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Quantum computers are expected to far surpass the capabilities of today’s most powerful
supercomputers, particularly in areas such as the theoretical simulation of quantum systems,
cryptography, and information processing. The cluster state is a special, highly entangled quantum
state that forms the universal resource on which measurement-based quantum computation can
be performed. This paper provides a brief review of the theoretical foundations of cluster state
quantum computation and how it evolved from the traditional model of digital computers. It
then proposes a scheme for the generation of such entanglement in a solid-state medium through
the suppression of resonant tunneling of a ballistic electron by a single-electron charge qubit. To
investigate the viability of the scheme for the creation of cluster states, numerical calculations are
performed in which the entanglement interaction is modeled in detail.

1. Introduction

The simulation of quantum systems is an integral part of modern science. Such simulations
are difficult, however, due to the massive computational resources they require. Quantum
computers [1] offer a unique solution to this problem by explicitly using quantum mechanics
to perform computation more efficiently. While they promise much, building practical
quantum computers using implementations analogous to those of digital computing has
proved extremely challenging. In 2001, Raussendorf and Briegel [2] proposed a more
robust implementation that used a highly entangled cluster state as a universal resource on
which to perform measurement-based quantum computation. The systematic generation
of entanglement suitable for the creation of such cluster states is consequently of great
importance in the realization of a viable quantum computer.

We begin this paper by giving a brief review of the theoretical foundations of cluster
state quantum computation and how it evolved from the traditional model of digital
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computers. In the next section, we outline a scheme to generate controlled entanglement in a
solid-state system using resonant tunneling and give details of the simulation and numerical
techniques used to test it. In Section 3, we present the results from our simulation and, in
Section 4, discuss the possible difficulties of using such a scheme to generate a cluster state.

1.1. Computation and Physical Simulations

It was Turing, in his revolutionary 1936 paper “On Computable Numbers, with an
Application to the Entscheidungsproblem” [3], who first proposed the computational model
used by all modern computers. He showed that any mathematical operation with an
arithmetic formulation, called a computable function, could be performed with finite means
by a simple physical device. This theoretical device, known as the universal Turing machine,
used a set of basic mechanical actions to manipulate symbols on an infinite one-dimensional
paper tape. During each step of computation, the machine would address only a single
symbol on the tape and perform a single action that depended on the symbol’s value and
the machine’s variable internal state. The particular action taken at each step was controlled
by an internal table of conditional instructions, called an algorithm. By constructing a suitable
algorithm, such a machine could be made to automatically perform any arithmetic operation
on numbers encoded on the tape using only a finite number of steps. What made the
universal Turing machine so powerful was that a small set of basic actions, symbols, and
instructions could be used with only local information about the system to perform all
arithmetic operations in a finite time. While constructing such a mechanical device proved
impractical, Turing’s model formed the template for all modern computers.

Unlike the universal Turing machine, a modern computer is a digital device based on
the laws of electrodynamics. In place of paper tape, computers use binary digits, called bits,
to store and process information. Physically, bits are addressable electronic systems that can
have only one of two possible computational states labeled 0 and 1. Information, known as
input, is encoded onto a number of bits via some binary discretizing schema. Computation is
then performed by sequentially switching the bits between their 0 and 1 states using simple
one- and two-bit operations called Boolean logic gates. The final state of the bits is then read
off and decoded to give the result, or output, of the computation. While this implementation
appears significantly different from Turing’s, a set of just two two-bit Boolean logic gates, the
universal gates NAND and NOR, can perform all binary boolean algebraic operations using
only finite means. This allows a digital computer to deterministically transform a set of input
bits into any possible output and so act as a universal Turing machine.

It is the universality of digital computers that has made them such an invaluable
tool in modern life and enabled complex simulations of physical systems to be performed.
This has led scientists to ask an important question: “what kind of physical systems can
be efficiently simulated on a digital computer?” Turing envisaged his universal machine
performing computations using an infinite paper tape over some finite, but arbitrarily long,
amount of time. As infinite computational resources are impossible, the efficiency with
which a computer uses its resources and the time a computation takes to complete impose
a physical limit on what can and can not be “reasonably” simulated. This constraint, called
tractability, can be formalized by demanding that the number of bits and gate operations
of a digital computation scales polynomially with the complexity of the system being
simulated. Unfortunately for physicists, the simulation of systems governed by the laws of
quantum mechanics is generally intractable and so cannot be efficiently performed using



Advances in Mathematical Physics 3

digital computers. This becomes apparent by considering that the size of the Hilbert space
characterizing a quantum system grows exponentially with the number of particles in it. For
example, to simulate a system of only 500 spin 1/2 particles a digital computer must posses
enough bits to represent 2500 complex numbers just to describe its general state.

1.2. Quantum Computation

It was the question of efficiency, and in particular the intractability of simulating quantum
systems, that lead Feynman in 1982 [4] to propose a model for a universal quantum simulator.
He realized that the inefficiency of digital computers in simulating quantum systems was due
to the underlying electrodynamic laws used in their implementation. Feynman argued that
by basing a computer explicitly on the laws of quantum mechanics more efficient simulations
could be performed. In 1985, Deutsch [1] took the final step in defining a model of quantum
computation by combining Feynman’s simulator with the universal Turing machine and
showed it was possible to construct a universal quantum Turing machine that could perform
these simulations using only finite means. This machine was not only truly universal but
possessed unique quantum properties that allowed it to compute certain problems more
efficiently.

