. It might possibly be that a model that would use fewer
nonlocal resources would require more shared randomness.

4. Simulation Model for the 4-partite GHZ State

In the previous section, we showed how to split φab from (3.1) into two phases φa, φb, in
order to reseparate the group formed by Alice and Bob in the Svetlichny scenario. It is in fact
similarly possible to split φc in order to have a total of 4 parties into play.

Result 2. Equatorial von Neumann measurements on the 4-partite GHZ state can be
simulated with 4 C boxes and 4 PR boxes.

Proof. The simulation can be realized with the following model, analogous to the previous
one; we now refer to Figure 3 for the distribution of the nonlocal boxes between the four
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Figure 3: Setup for the simulation of |GHZ4〉 in the x-y plane. Notice that if any of the 4 parties is taken
away (together with the nonlocal boxes it shares with the other parties), we recover a setup with 2 PR and
2 C boxes, which corresponds to the simulation setup for |GHZ3〉, as in Figure 2.

parties Alice, Bob, Charlie, and Dave, and for the numbering of their inputs (xi, yi, zi, and
wi) and outputs (ai, bi, ci, and di).

Bob and Charlie still share two independent random vectors
−→
λ1,
−→
λ2 uniformly

distributed on the sphere S2. With the same notations as before, let the four parties now
input the following variables into their boxes:

x1 = φa, x2 = φa, x3 = x4 = a1 + a2,

y1 = φb + ϕ1, y2 = φb + ϕ2, y3 = y4 = b1 + b2,

z1 = φc − ϕ+, z2 = φc − ϕ−, z3 = z4 = c1 + c2,

w1 = φd, w2 = φd, w3 = w4 = d1 + d2.

(4.1)

The parties should then output

α = (−1)A, withA = a1 + a3 + a4

β = (−1)B, withB = b1 + b3 + b4

γ = (−1)C, withC = c1 + c3 + c4

δ = (−1)D, withD = d1 + d3 + d4.

(4.2)

For the same reason as in the tripartite case, all correlations of fewer than four parties
vanish. For the 4-partite correlation term, the calculation of A + B +C +D is straightforward,
following similar lines as in the tripartite case. It leads to a similar expression as in (3.5),
except that −→c should now be replaced by −→vcd = (cos(φc + φd), sin(φc + φd), 0). This leads to
the requested 4-partite correlation term:

〈αβγδ〉 = cos
(
φa + φb + φc + φd

)
. (4.3)

Again, there is no claim of optimality for the above model, but it is also remarkable
that truly 4-partite correlations can still be simulated with bipartite nonlocal resources only,
and no more shared randomness than for the bipartite case.
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5. Going to More Parties

5.1. Possible Extension of the Model to Any Number of Parties

In the last two sections, we showed how to construct models for the simulation of GHZ states
involving n = 3, 4 parties by splitting the n parties into two groups. Each group then had to
calculate functions of the form sg(cos(Σφai + ϕλ)) with for instance Σφai = φa + φb, ϕλ = ϕ1.
Now, if we consider more parties, splitting them into two groups necessarily results in at
least one of the groups having more than two parties. One could for instance have n − 1
parties on one side and 1 party on the other side. The sign function that each group has to
calculate thus involves in general more than two phase angles. This motivates the definition
of a generalization of the C box to n parties.

Multipartite Cosine Box

An n-partite C box is a nonlocal nonsignaling box that admits n angles φi ∈ [0, 2π[ as inputs
and produces binary outcomes ai ∈ {0, 1}, correlated according to

∑

i

ai = sg

(

cos

(
∑

i

φi

))

. (5.1)

The outcomes of the box are locally random. Also, all correlations involving fewer than n
outputs vanish.

Multipartite C boxes allow one to generalize our model to the simulation of multipartite
GHZ state with any number of parties, by separating the n parties into two groups, consisting
of k parties on one side and n − k parties on the other.

