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We demonstrate how to fast construct quantum error-correction codes based on quadratic residues
Pauli block transforms. The present quantum codes have an advantage of being fast designed from
Abelian groups on the basis of Pauli block matrices that can be yielded from quadratic residues
with much efficiency.

1. Introduction

The applications of the Legendre symbol have been already suggested in signal processing,
communication, image compression, cryptography, and so forth [1, 2].

Provided a finite field GF(q), Euler’s criterion Lq(x) for the Legendre symbol is
defined by

Lq(x) = x(q−1)/2 mod q, (1.1)

where q is a power of an odd prime number. Namely, Lq(0) = 0, Lq(x) = 1 if x = y2 for some
element y ∈ GF(q), and Lq(x) = −1 if x /=y2 for any element in GF(q). Based on quadratic
residues in GF(q), one defines a matrix

Qq =
(
aij
)
q×q, (1.2)

with the elements aij = Lq(i − j).
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Lemma 1.1. Taking any two rows of Qq, that is,
−→ai = (Lq(x0),Lq(x1), . . . ,Lq(xq−1))and

−→ai+s =
(Lq(x0 + s),Lq(x1 + s), . . . ,Lq(xq−1 + s)) for s /= 0, it follows

−→ai · −→ai+s =
q−1∑

i=0

Lq(xi)Lq(xi + s) = q − 1 mod q. (1.3)

Currently, the striking development in quantum error-correction codes (QECCs) is
the employment of the stabilizer formalism, whereby code words are subspaces in Hilbert
space specified by Abelian groups. The problem of constructing QECCs was reduced to that
of searching for the classical dual-containing (or self-orthogonal) codes [3–8]. The virtue
of this approach is that QECCs can be directly constructed from classical codes with a
certain property, rather than developing a completely new coding theory of QECCs from
scratch. Unfortunately, the need for dual-containing codes presents a substantial obstacle to
the quantum coding theory in its entirety, especially in the context of modern codes, such
as low-density parity-check quantum codes [7]. To resolve this problem, we consider the
construction of QECCs over the finite field GF(q) by employing the matrix Qn in (1.2).
Namely, we first replace all entries of Qn with Pauli matrices and obtain the Pauli block
matrix Qn. After that, we extend this kind of block matrices for the large-size Pauli block
matrices by using the recursive techniques with the fast matrix block transforms [9–12]. Since
all row operations that are obtained from rows of Qn are independent and commutative, an
Abelian group can be generated elegantly. Therefore, a type of quantum code is generated
structurally via the stabilizer formalism. This approach provides the great flexibility in
designing quantum codes with large code length and hence allows for an advantage of being
simply constructed with the low complexity.

This paper is organized as follows. In Section 2, three kinds of Pauli block matrices are
constructed. In Section 3, according to the properties of Pauli block matrices, Abelian groups
can be generated with efficiency. In Section 4, we investigate constructions of quantum codes
based on the stabilizer formalism. Finally, conclusions are drawn in Section 5.

2. Pauli Block Matrices

Pauli matrices have been widely applied in signal processing [11], quantum information
and quantum computing [3, 13], and so forth. In this section, we investigate constructions
of several types of Pauli block matrices according to the structure of Hadamard transforms
based on these Pauli matrices.

2.1. Pauli Matrices

Pauli matrices are defined by P = {σj : 0 ≤ j ≤ 3}, where

σ0 =

(
1 0

0 1

)

, σ1 =

(
0 1

1 0

)

,

σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0

0 −1

)

,

(2.1)
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where i =
√−1. For simplicity, we denote the 2 × 2 identity matrix σ0 by a block matrix I

throughout this paper.
Pauli matrices in P have the following basic properties:

σ2
1 = σ2

2 = σ2
3 = I,

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2.
(2.2)

2.2. Pauli Block Matrice

Definition 2.1. Denote Q = ([a]ij)k×t, then Q is a Pauli block matrix if and only if all entries
[a]ij belong to P, that is, [a]ij ∈ P.

Based on the matrix Qq in (1.2), we propose several approaches for constructions of
Pauli block matrices for any two entries σi, σj ∈ P \ {σ0}.

