
Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2010, Article ID 365653, 10 pages
doi:10.1155/2010/365653

Research Article
Quantum Computing in Decoherence-Free
Subspace Constructed by Triangulation

Qiao Bi,1, 2 Liu Guo,1 and H. E. Ruda2

1 Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China
2 Centre for Advanced Nanotechnology, University of Toronto, Toronto, Canada M5S 3E4

Correspondence should be addressed to Qiao Bi, biqiao@gmail.com

Received 17 August 2009; Revised 2 November 2009; Accepted 30 December 2009

Academic Editor: Nai-Huan Jing

Copyright q 2010 Qiao Bi et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A formalism for quantum computing in decoherence-free subspaces is presented. The constructed
subspaces are partial triangulated to an index related to environment. The quantum states in
the subspaces are just projected states which are ruled by a subdynamic kinetic equation. These
projected states can be used to perform ideal quantum logical operations without decoherence.

1. Introduction

Recent publications have formulated a remarkable theory for Decoherence-Free (DF)
subspaces and subsystems in which quantum computing is performed in a DF subspace
although the total space is still subject to decoherence [1–23]. Many proposals have
considered the Born-Markov approximation or restrictions on the type of decoherence
(e.g., symmetric and collective decoherence). However, there have been a number of
reports on DF subspaces that do not invoke the Born-Markov approximation and do not
place constraints on the type of decoherence [24]. These have significance for practical
experimental implementation. So far, the most general framework may be called operator
quantum error correction (OQEC), which encompasses active error correction and leads to
improved threshold results in fault tolerant quantum computing [25–28], and has initiated
the development of a structure theory for passive error correction [29, 30]. Experimentally,
DF subspaces have recently been observed under some conditions, which shows that such DF
subspaces do indeed exist, allowing logical qubits to be encoded without decoherence [22–
34]. However, a practical procedure to construct DF subspace is still not a trivial problem, and
hence, impedes building practical quantum logic gates. For this study, we present a different
scheme to construct a DF subspace based on the Schrödinger type of subdynamic kinetic
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equation (SSKE)which was inspired by theory of the subdynamics in Brussels-Austin school
[35, 36].

2. Subdynamic Formalism

Consider a general quantum open system S interacting with an environment B, whose
Hamiltonian is written asH(t) = HS(t) +HB + λHint with coupling number λ. If one chooses
the eigenprojectors and its orthogonal projectors of free Hamiltonian H0(t) = HS(t) +HB as
Pn and Qn, respectively (this is possible since the free Hamiltonian is assumed to be easily
diagonalized), then by means of the subdynamics theory [37] one can introduce a creation
(destruction) correlation operator (as a type of resolvent) as

Cn(t) =
1

En(t) −QnH(t)Qn
QnH1(t)Pn = D†

n(t), (2.1)

where En(t) is an eigenvalue of H(t). This allows one to construct a Schrödinger type of
kinetic equation for a projected state as

i
∂

∂t
φproj(t) = Θ(t)φproj(t), (2.2)

where the projected wave function φproj is defined as

φproj(t) =
∑

n

PnΠn(t)ϕ(t), (2.3)

where the operator Πn(t) is expressed by

Πn(t) = (Pn + Cn(t))(Pn +Dn(t)Cn(t))−1(Pn +Dn(t)), (2.4)

and the wave function ϕ(t) satisfies the original Schrödinger equation, while the intermediate
operator Θ is defined as

Θ(t) = H0(t) + λ
∑

n

PnH1(t)Cn(t). (2.5)

The creation operator Cn(t) is independent of the representation with respect to the
projectors Pn,Qn and is not necessarily self-adjoint in the sense of extended functional space.
This reveals that the eigenvalues of the intermediate operator may be complex and the
corresponding evolution operator corresponding to two nonunitary semigroups evolutions,
respectively. Using the physical boundary conditions, such as ε-rule [35], we can determine
which semigroup is the correct one. Therefore, the evolution of the projected density operator
for the open system can be time asymmetric andmay exist in the generalized functional space
beyond Hilbert space, such as rigged Hilbert space [38, 39]. This time asymmetric evolution
is consistent with the second law of thermodynamics.
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Moreover, by replacing the Hamiltonian H(t) with the Liouvillian L(t) and wave
function ϕ with density operator ρ, as well as using the same approach as above, the SSKE
can be transformed to the Liouvillian type of SKE (LSKE) for a quantum open system:

i
∂

∂t
ρproj(t) =

[
Θ(t), ρproj(t)