Result 3. Equatorial von Neumann measurements on n-partite GHZ states can be simulated
with 2 k-partite C boxes + 2 (n − k)-partite C boxes + k(n − k)PR boxes (for any 0 < k < n).

Sketch of the Proof

Following the previous constructions, the group with k parties needs to calculate nonlocally
two terms of the form sg(cos(φ1 + · · · + φk + ϕλ)), which can be done by using two k-partite C
boxes, and the other group can similarly do its job with two (n−k)-partite C boxes. As it was the
case for the 4-partite case, each party from the first group also needs to share a PR box with
each other party in the second group. We thus understand that by separating the n parties
into these two groups, a total of 2k-partite C boxes + 2 (n − k)-partite C boxes + k(n − k) PR
boxes is sufficient to simulate the correlations of the n-partite GHZ state measured in the x−y
plane. Interestingly again, no more shared randomness than for the bipartite case is required.

5.2. A Simpler Model

If we allow the parties to share nonlocal boxes involving more than two parties, then there is
actually a simpler model which uses a single n-partite C box to reproduce the equatorial GHZ
correlations(as defined by (2.3) and (2.4)).



Advances in Mathematical Physics 9

Result 4. Equatorial von Neumann measurements on n-partite GHZ states can be simulated
with a single n-partite C box.

Proof. Consider indeed the following strategy: Alice generates a random variable ϕλ ∈
[−π/2, π/2] according to the distribution ρ(ϕλ) = (1/2) cos(ϕλ). She inputs φa + ϕλ in the
n-partite C box, while all other n−1 partners simply input their measurement angle. From the
outputs a, b, . . . of the box, each party can compute the final outputs α = (−1)a, β = (−1)b, . . .
All correlations between the outputs that involve fewer than n parties vanish, while for the
n-partite correlation term, they get, as requested:

〈αβ . . . ω〉 =
∫π/2

−π/2
(−1)sg(cos(ϕλ+φa+φb+···+φz))ρ

(
ϕλ
)
dϕλ

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2

∫π/2−Σφi

−π/2
cosϕλ dϕλ −

1
2

∫π/2

π/2−Σφi
cosϕλ dϕλ if 0 < Σφi < π

−1
2

∫−π/2−Σφi

−π/2
cosϕλ dϕλ +

1
2

∫π/2

−π/2−Σφi
cosϕλ dϕλ else

= cos
(
φa + φb + · · · + φz

)
.

(5.2)

Note that in the bipartite case, this model gives a new, simplified, way of simulating
the equatorial correlations of the singlet state with a single Millionaire box. It is worth noting
that it does not require any shared randomness. It uses however a strictly stronger nonlocal
resource than the model with one PR box [5], since an M box cannot be simulated with one
PR box (c.f. Appendix B).

Compared to this last simple model, our previous construction allows one to reduce
the multipartiteness of the nonlocal boxes used to simulate the same correlations. Finitely
many nonlocal boxes involving no more than 	n/2
 parties are sufficient to reproduce n-
partite equatorial GHZ correlations. In particular, for n ≤ 4, bipartite resources are sufficient.

If one really wants to use only bipartite nonlocal boxes, we show in Appendix C that
multipartite nonlocal boxes with continuous inputs, binary outputs, and only fully n-partite
nonvanishing correlations can always be simulated with bipartite boxes, as it is the case for
boxes with a finite number of inputs [16]. However, the construction we use is quite special,
as the boxes we need can have inputs or outputs that cannot be written as real numbers.

6. Conclusion

We proposed models reproducing the correlations of the tripartite and 4-partite GHZ states
measured in the x − y plane, with a finite number of bipartite nonlocal boxes. Extending our
results to n-partite GHZ states was possible after releasing the requirement that the nonlocal
boxes had to be bipartite.

We believe that our results give a new motivation for finding whether or not the
GHZ correlations can also be simulated in a bounded communication scheme. Note that our
models can be translated into finite expected communication schemes, since a PR box can be
replaced by 1 bit of communication and an M box (a bipartite C box) by 4 bits in average, as
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we show in Appendix B. This gives a model with an average of 10 bits of communication
between the parties. Note that this model with finite expected communication could also be
recast as a detection loophole model.