Construction 2.1

Taking a matrix Qq in (1.2), it follows two kinds of Pauli block matrices:

(1) Q(1)
q , which is constructed by replacing “0, 1” in Qq with σi and “−1” with σj ,

(2) Q(2)
q , which is constructed by replacing “1” in Qq with σi and “−1, 0” with σj .

Specially, one achieves two types of Pauli block matrices.

Construction 2.2

If q = 4m + 3 for any positive integer m, then the (q + 1) × (q + 1) matrix can be constructed as

Qq+1 = I +

(
0 tT

−t Qq

)

, (2.3)

where t denotes the all-1 column vector of the length q and I is the (q + 1) × (q + 1) identity
matrix. As a result, there are two types of Pauli block matrices:

(1) Q(1)
q+1, which is constructed by replacing “0, 1” in Qq+1 with σi and “−1” with σj ,

(2) Q(2)
q+1, which is constructed by replacing “1” in Qq+1 with σi and “−1, 0” with σj .

Construction 2.3

If q = 4m + 1 for any positive integer m, then one constructs the 2(q + 1) × 2(q + 1) matrix
Q2(q+1) by replacing “0” in the matrix

(
0 tT

t Qq

)

(2.4)
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with the block matrix [R0] and “±1” with the matrix [R±1], where

[R0] =

(
1 −1

−1 −1

)

, [R±1] = ±
(

1 1

1 −1

)

. (2.5)

Then, there are two Pauli block matrices:

(1) Q(1)
2(q+1), which is constructed by replacing “0, 1” in Q2(q+1) with σi and “−1” with σj ,

(2) Q(2)
2(q+1), which is constructed by replacing “1” in Q2(q+1) with σi and “−1, 0” with σj .

2.3. Fast Constructions of Pauli Block Matrices

To construct the large-order Pauli block matrices, we first introduce the Kronecker product of
two matrices A = (aij)r×l and B = (bij)s×t, that is,

A ⊗ B =

⎛

⎜⎜⎜⎜⎜⎜
⎝

a11B a12B · · · a1lB

a21B a22B · · · a2lB

...
...

...
...

ar1B ar2B · · · arlB

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (2.6)

With a little abuse, we denote the Kronecker product by using the notation “⊗” throughout
this paper.

Making use of the Kronecker product of Pauli block matrices [9–12], a family of Pauli
block matrices may be extended.

Theorem 2.2. Suppose that Qq and Qp are two Pauli block matrices. For any nonnegative integer
numbers s and m, a large-order block Jacket matrix Qqspm may be constructed (or decomposed) in the
following way:

Qqspm =

{

Iqs ⊗
(

m−1∏

i=0

Ipm−i−1 ⊗ Qp ⊗ Ipi
)}

×
{(

s−1∏

i=0

Iqs−i−1 ⊗ Qq ⊗ Iqi
)

⊗ Ipm
}

=

{

Iqs ⊗
(

m∏

i=1

Ipm−i ⊗ Qp ⊗ Ipi−1

)}

×
{(

s∏

i=1

Iqs−i ⊗ Qq ⊗ Iqi−1

)

⊗ Ipm
}

.

(2.7)

Proof. Based on an arbitrary Pauli block matrix Qr , the large-order Pauli block matrices Qrl

for l ≥ 2 can be obtained by using the recursive relations:

Qrl = Qrl−1 ⊗ Qr =
l−1∏

i=0

Irl−i−1 ⊗ Qr ⊗ Iri =
m∏

i=1

Irl−i ⊗ Qr ⊗ Iri−1 , (2.8)
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Table 1: Computation complexity of the fast algorithm based on Pauli block matrices. For simplicity, Add
and Mul denote the number of additions and multiplications. The notations Lσp and Lσq express the number
of nonidentity matrices σ0 in Pauli block matrices Qp and Qq.