]
. (2.6)

The creation (destruction) correlation operator can be available by means of
subdynamics theory. In fact, by introducing the eigen-projectors of the total Hamiltonian
Πn(t), using the Heisenberg equation considering the eigenvalue problem of Πn(t) and the
definition of the creation (destruction) operators, one can obtain the basic operator equation
of the creation operator and its solutions can be expressed as the retarded or advanced
integrals, corresponding to the two kinds of time evolution semigroups: t ∈ [0,+∞) or
t ∈ (−∞, 0] and continuations of up and down half complex planes. In the same way, the
basic equation for the destruction operator and relevant solution can be given.

This construction of SSKE or LSKE in subspace can be related to the original
Schrödinger or Liouville equation. For instance, using the intertwining relations from
subdynamics theory [35, 36, 40] Ω(t)Θ(t)Ω−1(t) = H(t), one can arrive at the original
Schrödinger equation

i
∂

∂t
φ(t) = Ω(t)Θ(t)Ω−1(t)φ(t) = H(t)φ(t), (2.7)

where the similarity operator is defined as

Ω(t) =
∑

n

(Pn + Cn(t)), (2.8)

which is also not necessarily unitary. The eigenvectors of the time-independent total
Hamiltonian H can be given by the eigenvectors of H0, φn, as |ϕn〉 = (Pn + Cn)|φn〉 with
the same structure of eigenvalues as Θ.

The second-order approximation for the LSKE also corresponds to the Master,
Boltzmann, Pauli, and Fokker-Plank equations of kinetic theory and Brownian motion. For
example, from the LSKE for a time-independent open system S, one can easily deduce the
general Master equation by using Born-Markovian approximation. Indeed, if assuming that
projector as

P =
exp

(−βHB

)

TrB exp
(−βHB

)TrB (2.9)

giving the reduced density operator for system S as Pρ = ρS, then a general Markovian
equation can be obtained. This equation can also be reduced to a type of Lindblad equation
or Boltzmann equation [41].
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3. Decoherence-Free Partial Triangular Subspace

An interesting advantage using the above formalism is to construct a precise decoherence-
free (DF) subspace. It is remarkable that the projected space on which subdynamics operates
is a kind of DF subspace that occurs naturally by choosing a suitable basis to expand
that subspace. In fact, if decoherence exists in a system arising from interactions with its
environment, then the spectral decomposition of the Hamiltonian can be expressed using the
subdynamic formalism as

H0 = Θ0 =
∑

n

E0
n(t)Pn =⇒

∑

n

(
E0
n(t) + E

1
n

)
Pn, (3.1)

where it is not very difficult to see that the eigenprojector Pn for the free Hamiltonian H0(t)
is invariant while the eigenvalue E0

n(t) is changed to E0
n(t) + E

1
n. This produces a phase shift

for the evolution state

φproj,n(t) = exp
(
−i
(
E0
n(t) + E

1
n

)
t
)
φproj,n(0), (3.2)

which leads to a type of decoherence in the subspaces. For example, if the entangled states
evolution in the subspace is

∑
n exp(−iE0

n(t)t)φn(0) before the interaction is exerted from the
environment, then after the interaction the evolution of the state in the subspace becomes

∑

n

exp
(
−iE0

n(t)t
)
φn(0) =⇒

∑

n

exp
(
−i
(
E0
n(t) + E

1
n

)
t
)
φn(0). (3.3)

Hence for constructing an ideal DF subspace, one has to find a procedure to cancel the change
of the eigenvalues. How can one realize it? The key idea is to use the partial triangulation.