One of the defining features of quantum computation is quantum parallelism. As a
quantum system can exist in a linear superposition of its basis states, the universal quantum
Turing machine can, at any step in the computation, represent all possible computational
states simultaneously. If this superposition is preserved, then by applying suitable unitary
operators to the system it can, in a single step, perform a computation on all these states
that scales exponentially with the required physical resources. This would be equivalent
to running computation on massively paralleled digital computers; however such a simple
comparison is deceptive as to obtain classical output from the quantum system it must first
be measured. When this measurement is performed, the system randomly collapses into
one of its basis states destroying the superposition. This means that quantum computation
is probabilistic. Only by designing algorithms that take advantage of interference effects
the probability of a particular result can be made arbitrarily high and so deterministic
computations performed. Useful quantum algorithms have already been designed for
solving, as yet, intractable problems such as the factoring of large numbers [5] and list
searching [6]. These algorithms, as well as efficient simulation of quantum systems, mean
that a practical quantum computer would be hugely beneficial to modern science.

1.2.1. The Qubit

To construct a quantum computer, input must first be encoded onto a logical unit that can
be manipulated in the required manner during computation. The quantum binary digit, or
qubit, is the simplest form such a unit can take and is a natural extension of the digital bit. A
qubit, like a bit, is an addressable two-level system with two discrete observable orthonormal
basis states labeled |0〉 and |1〉. Qubits, however, are explicitly quantum systems and so
their general state is described by the two-dimensional Hilbert space H spanned by the
orthonormal basis states of these observables. The general pure state of the qubit |Ψ〉 can
consequently be described by the linear superposition

|Ψ〉 = c0|0〉 + c1|1〉 (1.1)
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Figure 1: The Bloch Sphere—a geometric representation of the Hilbert space of a qubit. Any pure qubit
state, modulo a global phase, can be represented by a point on the surface of the sphere given by |Ψ〉 =
cos θ|0〉 + eıφ sin θ|1〉.

with c0, c1 ∈ C and |c0|2 + |c1|2 = 1 for normalization. The probability of measuring the
qubit in the |0〉 or |1〉 state is then given by |c0|2 and |c1|2, respectively. A useful geometric
representation of the qubits Hilbert space can be constructed by re-parameterizing the general
state as

|Ψ〉 = cos θ|0〉 + eıφ sin θ|1〉, (1.2)

where θ and φ are angles that correspond to a point on an S2 sphere, known as the Bloch
sphere (shown in Figure 1).

As the state of a single qubit, modulo a global phase, must always reside on the Bloch
Sphere, the action of any single-qubit unitary operation W ∈ SU(2) can be represented by
the set of Euler rotations:

W |Ψ〉 = X(α)Z(θ)X
(
β
)
|Ψ〉, (1.3)

where α, θ, and β are real valued and X(α) and Z(θ) are rotations about the x- and z-axis of
the Bloch sphere, respectively. An arbitrary single-qubit unitary operation U ∈ U(2) can then
be written as U = eıδW where δ is a real valued global phase shift.

To perform quantum computation a number of qubits N must be acted upon by a
series of unitary evolution operators U ∈ U(2N) that affect some predetermined action. The
computational Hilbert space is thus formed by the space of all possible qubit states and is
spanned by the orthonormal basis states |φ〉 given by the tensor products:

∣∣φ
〉
=
∣∣ψ

〉
1 ⊗

∣∣ψ
〉

2 ⊗ · · · ⊗
∣∣ψ

〉
N ∈ H

⊗N, (1.4)
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where |ψ〉i ∈ {|0〉, |1〉}i is the basis state of the ith qubit. By using a superposition of these
states a quantum computer can represent multiple sequences of classical bits simultaneously
giving rise to quantum parallelism.

1.2.2. The Quantum Circuit Model

Due to its similarity with traditional digital circuits, the most widely used representation of
quantum computation is the quantum circuit model. In this model, a sequence of noninteracting
qubits, called the quantum register, is first prepared in the desired input state. Computation
is then performed by sequentially applying one- and two-qubit unitary operations, called
quantum logic gates, before the qubits are measured to obtain the output. Just as Boolean logic
circuits can be shown to be equivalent to the universal Turing machine, such quantum circuits
have been shown to be equivalent to the universal quantum Turing machine [7].

An important example of a quantum circuit is the single-qubit “teleporter” which is
represented by the following circuit diagram:

|Ψ〉c

|0〉t

H m ∈ {0, 1}

σmz |Ψ〉t

In quantum circuit diagrams, time flows from left to right with the horizontal lines, called
quantum wires, representing the separate qubits that comprise the quantum register. One-
qubit operations and gates are represented on single quantum wires and two-qubit gates are
represented by using perpendicular lines to show interaction, and so entanglement, between
the relevant qubits. The “teleporter” circuit functions by first entangling the control qubit (top
wire) with a target qubit prepared in the |0〉 state (bottom wire) using the two-qubit CNOT
gate. This applies a NOT operation to the target-qubit if and only if the control-qubit is in the
|1〉 state. Once entangled, the control-qubit passes through a single-qubit Hadamard gate and
its observable state is measured. The resulting state of the target-qubit will then be σmz |Ψ〉t,
wherem ∈ {0, 1} is the outcome of the measurement on the control-qubit. This circuit is called
the single-qubit “teleporter” as the state of the control-qubit is “teleported,” with a possible
additional factor σz (the Pauli spin matrix), to the target-qubit via their entanglement.