Direct approach Proposed algorithm Proposed algorithm
Add (n − 1)n (p − 1)nm pn + qn − 2n
Mul n2 Lσpnm Lσpmn + Lσq sn
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Figure 1: Signal flow graph for Pauli block transform for Q15.

where r ∈ {p, q} and l ∈ {s,m}. According to the properties of the Kronecker product, it is
easy to calculate

Qqspm = Qqs ⊗ Qpm =
(Iqs ⊗ Qpm

) · (Qqs ⊗ Ipm
)
, (2.9)

and then this completes the proof of the theorem.

Employing Pauli Block matrices Qn in Constructions 2.1, 2.2, and 2.3 with respect to the
Kronecker product in (2.7), any large-order Pauli block matrices can be constructed with the
fast algorithm. The computational complexity of the proposed algorithm is shown in Table 1.

As an example, the construction of Q15 = Q3 ⊗ Q5 is depicted in Figure 1. According
to Table 1, the computation of the Pauli block matrix Q15 requires 26 additions and
34 multiplications. Compared with the directed computation, the proposed algorithm is
obviously faster.



6 Advances in Mathematical Physics

3. Abelian Group Based on Pauli Block Matrices

Let P⊗n denote the set of the n-fold tensor products (the Kronecker product) of Pauli
operators (matrices) in P [13]. Then P⊗n, together with possible multiplicative factors in
{±i,±1}, form a group of n-qubit operations, denoted by Gn. An arbitrary operation αu ∈ Gn

can be uniquely expressed by

αu = iλ
[
σxu1

1 σzu1
2

] ⊗ · · · ⊗ [σxun1 σzun2

]
, (3.1)

where xut, zut ∈ {0, 1} for 1 ≤ t ≤ n. Omitting factor iλ, we denote αu by a concatenated
2n-dimensional vector −→αu [6]:

−→αu =
(−→xu | −→zu

)
= (xu1, . . . , xun | zu1, . . . , zun). (3.2)

The Hamming weight of −→αu is the number of (xuh | zuh) (1 ≤ h ≤ n) such that (xuh |
zuh)/= (0 | 0). The symplectic inner product of any two vectors −→αu = (−→xu | −→zu) and −→αv = (−→xv |−→zv) is defined by

−→αu · −→αv = −→xu · −→zv + −→zu · −→xv, (3.3)

where −→xu · −→zv =
∑n

i=1 xuizvi and −→zu · −→xv =
∑n

i=1 zuixvi. According to [6], two operations αu and
αv commute if and only if

−→αu · −→αv = 0. (3.4)

The symplectic inner product of two vectors is important since it can be used
conveniently to search for generators of an Abelian subgroup S ⊆ Gn.

Assume that each row of a Pauli block matrix Qn is denoted by (σi1 , . . . , σin) for 1 ≤ i ≤
n, from which an n-qubit operation, called as the row operator, can be obtained as

αi = σi1 ⊗ · · · ⊗ σin . (3.5)

Based on properties of the Kronecker product [11, 14, 15], we achieve the
commutativity of row operators for Pauli block matrices Qn.

Theorem 3.1. For Pauli block matrices Qn proposed in Construction 2.1 (also for Constructions 2.2
and 2.3), all independent row operators of Qn are commuting and hence generate an Abelian group.

Proof. Employing Pauli block matrices Qn that are constructed via substituting Pauli matrices
for the entries of the Hadamard matrices, all row operators of Qn can be expressed by the
concatenated vectors in (3.2), from which the n × 2n matrices (Hx | Hz) can hence be
constructed. According to the properties of the Hadamard matrices, it is easy to calculate

Hx ·HT
z +Hz ·HT

x = 0 mod 2, (3.6)

which implies that all independent n-qubit row operators of Qn are commuting [5].
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Corollary 3.2. Considering any two given Pauli block matrices Qp and Qq, all independent pq-qubit
row operators of the Kronecker product Qpq = Qp ⊗ Qq are commuting.