More generally, it would be interesting to know whether the simulation of n-partite
GHZ states can always be achieved with a finite amount of bipartite resources only (for
instance a finite number of M boxes). Considering also measurements outside of the x − y
plane seems quite challenging because the marginals do not vanish anymore, but it would
certainly be of interest too.

Finally, it would be worth studying other multipartite quantum correlations. The W
state for instance, seems to be a good candidate for this, when measurements are again
restricted to the x − y plane, because of the simplicity of its correlations. Indeed they only
consist of bipartite correlation terms of the form 〈αβ〉 = (2/n) cos(φa−φb), all other correlation
terms being 0 for any number of parties n. (It is not known whether these correlations are
nonlocal for all n, but in the case n = 4 there exists a Bell inequality which allows one to show
that these correlations are indeed nonlocal [17].)

Appendices

A. The Bipartite Cosine Box is Equivalent to a Millionaire Box

Here we show that in the bipartite case, the Cosine box is equivalent to a Millionaire box, up
to local operations on the inputs and outputs. The general n-partite C boxes can thus also
somehow be seen as a generalization of an M box to more parties.

Let us first give the intuition, it is indeed clear that a bipartite C box is equivalent to
a “sine box”, that would take two angles φa, φb ∈ [−π,π[ as inputs and would output two
locally random bits a, b ∈ {0, 1} with correlations satisfying

a + b = sg
(
sin
(
φa − φb

))
. (A.1)

Now, if φa ∈ [−π, 0[, Alice can input φa + π ∈ [0, π[ in the sine box instead of φa, and flip
her output so that (A.1) is still satisfied. This also holds for Bob; we can thus assume that
φa, φb ∈ [0, π[. In that case, sg(sin(φa − φb)) = sg(φa − φb). The sine box thus compares the
values of the two real numbers φa, φb; this is exactly what an M box would do!

More precisely, to construct a C box from an M box (2.5), Alice and Bob can input
x = (1/π)(φa mod π) and y = (1/π)(−(φb + π/2) mod π). From the outputs a and b of
the M box, they can calculate a = a + �φa/π� and b = b + �−(φb + π/2)/π�, which satisfy
a + b = sg(cos(φa + φb)), as requested. This construction is illustrated on Figure 4.

Reciprocally, the M box can trivially be reproduced with a C box, if Alice inputs φa = x
and Bob inputs φb = −y − π/2.

B. Expected Communication Cost of a Millionaire Box

We show in this Appendix that a Millionaire box cannot be simulated with finite
communication. We propose however a scheme to simulate it with 2-way communication,
unbounded in the worst case, but with a finite expected number of bits.
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−
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Figure 4: How to realize a bipartite Cosine box from a Millionaire box

Suppose first that Alice and Bob have a finite number 2k of possible inputs (k bits).
We show with a crossing sequence argument [18] that any communication scheme that can
simulate the outputs of a M box for this number of possible inputs necessarily uses at least
k bits. This shows that in the limit of infinitely many inputs (i.e., for the general M box),
unbounded communication is required.

Indeed suppose that a scheme using k0 < k bits of (possibly 2-way) communication
can simulate the M box with 2k possible inputs on each side. In particular it can simulate
it when Alice and Bob use the same inputs x = y. But since the number of all possible
identical inputs (2k) is greater than the number of possible messages exchanged by Alice
and Bob during the communication procedure (2k0), there must be at least two different pairs
of identical inputs x0 = y0 and x1 = y1 (with x0 /=x1) for which the communication pattern is
the same. This communication pattern is then also the same if the inputs are x = x0, y = y1

or if x = x1, y = y0, because Alice and Bob will not see any difference. So if the simulation of
the M box produces outputs saying that x0 ≤ y1 = x1, it will also say that x1 ≤ y0 = x0, which
contradicts the fact that x0 /=x1.