It is a remarkable property of the quantum circuit model that any unitary evolution
operator needed for quantum computation can be perfectly simulated using only two-qubit
gates {U2 : U2 ∈ U(22)} [8]. This can be further simplified into just the two-qubit CNOT gate
and the set of single-qubit gates {U1 : U1 ∈ U(2)} [9] with which all two-qubit gates can be
simulated. While these are truly universal quantum gates, allowing for the exact simulation of
any unitary evolution operator, it is often more convenient to work with sets of gates that are
only approximately universal. An approximately universal set of gates can efficiently simulate,
to an arbitrary accuracy, any unitary evolution operator. One such set of approximately
universal quantum gates is formed by only three gates {H,W = eπ/8Z(−π/8),CNOT} [10].

The universality, both exact and approximate, of one- and two-qubit gates makes the
quantum circuit model a powerful tool for the design and analysis of quantum algorithms.
Practically, however, efficient physical implementations of the model have proved difficult
to construct. Problems arise due to the need for both fault tolerant multiqubit gates
and robust scalable qubits within a single system. For systems with strongly interacting
qubits, multiqubit gates are more easily constructed; however, the qubits tend to experience
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high levels of decoherence making them less robust. Conversely, for systems with weakly
interacting qubits, the qubits are more robust but multiqubit gates are much harder to
construct. This has lead physicists to consider a new model of quantum computation that
can be more easily implemented—the cluster state or one-way computation model.

1.2.3. The Cluster State

The cluster state model for quantum computation was proposed by Raussendorf and
Briegel in 2001 [2] as a scheme for performing quantum computing based on entanglement.
Their model consisted of an ensemble of entangled qubits, known as the cluster state, on
which computation and readout is performed by an adaptive sequence of single-qubit
measurements. These measurements propagate quantum correlations through the system
and, by combining their results via some tractable classical computation, generate the
output. As measuring the individual qubits removes their entanglement and so destroys the
original state, cluster state computation is also referred to as one-way computation. The great
advantage of a cluster state computer is that in requiring only single qubit measurements it
avoids many of the practical problems associated with the quantum circuit implementation.

The physical resource of cluster state computation is the titular “cluster state,” which
is a family of states of entangled qubits that can be defined by some graph G(V, E). In this
formulation, the vertices V of the graph represent the individual qubits and the edges E
their entanglement. Conventionally, the term “cluster state” has been used to describe the
specific class of graph states representing two-dimensional square lattices of qubits and this
convention is followed here. To form the cluster, a collection of qubits is initially prepared in
a maximally mixed pure state |+〉 ≡ (|0〉 + |1〉)/

√
2. Pairs of nearest neighbor qubits are then

entangled using the two-qubit controlled phase gate:

CZ =

⎛

⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞

⎟⎟⎟⎟⎟
⎠
. (1.5)

While the CZ gate has been used here for simplicity, it is a sufficient condition for the
formation of the cluster state that nearest neighbor qubits be maximally entangled. Once
the cluster has been formed, computation is performed by a series of adaptive single-qubit
measurements in the variable basis

B
(
η
)
=
( |0〉 + e−ıη|1〉√

2
,
|0〉 − e−ıη|1〉√

2

)
. (1.6)

These measurements occur in sequential rounds with measurements in the same round being
made simultaneously and those in later rounds being altered based on previous results. All
the measurement results are then combined via a classical computation to generate the final
output.
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Recall that a single-qubit rotation W ∈ SU(2) can be represented by

W |Ψ〉 = X(α)Z(θ)X
(
β
)
|Ψ〉

= HZ(α)HZ(θ)HZ
(
β
)
HZ(0)|Ψ〉,

(1.7)

where H is the Hadamard operator and the identities X(θ) = HZ(θ)H and Z(0) = I are
used. To implement each of these four HZ(γ) operations, the single-qubit “teleporter” circuit
is modified to give

|Ψ〉c

|+〉t

Z(γ) H m ∈ {0, 1}

HZ(γ)σmz |Ψ〉t,

where the CNOT gate has been replaced by the CZ gate using the relation CZ = (Ic ⊗
Ht)CNOT(Ic ⊗ Ht) and the additional Hadamard gates have been absorbed by the initial
and final state of the target qubit (|+〉 = H|0〉). As the Z(γ) gate commutes with the CZ gate,
the H and Z(γ) gates can be combined and four of these circuits concatenated to give

|Ψ〉

|+〉

|+〉

|+〉

|+〉|+〉

HZ(0)

HZ(β)

HZ(θ)

HZ(α)

m1 ∈ {0, 1}

m2 ∈ {0, 1}

m3 ∈ {0, 1}

m4 ∈ {0, 1}

|Ψ〉out,

where

|Ψ〉out = HZ(α)σm4
z HZ(θ)σm3

z

×HZ
(
β
)
σm2
z HZ(0)σm1

z |Ψ〉.
(1.8)