For example, let us consider a typical two-qubit quantum computing system S,
consisting of the spins S1 and S2, such as the two electrons of two 31P confined in a
germanium/silicon heterostructure of an electron spin-resonance transistor [42, 43] or the
two electrons confined in two quantum dots [44]. Ignoring the influence of the environment,
the Hamiltonian can be written using the Heisenberg model as HS(t) = J(t)S1 · S2, where
J(t) is the time-dependent exchange coupling parameter determined by the specific model
considerations. In the case of spins of the two electrons (e.g., confined in two vertically,
laterally, coupled quantum dots [45]), J is the difference in the energies of two-electrons
ground state, a spin singlet at zero magnetic field, and the lowest spin-triplet state; J is also
a function of the electric and magnetic field and the interdot distance. Using the relationship
between S1 · S2 and the square of the sum of S1 and S2, the eigenvalues and eigenvectors of
S1 · S2 can be found from S1 · S2 = (1/2)(S2 − (3/2)) by

E1 =
1
2
=⇒

{∣∣φ1
〉
= |11〉, ∣∣φ2

〉
= |00〉, ∣∣φ3

〉
=

1√
2
|01〉 + |10〉

}
,

E2 = −3
4
=⇒ ∣∣φ4

〉
=

1√
2
|01〉 − |10〉.

(3.4)
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A quantum Controlled-Not (CN) gate can be given by the sequence of operations

UCN = ei(π/2)S
z
1e−i(π/2)S

z
2U1/2

sw eiπS
z
1U1/2

sw , (3.5)

whereUsw is an ideal swap operator which can exchange the quantum states of qubits 1 and 2
and is determined generally by an evolution operatorUs(J(τ)) by adjusting the coupling time
between the two spins in the evolution of the system. For the particular spin-spin coupling
duration τs, where

∫τs
0 J(t)dt = π (mod2π), Usw = Us(π), and the swap operator which can

exchange the quantum states of qubits 1 and 2 is given by [44]

Usw = e−i
∫τs
0 (HS(τ))dτ =

3∑

n=1

e−i(π/4)
∣∣φn

〉〈
φn

∣∣ + ei(3π/4)
∣∣φ4

〉〈
φ4

∣∣. (3.6)

In the presence of the environment, the nonideal action of the swap operation must
be considered because it may introduce decoherence in the ideal swap operation. Here the
environment is assumed to consist of a set of two-level particles randomly embedded in
an environment B. This is a pure dephasing model whose Hamiltonian is given by HB =∑

k ωkσ
z
k
, and the Hamiltonian coupling the two-qubit spin system is

λHint =
∑

k

(
σz1 + σz2

)(
gkσ

+
k + g∗

kσ
−
k

)
, (3.7)

where σ+
k (σ−

k ) is raising/lowering operator for the kth two-level particle, characterized by
a generally complex coupling parameter gk. Then, the Hamiltonian for the total system is
H(t) = HS(t)+HB +λHint, and the corresponding complete set of eigenvectors forHS(t)+HB

is denoted as {|{k} ⊗ φj〉, 〈φj ⊗ {k}|}.
To control the induced decoherence, we choose the time-independent eigen-projectors

ofHS(t) +HB as

Pnk ≡ ∣∣ϕnk
〉〈
ϕnk

∣∣ =
∣∣φn

〉〈
φn

∣∣ ⊗ |{k}〉〈{k}| (3.8)

and Qnk as Qnk + Pnk = 1, n = 1, . . . , 4. Using the definition of the eigen-projectors Pnk, the
spectral decomposition of the intermediate operator Θ is given by two cases:

Θ(t) =
4∑

n=1

〈
ϕnk

∣∣(HS(t) +HB)
∣∣ϕnk

〉
Pnk, without the interaction, (3.9)

Θ(t) =
4∑

n=1

〈
ϕnk

∣∣(HS(t) +HB)
∣∣ϕnk

〉
Pnk

+
〈
ϕ1k

∣∣λHintQ1k
1

E1k(t) −Q1kH(t)Q1k
Q1kλHint

∣∣ϕ1k
〉
P1k

+
〈
ϕ2k

∣∣λHintQ2k
1

E2k(t) −Q2kH(t)Q2k
Q2kλHint

∣∣ϕ2k
〉
P2k, with the interaction,

(3.10)
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where E1k(t) and E2k(t) are the eigenvalues of the total Hamiltonian, corresponding to the
eigen-projectors ofΘ(t), P1k, and P2k, respectively. This shows that the eigen-projectors Pnk of
Θ(t) are invariant and independent of the interaction in the constructed subspace; however,
for n = 1, 2, the eigenvalues are changed (index n is still diagonal to Hint, while index k is
off-diagonal to Hint), which may introduce a phase shift in the evolution operator as a kind
of decoherence.