Thus simulation of an M box with 2k possible inputs on each side necessarily needs at
least k bits to be exchanged between the parties. So in the limit k → ∞, the required amount
of exchanged bits goes to infinity.

Here is however a simple model that uses a finite average of 4 bits of communication
(2 bits in each direction) to simulate an M box.

Let us write the two inputs x, y ∈ [0, 1] of the M-box in basis 2, so that each digit is
either a 0 or a 1. Consider the following protocol, starting with n = 1.

(1) Alice sends her nth digit to Bob.

(2) Bob compares the bit he received with his nth digit and answers 0 if they are the
same and 1 if they are different.

(3) If Alice receives a 0, she iterates n and goes back to step number 1. If however she
receives a 1, then they both know which one of them has the largest input number.
Alice can output a predetermined random bit, and Bob a bit correctly correlated to
Alice’s, so as to reproduce the behavior of the M box.

The average number of communication cycles needed in this scheme depends on the
probabilistic distribution of x and y. In particular if these distributions are independent and
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uniform on the interval [0, 1], the probability that the protocol stops at the nth step is 2−n, and
therefore the expected number of rounds is

∞∑

n=1

n2−n =
1/2

(1 − 1/2)2
= 2. (B.1)

Since each round uses 2 bits of communication (one in each direction), a total of 4 bits of
communication is needed on average.

Similar ideas can also be used to simulate n-partite C boxes with finite expected
communication.

C. Simulation of n-partite Correlations with
Bipartite Nonlocal Resources

Consider an n-partite probability distribution for continuous inputs xi ∈ R and binary
outputs ai = {0, 1}, which contains vanishing correlations for up to n−1 parties. We show that
it can be simulated with only bipartite nonlocal boxes. This can be seen as a generalization of
[16], in which a similar decomposition was constructed for distributions with finitely many
inputs in terms of PR box.

To show this result, it is sufficient to concentrate on the total correlation term
∑

i ai =
f(xi) involving all parties’ outputs ai, because all other correlation terms can then be put to
zero by letting all pairs of parties decide randomly to permute their output or not.

Consider thus the n-partite correlation term. We proceed by recursion: starting with
the case n = 2, in which it is obvious that any bipartite no-signaling correlation can be
produced by a bipartite nonlocal box satisfying

a1 + a2 = f(x1, x2). (C.1)

Now let us suppose that we have a model which can reproduce any correlation term
for n−1 parties. Any n-partite correlation term can then be simulated in the following way: for
each value z that the nth party’s input xn can take, define the following function for the n − 1
first parties: fz(x1, . . . , xn−1) ≡ f(x1, . . . , xn−1, z). Each of these functions can be implemented
by the scheme reproducing the (n − 1)-partite correlation functions. Now each of the n − 1
parties can collect the outputs αi(z) it received for each possible value of z, and plug them
into a special kind of bipartite nonlocal box it shares with the last party. This box takes as
inputs a function f : [0, 1] → {0, 1} on one side (i.e., a continuous number of binary inputs)
and a real number x ∈ [0, 1] on the other side, and produces binary outputs a and b, such
that

a + b = f(x). (C.2)

If all parties input f = αi(z) into such a box they share with the last party, and this last
party inputs xn into all of these boxes, writing the outputs of each of these boxes ai and ain,
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we can set the last party’s output to be an =
∑n−1

i=1 a
i
n to get a correlation term:

n∑

i=1

ai =
n−1∑

i=1

ai + an =
n−1∑

i=1

(
ai + ain

)
=

n−1∑

i=1

αi(xn)

= fxn(x1, . . . , xn−1) = f(x1, . . . , xn),

(C.3)

as required.
Note that this construction needs continuously many nonlocal boxes. To avoid that,

one could collect all the boxes (C.1) that calculate fz(xi, xj) for all z into a single one that
would output all the values at the same time. Note however that such a box would actually
output continuous outputs of cardinality ℵ2 (i.e., binary functions defined on R). Note that
the other boxes (C.2) also admit such inputs on one of their side.
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