Commuting the Pauli operators through the gate operations gives

|Ψ〉out = σ
m4
x σm3

z σm2
x σm1

z

×HZ
(
(−1)m1+m3α

)
HZ

(
(−1)m2θ

)

×HZ
(
(−1)m1β

)
HZ(0)|Ψ〉,

(1.9)

which, ignoring the Pauli matrices and re-parameterizing, is a single-qubit rotation (see (1.7))
as desired. As an HZ(γ) gate followed by a measurement of the computational basis is equal,
up to a global phase, to a single-qubit measurement in the B(γ) basis, the conjugated circuit
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is equivalent to the cluster state represented by the following graph:

B1(0) B2(± β) B3(± θ) B4(± α)

where the measurement basis is given in each vertex and the measurement round denoted
by the subscript. By adapting the sign of the rotations based on the results of the previous
measurements and compensating for any prefactor using a classical computation, an
operation equivalent, modulo a global phase, to any single-qubit rotation W ∈ SU(2) can
be performed. In a similar manner it is possible to show that the CNOT gate can also
be constructed [11] and so cluster state computation is computationally equivalent to the
quantum circuit model where both inputs and outputs are classical.

The cluster state model of quantum computation offers a unique way of designing
quantum algorithms. More than this, it provides a robust scheme for implementing a practical
computing device. Such a device does not suffer from many of the disadvantages associated
with a quantum circuit implementation as it uses only single qubit measurements to
perform computation. Furthermore, it has been shown that a cluster state quantum computer
would be more resilient to decoherence effects [12], can function efficiently even with only
probabilistic entanglement [13], and provides the ability for efficient error correction [14, 15].
Before cluster state computation can be practically implemented, the controlled generation of
entanglement necessary for the formation of the cluster state must be realized and this is the
focus of this work.

2. Physical Implementation and Simulation

Multiqubit entanglement forms the universal resource on which all cluster state quantum
computation is performed. To date, many physical systems have been proposed for the
generation of such states including photons [16], cavity quantum electrodynamics [17], ions
[18], optical lattices [19], and superconducting quantum circuits [20]. Schemes for generating
cluster states in solid-state coupled double quantum dots (DQD) have also been proposed
[21–23] and such a scheme is the focus here. A solid-state implementation is desirable for
several key reasons; DQDs are highly scalable, allow for good control of charge and spin
characteristics, and can have large spatial separations between qubits. Practically, a solid-state
implementation would also benefit from the current expertise of the semiconductor industry.

In this paper, we present a detailed analysis on the entanglement generated between a
single-electron charge qubit and a ballistic electron based on resonant tunneling. The modeled
system consists of a charge qubit formed by a single-electron confined to a GaAs DQD. A
GaAs quantum wire containing symmetric rectangular resonant tunneling barriers, formed
by InAs slices, is positioned near to the centre of one of the dots and a ballistic electron
pumped through the wire by a single-electron source [24]. The computational basis states of
the qubit are then defined by the localization of the qubit electron to one of the two quantum
dots with the state |1〉 corresponding to that closest to the quantum wire. A schematic
diagram of this scheme is shown in Figure 2. By numerically simulating the system in detail,
rather than assuming a simple interaction based on Pauli operators, a realistic determination
of the systems suitability for cluster state generation can be made.
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Resonant tunneling barriers

Single-electron source

Figure 2: A schematic diagram of the system for generating entanglement between a ballistic electron and
double quantum dot (DQD) single-electron charge qubit. The ballistic electron is pumped through the
resonant tunneling barriers in the quantum wire by a single-electron source. Resonant tunneling occurs
when the qubit electron is localized to the dot furthest from the wire, the |0〉 state, and is suppressed
by Coulombic interaction when the qubit electron is localized to the dot closest to the wire, the |1〉
state.

2.1. Approximations

Both the qubit and quantum wire being modeled are confined to the conduction band of a
GaAs semiconductor heterostructure. Lattice and screening effects are accounted for by using
a linear approximation for the effective electron mass and permittivity of m∗ = 0.0667me and
ε = 12.9ε0 [25], respectively. Throughout the simulation, the ballistic and qubit electrons are
well separated in space and so distinguishable. Consequently, only Coulombic interactions
between the electrons are modeled with spin-orbit and spin-spin coupling effects considered
negligible in comparison. Decoherence and thermal effects are also ignored as, to a first
approximation, the system is considered to be well isolated from the environment and
operating in the low-temperature regime. The total system is then completely described by
a Hamiltonian composed of the kinetic energy operators of both electrons, the Coulombic
interaction between them, the potential of the resonant tunneling barriers experienced by the
ballistic electron, and the confinement potential for the electron in the qubit. As the electron
energies being considered are small (E � mec

2 = 0.511 MeV) and only light elements (GaAs)
are involved, relativistic effects are ignored and the system dynamics are given by solution to
the time-dependent Schrödinger equation (2.15). For convenience all equations are given in
atomic units with � = me = e = 1/(4πε0) = 1 and t is used throughout to represent time.