For canceling this phase shift, we consider the triangular decomposition of theHint as
Hutri

int +Hdtri
int , whereHutri

int is upper-triangular part ofHint andHdtri
int is lower-triangular part of

Hint. Then it is easy to find that

〈
ϕnk

∣∣
(
Hutri

int +Hdtri
int

) 1
Enk(t) −QnkH(t)Qnk

(
Hutri

int +Hdtri
int

)∣∣ϕnk
〉
Pnk

=
〈
ϕnk

∣∣Hutri
int

1
Enk(t) −QnkH(t)Qnk

Hdtri
int

∣∣ϕnk
〉
Pnk

+
〈
ϕnk

∣∣Hdtri
int

1
Enk(t) −QnkH(t)Qnk

Hutri
int

∣∣ϕnk
〉
Pnk,

(3.11)

which shows that Hutri
int part and Hdtri

int part are to be moved out in the upper-triangular
or lower-triangular subspace Φutri(Φdtri), respectively. Here the upper-triangular (or lower-
triangular) subspace Φutri(Φdtri) can be defined by introducing upper-triangular (or lower-
triangular) projector and upper-triangular (or lower-triangular) inner product given by
Pkk′ = |k〉〈k′|, k′ ≤ k (or k′ ≥ k), and 〈k|A|k′〉, for any operator A with k ≤ k′ (or k′ ≥ k).
For instance, any operator A defined in this upper-triangular subspace with respect to the
index k can only be represented as A =

∑
k′≥k〈k|A|k′〉|k〉〈k′|. Therefore we can construct the

DF upper-triangular (or lower-triangular) subspace Φutri with respect to the environmental
index k and, in the same time, enable the Hilbert space HS to be invariant for the quantum
computing system S, that is,HS ⊗Φutri, in which one can allow the interaction terms in (3.10)
to be zero

〈
ϕjk

∣∣λHintQjk
1

Ejk(t) −QjkH(t)Qjk
QjkλHint

∣∣ϕjk
〉
Pjk = 0, for j = 1, 2. (3.12)

This demonstrates that the constructed intermediate operator Θ(t) on the upper-triangular
subspace HS ⊗ Φutri is independent upon the interaction part of the original Hamiltonian
Hint; consequently the phase shift introduced by Hint is canceled in the subspaces although
the total system experiences the decoherence introduced byHint.

In the upper-triangular subspace HS ⊗ Φutri, the quantum Controlled-Not logic
operation ei(π/2)S

z
1e−i(π/2)S

z
2U1/2

sw eiπS
z
1U1/2

sw can be executed by using a sequence of operations
and its relevant swap operator Usw remains invariant before and after interaction from the
environment. This can be described by the following formula:

TrBe
−i∫τs0 Θ(τ)dτ = TrBe−i

∫τs
0 (HS(τ)+HB)dτ

=

[
3∑

n=1

e−i(π/4)
∣∣φn

〉〈
φn

∣∣ + ei(3π/4)
∣∣φ4

〉〈
φ4

∣∣
]
∑

k

[
e−i(−a

2ωk+ωk+1)/(−a2+1) + e−i(−a
2ωk+1+ωk)/(−a2+1)

]
.

(3.13)
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The above formalism can be extended to a general dephasing situation, for instance, a
register ofN two-level elements immersed in a quantized environment, whose Hamiltonian
is described by

H =
N−1∑

n=0

εσ
(n)
z +

∑

k

ωkb
†
k
bk +

N−1∑

n=0

∑

k

σ
(n)
z

(
χknb

†
k
+ χ∗

knbk
)
. (3.14)

From the preceding study, the procedure to construct the upper-triangular subspaces is
simple, that is, if one performs the relevant quantum logical operations using the state
φ(0), then one should perform the normal inner product with respect to the index n for
the quantum computing system and the upper-triangular inner product with respect to the
index k for the environment, and remember that the evolution of the states is described by
exp(−iΘ(t)t)φ(0) in the upper-triangular subspace. The general considerations for the above
model are given below.