Example 3.3. We consider GF(3) = {0, 1, 2} with the nonzero squares 12 = 1 mod 3 and 22 =
1 mod 3, and hence L3(0) = 0,L3(1) = 1, and L3(2) = −1. With the rows and columns of a
matrix Q3 being indexed by {0, 1, 2}, one obtains

Q3 =

⎛

⎜
⎜
⎝

0 1 −1

−1 0 1

1 −1 0

⎞

⎟
⎟
⎠. (3.7)

According to Construction 2.1, one gains the Pauli block matrix:

Q(1)
3 =

⎛

⎜⎜
⎝

σi σi σj

σj σi σi

σi σj σi

⎞

⎟⎟
⎠. (3.8)

Taking i = 1 and j = 3, one has the concatenated matrix:

H3 =
(
Hx

3 | Hz
3

)
=

110 001

011 100

101 100

. (3.9)

It is easy to check that Hx
3 ·Hz

3
T +Hz

3 ·H3
x
T = 0 mod 2, which means that three row operators

of Q(1)
3

α1 = σ1 ⊗ σ1 ⊗ σ3,

α2 = σ3 ⊗ σ1 ⊗ σ1,

α3 = σ1 ⊗ σ3 ⊗ σ1

(3.10)

are commuting.
For another, based on Construction 2.2, one obtains

Q4 =

⎛

⎜⎜⎜⎜⎜
⎝

1 1 1 1

−1 1 1 −1

−1 −1 1 1

−1 1 −1 1

⎞

⎟⎟⎟⎟⎟
⎠
, (3.11)
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from which the Pauli block matrix Q(1)
4 can be achieved:

Q(1)
4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σi σi σi σi

σj σi σi σj

σj σj σi σi

σj σi σj σi

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.12)

Taking i = 1 and j = 3, one has the concatenated matrix:

H4 =

1111 0000

0110 1001

0011 1100

0101 1010

, (3.13)

from which it is easy to check that all row operators of Q(1)
4 are commuting.

Example 3.4. According toGF(5) with L5(1) = L5(4) = 1 mod 5 and L5(2) = L5(3) = −1 mod
5, if the rows and columns of Q5 are indexed by GF(5), one gets

Q5 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 −1 −1 1

1 0 1 −1 −1

−1 1 0 1 −1

−1 −1 1 0 1

1 −1 −1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.14)

Employing Construction 2.1, we get the Pauli block matrix:

Q(1)
5 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σi σi σj σj σi

σi σi σi σj σj

σj σi σi σi σj

σj σj σi σi σi

σi σj σj σi σi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.15)
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Taking i = 1 and j = 3, one has

H5 =

11001 00110

11100 00011

01110 10001

00111 11000

10011 01100

, (3.16)

which means that five row operators of Q(1)
5 for i = 1 and j = 3 are commuting.

Furthermore, according to Construction 2.3 with respective Q5 in (3.14), one obtains a
Pauli block matrix Q(1)

10 for i = 1 and j = 3 with the concatenated matrix H10 expressed as

H10 =

1011000011 0100111100

0010010110 1101101001

1110110000 0001001111

1000100101 0111011010

0011101100 1100010011

0110001001 1001110110

0000111011 1111000100

0101100010 1010011101

1100001110 0011110001

1001011000 0110100111

. (3.17)

It is obvious that all row operators of Q(1)
10 are commuting.

4. The Stabilizer Quantum Codes

In this section, we construct quantum codes C(S) by using Pauli block matrices Qn with
commutative row operators, from which n − k independent row operators can be selected as
generators of an Abelian group S.

Given an Abelian subgroup S of Gn, the stabilizer quantum code C(S) is a set of
n-qubit quantum states {|ψ〉} associated with S, that is,

C(S) = {∣∣ψ〉 : M
∣∣ψ
〉
=
∣∣ψ
〉
, ∀M ∈ S}, (4.1)

which is the subspace fixed by S (called as the stabilizer). For an [[n, k, d]] stabilizer quantum
code, which encodes k logical qubits into n physics qubits, C(S) has dimension 2k and S has
2n−k independent operators.

To construct such a quantum code, the sticking point is to search for an Abelian group,
the stabilizer S, from which the code C(S) can be structurally generated through (4.1).
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Theorem 4.1. Given a Pauli block matrixQn with commutative row operators, the stabilizer quantum
code C(S) can be constructed with parameters [[n, k, d]] where the stabilizer S is a set of n-qubit
operators generated from n − k independent row operators of Pauli block matrix Qn.