2.2. Theory

2.2.1. The Qubit

The qubit modeled in this work is based on the single-electron lateral coupled DQDs
experimentally implemented by Petta et al. [26]. These are constructed from a GaAs/AlGaAs
heterostructure containing a two-dimensional electron gas (2DEG) 100 nm below the surface
that is controlled by Ti/Au top gates. Due to the strong vertical confinement of the system,
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the qubit can be modeled in two-dimensions (x1, y1) with the Hamiltonian for the isolated
qubit Ĥq given by

Ĥq = −
1

2m∗
∇2
x1,y1

+ Vq
(
x1, y1

)
, (2.1)

where Vq(x1, y1) is the confinement potential. This low-energy confining potential is given to
good accuracy by the parabolic potential [27]:

Vq
(
x1, y1

)
=

1
2
m∗ω2

0 min

{

x2
1 +

(
y1 −

d

2

)2

, x2
1 +

(
y1 +

d

2

)2
}

, (2.2)

where ω0 is the confining trap frequency, with �ω0 = 1 meV, and d = 250 nm is the interdot
separation.

To describe the initial state of the isolated qubit electron a two-dimensional
wavefunction Ψq(x1, y1, t = 0) ≡ Ψq(x1, y1) is used. This wavefunction is expanded into a
linear combination of the single-electron energy eigenstates ψi(x1, y1) that are solutions of
the time-independent Schrödinger equation:

Ĥqψi
(
x1, y1

)
= Eiψi

(
x1, y1

)
, (2.3)

where Ei is the energy eigenvalue corresponding to the electron state ψi. The localized
computational basis states, |0〉 and |1〉, are given by the two-dimensional Gaussian wave
functions:

|0〉 = 1√
πωq

exp

(

−
x2

1 +
(
y1 + y0

)2

2ω2
q

)

,

|1〉 = 1√
πωq

exp

(

−
x2

1 +
(
y1 − y0

)2

2ω2
q

) (2.4)

with ωq = 33.8 nm and y0 = 125.0 nm. These states are then projected onto the two lowest
eigenstates as

|0〉 = f1ψ1 + f2ψ2,

|1〉 = g1ψ1 + g2ψ2,
(2.5)

where fi = 〈0 | ψi〉 and gi = 〈1 | ψi〉. The initial state of the qubit is then represented by

Ψq

(
x1, y1

)
= c0|0〉 + c1|1〉,

=
(
c0f1 + c1g1

)
ψ1

+
(
c0f2 + c1g2

)
ψ2.

(2.6)
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Figure 3: The qubit potential and electron probability density in the two localized computational basis
states |0〉 and |1〉. The potential and probability densities are modeled in two-dimensions and symmetric
about the x-axis; so only the values with x1 = 0 nm are shown here.

The values of ωq and y0 were determined by optimization to ensure both zero overlap
between the |0〉 and |1〉 basis states and that the electron state is essentially characterized by
only the lowest two energy eigenstates. This ensures that the computational basis states used
in the simulation are both orthogonal and complete, the probability densities of which can be
seen in Figure 3. As the two lowest-energy eigenstates are not degenerate, the electron will
oscillate about each basis state with characteristic time:

T =
2π

|E1 − E2|
, (2.7)

which for the modeled confinement potential gives T = 676 nanoseconds. It is important
to note that, due to this oscillation, the computational basis states are dynamic and so any
general entanglement operation must take a significantly shorter time to be useful.

2.2.2. The Ballistic Electron

The ballistic electron being modeled is confined to a GaAs quantum wire containing double
symmetric resonant tunneling barriers formed by two InAs slices embedded in the quantum
wire heterostructure. Currently, GaAs quantum wires have been produced down to diameters
of 5.99 nm [28] producing strong radial confinement and allowing the ballistic electron and
resonant tunneling barriers to be effectively modeled in just one-dimension (x2). InAs slices
have been experimentally produced with variable widths down to less than 50 nm and with a
maximum barrier potential of approximately 1.4 meV [29]. While the exact geometry of these
potential barriers has yet to be established, similar experiments [30] with InP doped InAs
wires have shown a good match to rectangular potential functions and so these are used
here. The Hamiltonian for the isolated ballistic electron Ĥw is then

Ĥw = − 1
2m∗
∇2
x2
+ Vw(x2), (2.8)



12 Advances in Mathematical Physics

where Vw(x2) is the potential of the resonant tunneling barriers. This potential is modeled
using

Vw(x2) =

⎧
⎪⎨

⎪⎩

V0, if
s

2
≤ |x2| ≤

s

2
+w,

0, otherwise
(2.9)

with w = 50 nm and s = 90 nm being the optimized width and separation of the barriers,
respectively.

As initially the ballistic electron experiences no interactions with the qubit electron, its
isolated wavefunction Ψw(x2, t = 0) ≡ Ψw(x2) is described by the one-dimensional Gaussian
wave packet:

Ψw(x2) =
(

1√
πωw

)1/2

exp

(

− (x2 − x0)2

2ω2
w

)

× exp
(
ıp0(x2 − x0)

)
,

(2.10)

where p0 is the initial momentum, x0 = −20μm is the initial position of the electron, and
ωw ≡

√
2Δx is the uncertainty in the position. The limit of this uncertainty is calculated using

the Heisenberg relation:

ΔEΔx ≥ 1
2m∗

p0 =

√
E0

2m∗
, (2.11)

where ΔE is the uncertainty in energy of the electron and E0 = p2
0/(2m

∗) is its initial
energy. The uncertainty in position is therefore determined by the energy uncertainty of the
single-electron source. Single-electron sources have been produced that can generate ballistic
electrons on sub-nanosecond time-scales [24]. By taking the uncertainty in the generation
time of these electrons to be of the same order, Δt ≈ 1 ns, and using Heisenberg’s uncertainty
principal, ΔEΔt ≥ �, this gives an energy uncertainty of ΔE ≥ 0.66μeV. As the ballistic
energies being considered here are of the order of meV, this uncertainty is conservatively
represented by a fractional uncertainty of ΔE/E0 ≡ α = 1%. The uncertainty in position is
then given by

Δx ≥
√

E0

2m∗(ΔE)2
=

1
αp0

. (2.12)

2.2.3. Total System

To simulate the total system, the electrons in the qubit and quantum wire are described
by the three-dimensional joint wavefunction Ψ(x1, y1, x2, t) ≡ Ψ where x1 and y1 represent
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the position of the electron in the qubit, x2 represents the position of the electron in the
quantum wire, and t the time. The total Hamiltonian of the system Ĥtotal is given by

Ĥtotal = Ĥq + Ĥw + Ĥint, (2.13)

where Ĥq is the Hamiltonian of the isolated qubit given by (2.1), Ĥw is the Hamiltonian
of the isolated ballistic electron given by (2.8), and Ĥint is the Hamiltonian describing the
Coulombic interaction acting on the combined Hilbert space of the two electrons given by

Ĥint =
1

ε
√
(x1 − x2)2 +

(
y1 − d

)2 + z2
, (2.14)

where d = 125 nm is the distance between the quantum wire and the centre of the qubit and
z = 101 nm is the vertical displacement of the quantum wire from the plane of the qubit. The
values for d and z were fixed during the optimization to ensure the maximum interaction
between the qubit and ballistic electrons. The value of z also includes a hypothetical 1 nm
insulating layer to protect against possible charge leakage from the quantum wire.

The dynamics of the system are governed by the time-dependent Schrödinger
equation:

ı
∂Ψ
∂t

= ĤtotalΨ. (2.15)

As the total Hamiltonian is time-independent, the system wavefunction Ψ(Δt) at time Δt is
given by

Ψ(Δt) = exp
(
−ıĤtotalΔt

)
Ψ0 = ÛΨ0, (2.16)

where Ψ0 ≡ Ψ(t = 0) is the system wavefunction at some arbitrary starting time, and Û ≡
exp(−ıĤtotalΔt) is the unitary evolution operator.

2.3. Numerical Simulation

The numerical techniques used in this simulation are based on those of Hines et al. [31] for
the readout of a solid-state charge qubit. Initially the electrons are well separated, in two
nonoverlapping Hilbert spaces, and so the initial system wavefunction is simply given by the
product of their isolated wavefunctions:

Ψ0 = Ψq

(
x1, y1

)
Ψw(x2), (2.17)

where Ψq(x1, y1) and Ψw(x2) are the initial wavefunctions of the qubit and ballistic
electrons given in (2.6) and (2.10), respectively. To represent the wavefunction numerically
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the quantum wire is modeled using a one-dimensional grid of Nw points. The wire state is
then projected onto the first Nq energy eigenstates of the qubit to give

Ψ0 =
Nw∑

i=1

Nq∑

j=1

bi,jψj
(
x1, y1

)
, (2.18)

where bi,j is the product of the ballistic electrons wavefunction at the ith point on the wire
and the coefficient of the jth eigenstate of the qubit electron. The total system can then be
modeled using only an Nq ×Nw grid of complex numbers. To improve numerical accuracy
the first eight eigenstates, Nq = 8, are considered with only the lowest two representing the
computational basis states of the qubit.

Due to the complexity of the system being investigated, analytic solutions for the
action of the evolution operator do not exist and so the Chebyshev-Fourier method [32] is
used in the simulation. Briefly, this numerical method uses Fourier transforms to efficiently
calculate derivatives as simple products in momentum space and approximates the evolution
operator by using a Chebyshev polynomial expansion of the form

Û = exp
(
−ı (Eu + El)

2
Δt

)

×
M∑

i=0

ai

(
(Eu + El)

2
Δt

)
Ti
(
−ıH̃

)
,

(2.19)

where Eu and El are the upper and lower energies of the system, H̃ = (2Ĥtotal−Eu−El)/(Eu−El)
is the normalized Hamiltonian, Ti are the Chebyshev Polynomials, and ai is the function

ai(α) =

⎧
⎨

⎩

J0(α), if i = 0,

2Ji(α), if i > 0
(2.20)

with Jm being Bessel functions of the first kind. The advantage of this technique is that as the
value of α grows larger than their order m, the Bessel functions fall to zero exponentially.
Through a suitable choice of M, unitary solutions of the time-dependent Schrödinger
equation (2.15) can be achieved up to an arbitrary accuracy. To then optimize the system
parameters a standard multidimensional simplex minimization method was used [33].