4. General DF Subspace Constructed by Triangulation

Different models treat the interaction of the system with its environments quite differently;
here, we propose a general procedure to construct a DF subspace by triangulation. Suppose
that the states used in quantum computing system are the eigenvectors of the free
Hamiltonian H0 = HS(t) + HB, then the corresponding matrix of the Hamiltonian H0 is
diagonal. Thus the spectral decomposition for the intermediate operator Θ based on the
above subdynamics formalism can be given by Θ = Trk(

∑
n,k En(t)Pnk) = HS(t), where Pnk is

an eigen-projector ofH0, and En(t) is an eigenvalue ofHS.
Now, if the system is subject to decoherence induced from the environment by (a

general) Hint, then (suppose) the matrix of Hamiltonian becomes off-diagonal to the index
introduced from environment (and is diagonal to the index from the original system).
Thus, one can construct the upper-triangular subspace Hs ⊗ Φutri by defining the rule
of upper-triangular inner product in this space such that 〈ϕnk|Hint|ϕn′k′ 〉/= 0, for k ≤ k′;
〈ϕnk|Hint|ϕn′k′ 〉 = 0, only for the index related to the environment k > k′. This leads to
an upper-triangular matrix of Hint. Using this upper-triangular property, the interaction
terms in the Θ operator should be zero

∑
k′≥k PnkHintPn′k′CnkPnk = 0; thus, the spectral

decomposition of Θ = HS maintains invariance, that is, Θ = Trk(
∑

n,k En(t)Pnk + 0) =
HS, where Pnk is now chosen as an upper-triangular eigen-projector with respect to
k.

It may be necessary to emphasize that the states required to perform quantum
computing in the DF (triangular) subspace are just the projected states ψproj(t) which can
be spanned by {ϕnk = φn ⊗ ψk}. The projected states are measurable in this subspace since
{ϕnk = φn ⊗ ψk} is orthogonal (and triangular with k) and distinguishable, where the
triangular inner product only is valid to the index which is related to the environment; here
it means k, while for an other index relevant to the original system, such as n, the normal
inner product is still used. Finally, one may ask whether the rule of the upper-triangular
inner product in this space restricts or changes the original Controlled-Not logic operation
and results in errors. The answer is no, as one can see there is no influence on decoherence to
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the quantum Controlled-Not logic operation in (3.13). The term relative to the environment

∑

k

[
e−i(−a

2ωk+ωk+1)/(−a2+1) + e−i((−a
2ωk+1+ωk)/(−a2+1))

]
(4.1)

now cannot influence the original quantum Controlled-Not logic operation

[
3∑

n=1

e−i(π/4)
∣∣φn

〉〈
φn

∣∣ + ei(3π/4)
∣∣φ4

〉〈
φ4

∣∣
]
. (4.2)

The entanglement between the system and environment is canceled in the constructed partial
triangular subspace although it exists indeed in the original total space or even in the
subspace with the normal inner product. The role of upper-triangular inner product with
respect to the index from environment in the subspace is only to cancel the decoherence
(phase shift) from the environment. Then, how can one realize the above procedure in the
practical procedure for the quantum computing? We suppose to establish an additional
measure or count system to read or calculate some dates, such as the eigenvalues and
eigenvectors from the original system, and transfer the relevant dates to the expression in the
frame of the partial triangular subspace based on (2.2) and the rule of the partial triangular
product. Here the key is to establish a transformation system for the constructed partial
triangular subspace, which allows the eigenvalues and eigenvectors from the original system
to be expressed in the partial triangular subspace.

5. Conclusions and Remarks

A scheme for quantum computing in the DF triangular subspaces is presented. The
DF subspaces are ruled by the subdynamic kinetic equation (SKE). The used quantum
computing states in the DF subspaces are just the projected states φproj(t) in the DF triangular
subspaces. Moreover, this DF subspace is partial upper-triangular, in which an inner product
is only upper-triangulated to index k corresponding to environment. That means, in a
quantum computing process, that if one takes the upper-triangular inner product with respect
to k and keeps the ordinary inner product to be invariance with respect to the index related
to original quantum computing system, then the decoherence in the subdynamic spaces
can be completely cancelled. The Markovian and non-Markovian decoherence and collective
decoherence as studied in recent publications seem not to present any restrictions on the DF
subspace considered here, and this proposal may be useful generally for the register of N
two-level elements immersed in a quantized environment.
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