Proof. Suppose that there are r (r ≥ n − k) independent rows of Qn. Then n − k generators of
the stabilizer S can be generated by selecting n−k rows from these r independent rows of Qn

provided n − k ≤ r. Namely, any n − k operators αi1 , αi2 , . . . , αin−k can be selected to generate
an Abelian group:

S = 〈αi1 , αi2 , . . . , αin−k〉, (4.2)

which is a stabilizer in essence. By making use of (4.1), a stabilizer quantum code [[n, k, d]]
can be generated from S. According to the quantum Singleton bound proposed in [6], it
follows that k ≤ n − 2d + 2. This completes the proof of the theorem.

Example 4.2. We consider the Pauli block matrix Q5 in (3.15) with the concatenated matrix
H5 = (Hx

5 | Hx
5 ) in (3.16). It is known that all rows of H5 are independent. Thus, any 5 − k

rows of H5, denoted by H5 = (hx5 | hz5), can be selected to generate the stabilizer S with
5 − k generators. According to the construction conditions of quantum codes in [5], we get
the generator matrix of quantum codes G5 = (gx5 | gz5 ) satisfying

hx5 · gz5 + hz5 · gx5 = 0, (4.3)

which can be rewritten as

H5 · R · G5 = 0, (4.4)

where R =
(

05×5 I5×5

I5×5 05×5

)
. To construct such a quantum code, we assume that there exists one

unitary matrix U such that

U(hR) =
(
I(5−k)×(5−k) | Λ(5−k)×(5+k)

)
. (4.5)

According to (4.4), the generator matrix g is calculated:

G5 =
(
ΛT

(5−k)×(5+k) | I(5+k)×(5+k)
)
, (4.6)

from which quantum codes can be constructed with the parameters [[5, 0, 4]], [[5, 1, 2]],
[[5, 2, 1]], [[5, 3, 1]], and [[5, 4, 1]].
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Taking the quantum code [[5, 1, 2]] as an example, we select 4 rows to generate the
matrix:

H5 =

11001 00110

11100 00011

01110 10001

00111 11000

. (4.7)

From (4.4), we get

G5 =

01101 00000

00010 10000

11010 01000

10110 00100

10000 00010

00110 00001

. (4.8)

Therefore, a quantum code [[5, 1, 2]] can be constructed from (4.8), where d = 2, the
Hamming weight of G5, can be calculated from the Hamming weight of the bitwise or of
gx5 with gz5 .

Example 4.3. Suppose n = 10, and then we consider Pauli block matrix Q(1)
10 for i = 1 and j = 3

with the concatenated matrix in (3.17). It is obvious that all rows of H10 are independent
and commutative. Selecting any 10 − k (0 ≤ k ≤ 10) row operators αi1 , αi2 , . . . , αi10−k from
Q(1)

10 , we obtain the stabilizer S = 〈αi1 , αi2 , . . . , αi10−k〉, from which quantum codes can be
constructed with the parameters [[10, 0, 4]], [[10, 1, 4]], [[10, 2, 4]], [[10, 3, 3]], [[10, 4, 3]],
[[10, 5, 3]], [[10, 6, 3]], [[10, 7, 3]], [[10, 8, 1]], and [[10, 9, 1]].

5. Conclusion

A family of quantum codes is investigated with fast Pauli block transforms by using quadratic
residues in the finite field GF(q). We first investigate the construction approaches based
on three kinds of Pauli block matrices with commutative row operators. Then the large-
order Pauli block matrices are structurally constructed via the fast Pauli block constructing
transforms based on the recursive relationship of identity matrices and successively lower-
order Pauli block matrices. These Pauli block matrices have such a characteristic that all
row operators are independent and commutative, which can generate an Abelian operator
group. Finally, an instructive approach for constructions of quantum codes is suggested via
the stabilizer formalism according to the Abelian group S yielded from Pauli block matrices.
This code may provide the great flexibility in designing quantum codes with large block
length through implementing the proposed fast construction algorithms.
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