3. Results and Discussion

The quantum mechanical phenomenon of coherent resonant tunneling describes the
complete transmission of a ballistic electron through a set of barriers that is classically
disallowed. It occurs when the incident energy of the ballistic electron closely matches
one of the virtual energy eigenstates of the potential well formed by the barriers. At
these specific energies the transmission probability is sharply peaked and the barriers are
effectively “transparent” to the ballistic electron’s wavefunction. The particular energies at
which these peaks occur is determined solely by the geometry of the barrier potential and for
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Figure 4: The calculated transmission probabilities for specific incident electron energies on a symmetric
rectangular double barrier of height 1.4 meV and separation 90 nm with barrier widths 40 nm (dashed),
50 nm (solid), and 60 nm (dotted). Values were calculated analytically for an isolated ballistic elec-
tron.
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Figure 5: The calculated transmission probabilities for specific incident electron energies on a symmetric
rectangular double barrier of height 1.4 meV and width 50 nm with barrier separations 80 nm (dashed),
90 nm (solid), and 100 nm (dotted). Values were calculated analytically for an isolated ballistic electron.

the one-dimensional case of an isolated ballistic electron and symmetric rectangular double
barriers analytic solutions can be derived [34]. To demonstrate the sensitivity of the resonant
tunneling system, transmission profiles were calculated using the analytic solution for
varying barrier widths and separations and these can be seen in Figures 4 and 5, respectively.
Due to the extreme sensitivity, small changes in the geometry of the barrier potential will
cause large changes in the transmission probabilities of the ballistic electron. In our system,
the localization of the qubit electron to one of the two basis states alters the strength of the
Coulombic interaction with the ballistic electron and so affects the transmission probability
causing entanglement.
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It has been shown [35] that, while the particular mechanism of entanglement is
unimportant, for any arbitrary quantum system to be used as a cluster state the localized
entanglement between pairs of nearest neighbor qubits must be at a maximum. If this is not
the case, then measurements on the individual qubits will result in the incomplete transfer
of quantum information and computational errors will occur. For our scheme to create
entanglement suitable for the generation of a cluster state in a single step it is necessary that
after a tunneling event there is maximum entanglement between the electrons and that the
state of the qubit is unchanged.

While there are many measures for quantifying the degree of entanglement, the most
widely accepted, and that used here, is the concurrence or “entanglement of formation” [36].
For an arbitrary N qubit system |φ〉 the concurrence C(φ) is given by

C
(
φ
)
=
∣
∣
∣
〈
φ
∣
∣
(
σ1
y ⊗ σ2

y ⊗ · · ·σNy
)∣
∣φ∗

〉∣∣
∣, (3.1)

where |φ∗〉 is the complex conjugate of |φ〉 when expressed in a fixed basis, and σiy are the
Pauli matrices acting on the Hilbert space of the ith qubit in this basis. The concurrence is an
entanglement monotone valued between 0 and 1, with C(φ) = 1 for a maximally entangled
state and C(φ) = 0 if the state is separable. It has been shown [37, 38] that for two systems of
arbitrary dimensions in a pure state this concurrence can be generalized to

C
(
φ
)
=
√

2
[
1 − tr

(
ρ̃2
A

)]
, (3.2)

where ρ̃A is the reduced density matrix of one of the subsystems. As initially both electrons
are in pure states and the system evolution unitary, the final state of the system is pure and
so the concurrence can be calculated using the reduced density matrix of the qubit.

To optimize the entanglement generated by a single resonant tunneling event, a
simplex minimization method was used to alter the separation and width of the resonant
tunneling barriers. For each set of barrier parameters, a series of simulations were run using
the maximally mixed pure qubit state |+〉 ≡ (|0〉 + |1〉)/

√
2 over a range of ballistic electron

energies. The total time for each simulation was dynamically set to ensure that the final
position of the electrons was well separated and the concurrence for each calculated. The
difference between unity and the maximum concurrence across the complete energy range
was then used as the measure of fitness in the optimization. Using this technique, a maximum
concurrence of 0.998 was achieved for a barrier width of 50 nm, separation of 90 nm, and with
a ballistic electron energy of 1.585 meV.

Using the optimized system parameters, the probability of the ballistic electron
becoming trapped was found to be negligible, the final state of the ballistic electron can
be seen in Figure 6, and the tunneling was effectively elastic. Furthermore, the resonant
tunneling event takes just 445 ps and so the qubit can be considered as static during
entanglement (see (2.7)).

To investigate how resonant tunneling leads to this high level of entanglement,
the transmission probabilities for the initial qubit states |0〉 and |1〉 were calculated using
the optimized barrier parameters. The transmission profiles, as well as the corresponding
concurrence values for an initial qubit state |+〉, are shown in Figure 7. As expected, there
is a strong correlation between the difference in transmission probability of the two states
and the concurrence of the system. Aside from the small secondary peak in the |1〉 profile at
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Figure 6: The probability density for the ballistic electron after entanglement (t = 445 ps) for the qubit in
initial state |+〉 ≡ (|0〉+ |1〉)/

√
2 using an initial energy of 1.585 meV and the optimised barrier parameters.
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Figure 7: The concurrence of the system for the qubit in the |+〉 = (|0〉 + |1〉)/
√

2 state (solid line) and
the transmission probabilities associated with the |0〉 (+) and |1〉 (×) qubit states over a range of ballistic
electron energies and with optimized barrier parameters.

