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The mechanism of differential geometric calculus is based on the fundamental notion of a
connection on a module over a commutative and unital algebra of scalars defined together with
the associated de Rham complex. In this communication, we demonstrate that the dynamical
mechanism of physical fields can be formulated by purely algebraic means, in terms of the
homological Kähler-De Rham differential schema, constructed by connection inducing functors
and their associated curvatures, independently of any background substratum. In this context,
we show explicitly that the application of this mechanism in General Relativity, instantiating the
case of gravitational dynamics, is related with the absolute representability of the theory in the
field of real numbers, a byproduct of which is the fixed background manifold construct of this
theory. Furthermore, the background independence of the homological differential mechanism is
of particular importance for the formulation of dynamics in quantum theory, where the adherence
to a fixed manifold substratum is problematic due to singularities or other topological defects.

1. Introduction

From a category-theoretic viewpoint, the generative mechanism of differential geometric
calculus is a consequence of the existence of a pair of adjoint functors, expressing the
conceptually inverse algebraic processes of infinitesimally extending and restricting the
scalars. Classically, the algebraic differential mechanism is based on the fundamental notion
of a connection on a module over a commutative and unital algebra of scalars defined
together with the associated de Rham complex [1–3]. A connection on a module induces a
process of infinitesimal extension of the scalars of the underlying algebra, which is interpreted
geometrically as a process of first-order parallel transport along infinitesimally variable
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paths in the geometric spectrum space of this algebra. The next stage of development
of the differential mechanism involves the satisfaction of appropriate global requirements
referring to the transition from the infinitesimal to the global level. These requirements are
of a homological nature and characterize the integrability property of the variation process
induced by a connection. Moreover, they are properly addressed by the construction of the De
Rham complex associated to an integrable connection. The nonintegrability of a connection is
characterized by the notion of curvature bearing the semantics of observable disturbances
to the process of cohomologically unobstructed variation induced by the corresponding
connection.

It is instructive to emphasize that the conceptualization of the classical differential
mechanism along these lines does not presuppose the existence of an underlying differential
manifold. This observation is particularly important because it provides the possibility of
abstracting in functorial terms both the definition of a connection and the associated De Rham
complex as well.

The above are of particular significance in relation to current research in theoretical
physics devoted to the construction of a tenable quantum theory of gravity, conceived as an
extensive unifying framework of both General Relativity and Quantum Theory [4–14]. It has
been generally argued that these fundamental physical theories are based on incompatible
conceptual and mathematical foundations. In this sense, the task of their reconciliation in a
unifying framework, which respects the constraints posed by both theories, requires a radical
revision, or at least a careful rethinking, of our current understanding of the basic notions,
such as the conception of spacetime, physical fields, localization, observables, and dynamics.

In this communication, we would like to draw attention to these issues from the
algebraic, categorical, and sheaf-theoretic perspective of modern mathematics [1, 2, 15–20].
An initial motivation regarding the relevance of the categorical viewpoint originates from
the realization that both of our fundamental theories can be characterized in general terms
as special instances of the replacement of the constant by the variable. The semantics of
this transition, for both General Relativity and Quantum Theory, may be incorporated in an
algebraic sheaf-theoretic homological framework, that hopefully provides the crucial pointers
for the schematism of the essential concepts needed for the intelligibility of dynamics in the
quantum regime, respecting the normative requirements of these theories. Epigrammatically,
it is instructive to remark that, in the case of General Relativity, this process takes place
through the rejection of the fixed kinematical structure of spacetime, by making the metric
into a dynamical object determined solely by the solution of Einstein’s field equations. In
the case of Quantum Theory, the process of replacement of the constant by the variable, is
signified by the imposition of Heisenberg’s uncertainty relations, that determines the limits
for simultaneous measurements of certain pairs of complementary physical properties, like
position and momentum. From amathematical point of view, the general process of semantic
transition from constant to variable structures is being effectuated by passing to appropriate
categories of presheaves or sheaves, conceived as categorical universes of variable sets,
whose variation is being considered over generalized localization domains. Thus, there
exists the possibility of comprehending uniformly the difference in the distinct instances of
replacement of the constant by the variable, as they are explicated in the concrete cases of
General Relativity and Quantum Theory, respectively, by employing different sheaf-theoretic
universes, corresponding to the particular localization properties of observables in each
theory. Of course, this strategy would be fruitful in a unifying perspective, if we managed
to disassociate the dependence of dynamics in the regime of each theory from any fixed
background spatiotemporal reference. Equivalently stated, the dynamical mechanism should
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be ideally formulated functorially and purely algebraically. The benefit of such a formulation
has to dowith the fact that, because of its functoriality, it can be algebraically forced uniformly
inside the appropriate localization environments of the above theories. Thus, both of these
theories can be treated homogenously regarding their dynamical mechanism, whereas, their
difference can be traced to the distinctive localization properties of the observables employed
in each case. In particular, the functorial representation of general relativistic gravitational
dynamics induces a reformulation of the issue of quantization as a problem of selection of
an appropriate sheaf-theoretic localization environment, in accordance with the behavior of
observables in that regime, that effectuates the difference in the semantic interpretation of the
dynamical machinery corresponding to the transition from the classical to the quantum case.
In this work, we demonstrate that such an algebraic dynamical mechanism can be actually
constructed using methods of homological algebra. In this context, we show explicitly that
the application of this mechanism in General Relativity, instantiating the case of gravitational
dynamics, is related with the absolute representability of the theory in the field of real
numbers, a byproduct of which is the fixed background manifold construct of this theory.
In a subsequent paper, we are going to explain the applicability of the homological Kähler-
De Rham differential mechanism to the problem of formulating dynamics in the quantum
regime, according to the preceding remarks, by using the methodology of sheaf-theoretic
localization of quantum observable algebras.