around 2.3 meV, both transmission profiles strongly resemble the analytic case for an isolated
ballistic electron seen in Figure 5. This implies that resonant tunneling is being suppressed by
the change in the ballistic electrons energy due to the Coulombic interaction with the qubit
and not because of distortions in the potential of the resonant tunneling barriers themselves.
The total potential experienced by the ballistic electron from both the resonant barriers and
the overall Coulombic interaction of the qubit in each basis state can be seen in Figure 8.
When the qubit is in the |0〉 state, there is very little change in the potential compared to
the resonant barriers alone but there is an increase in the baseline energy of on average
0.41 meV (see Figure 8). Fitting the analytic solution to the calculated transmission peak
gives good agreement across the whole probability profile with an increase in the baseline
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Figure 8: The total potential experienced by the ballistic electron when the qubit is in the initial states |0〉
(solid line) and |1〉 (dashed line).

energy of 0.40 meV. For the qubit in the |1〉 state the situation is not as straightforward as the
shape of the potential is being noticeably distorted by the Coulombic interaction between the
electrons (see Figure 8). Here the average increase in baseline energy is 0.99 meV compared
to the value found by fitting the analytic solution of 0.97 meV. While the change in energy is
similar, the analytic profile does not agree across the whole calculated probability profile and
so distortions in the barrier shape do affect the transmission probabilities at certain ballistic
energies.

To analyze the magnitude of this contribution to the entanglement, the mutual
information about the initial state of the qubit Y given by the final state of the ballistic electron
X was calculated using the standard formula:

I(X;Y ) =
∑

x∈X

∑

y∈Y
p
(
x, y

)
log2

(
p
(
x, y

)

p(x)p
(
y
)

)

, (3.3)

where x is the localization of the ballistic electron to either the left or right of the potential
barrier and y ∈ {0, 1} is the qubit basis state. The mutual information for the initial qubit state
|+〉 can be seen, with the corresponding concurrence, for a range of initial ballistic electron
energies in Figure 9. As it ignores phase, the mutual information gives a good indication
of the level of entanglement in the system due to transmission probabilities alone. From
the graph it is apparent that, as expected, there is a strong correlation between the classical
mutual information and concurrence with an equivalent maximum in the mutual information
of 0.834. This suggests that while the primary mechanism for entanglement is the change in
energy of the ballistic electron due to the Coulombic interaction, there is also a significant
phase effect.

The generation of a cluster state requires not only maximal entanglement but also
entanglement between all nearest neighboring qubits. If the resonant tunneling system is to
be used to perform such entanglement in a single step, then it should not disrupt the state of
the qubit and so allow multiple entanglement operations to be performed. From the reduced
density matrix of the qubit, the probabilities after entanglement were found to be 0.50 and
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Figure 9: A comparison of the concurrence of the system (solid line) and the classical mutual information
(dashed line) between the initial state of the qubit and the final position of the electron in the quantum
wire over a range of initial ballistic electron energies and with optimized barrier parameters.

0.50 for the |0〉 and |1〉 basis states, respectively. This means that there is no change in the
probability density of the qubit compared to its initial maximally mixed state |+〉 = (|0〉 +
|1〉)/

√
2. Unlike the probability, the relative phase of the qubit basis states after entanglement

is dependent on the basis state of the ballistic electron. As we are free to choose this basis,
a state is selected that preserves the relative phase of the qubit. Simulations were then run
using the optimized system parameters and maximally mixed initial qubit states with a range
of relative and global phases. It was found that changes in the phase of the qubit do not
affect the concurrence of the system and, by applying the selected ballistic electron basis state,
that these phases were preserved after entanglement. This means that the resonant tunneling
event does not introduce any relative phase in the state of the qubit and so the initial state of
the qubit is completely preserved, as required.

To test the stability of the system, a series of simulations were run using small
perturbations in each of the optimized parameters and the linear response of the concurrence
calculated. It was found that a 1 nm change in the width and separation of the barriers gives
an average change in the concurrence of −0.006 and −0.041, respectively and that a 1μeV
change in the initial energy of the ballistic electron gives an average change of −0.002.

4. Conclusions

In this paper we have provided a brief review of the theoretical foundations of cluster state
quantum computation and how it evolved from the traditional model of digital computers.
We also reported on numerical simulations of a solid-state system for generating controlled
entanglement between a single-electron charge qubit and a ballistic electron using the
suppression of coherent resonant tunneling in a quantum wire. It was found that a high level
of entanglement could be achieved, with a concurrence of 0.998, and that the state of the qubit
was unaffected by the process. The primary mechanism of entanglement was the difference
in the transmission probabilities corresponding to the two localized basis states of the qubit.
These differences occurred due to the Coulombic interaction between the electrons changing
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the ballistic electron’s energy which shifted the resonance peaks. If the ballistic electron can be
used to entangle further qubits, then this scheme provides a viable method for the generation
of cluster states.

The concurrence was found to be highly sensitive to the system parameters especially
the barrier separation. This poses a significant limitation on any practical implementation
of this scheme as it requires the precise fabrication of the resonant tunneling barriers and
means that the system will be heavily affected by imperfections in their interface. The stability
may be improved by using a different geometry for the barriers or a greater number but the
effect this would have on the concurrence is unclear and more work needs to be done in this
area. Furthermore, while the simulation was closely modeled on experimentally realizable
components and treated the ballistic and qubit electrons and their interactions in detail, it did
not include decoherence effects that would be present in a real system. This means that our
results provide an idealized upper limit for the possible entanglement that such a practical
implementation could produce.
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