A basic nucleus of ideas, technical methods and results related with this program has
been already communicated in [21], see also [22, 23]. The general conceptual and technical
aspects of the framework of sheaf-theoretic differential geometry have been presented in
[3]. It is instructive to mention that the first explicit suggestion of approaching the problem
of quantization of gravitational dynamics along sheaf-theoretic lines has appeared in the
literature in [24, 25].

2. Algebraic Generation of Dynamics in General Relativity

The basic conceptual and technical issue pertaining to the current research attempts towards
the construction of a tenable theory of gravitational interactions in the quantum regime, refers
to the problem of independence of this theory from a fixed spacetime manifold substratum.
In relation to this problem, we demonstrate the existence and functionality of an algebraic
mechanism of modeling general relativistic dynamics functorially, constructed by means
of connection inducing functors and their associated curvatures, the latter being, also, as a
consequence, independent of any background substratum.

The basic defining feature of General Relativity, in contradistinction to Newtonian
classical theory, as well as Special Relativity, is the abolishment of any fixed preexisting
kinematical framework by means of dynamicalization of the metric tensor. This essentially
means that the geometrical relations defined on a four dimensional smoothmanifold, making
it into a spacetime, become variable. Moreover, they are constituted dynamically by the
gravitation field, as well as other fields from which matter can be derived, by means of
Einstein’s field equations, through the imposition of a compatibility requirement relating
the metric tensor, which represents the spacetime geometry, with the affine connection,
which represents the gravitational field. The dynamic variability of the geometrical structure
on the spacetime manifold constitutes the means of dynamicalization of geometry in the
descriptive terms of General Relativity, formulated in terms of the differential geometric
framework on smooth manifolds. The intelligibility of the framework is enriched by the
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imposition of the principle of general covariance of the field equations under arbitrary
coordinate transformations of the points of the manifold preserving the differential structure,
identified as the group of manifold diffeomorphisms. As an immediate consequence, the
points of the manifold lose any intrinsic physical meaning, in the sense that, they are not
dynamically localizable entities in the theory. Most importantly, manifold points assume an
indirect reference as indicators of spacetime events only after the dynamical specification
of geometrical relations among them, as particular solutions of the generally covariant
field equations. From an algebraic viewpoint [1], a real differential manifold M can be
recovered completely from the R-algebra C∞(M) of smooth real-valued functions on it, and,
in particular, the points of M may be recovered from the algebra C∞(M) as the algebra
morphisms C∞(M) → R.

In this sense, manifold points constitute the R-spectrum of C∞(M), being isomorphic
with the maximal ideals of this algebra. Notice that the R-algebra C∞(M) is a commutative
algebra that contains the field of real numbersR as a distinguished subalgebra. This particular
specification incorporates the physical assumption that our form of observation is being
represented globally by evaluations in the field of real numbers. In the setting of General
Relativity, the form of observation is being coordinatized by means of a commutative unital
algebra of scalar coefficients, called an algebra of observables, identified as the R-algebra
of smooth real-valued functions C∞(M). Hence, the background substratum of the theory
remains fixed as the R-spectrum of the coefficient algebra of scalars of that theory, and,
consequently, the points of the manifold M, although not dynamically localizable degrees
of freedom of General Relativity, are precisely the semantic information carriers of an
absolute representability principle, formulated in terms of global evaluations of the algebra of
observables in the field of real numbers. Of course, at the level of the R-spectrum of C∞(M),
the only observables are the smooth functions evaluated over the points of M. In physical
terminology, the introduction of new observables is conceived as the result of interactions
caused by the presence of a physical field, identified with the gravitational field in the context
of General Relativity.

Algebraically, the process of extending the form of observation with respect to the
algebra of scalars we have started with, that is A = C∞(M), due to field interactions, is
described by means of a fibering, defined as an injective morphism of R-algebras ι : A ↪→ B.
Thus, the R-algebra B is considered as a module over the algebraA. A section of the fibering
ι : A ↪→ B, is represented by a morphism of R-algebras s : B → A, left inverse to ι, that is
ι◦s = idB. The fundamental extension of scalars of theR-algebraA is obtained by tensoringA
with itself over the distinguished subalgebra of the reals, that is ι : A ↪→ A⊗RA. Trivial cases
of scalars extensions, in fact isomorphic toA, induced by the fundamental one, are obtained
by tensoringA with R from both sides, that is ι1 : A ↪→ A⊗RR, ι2 : A ↪→ R⊗RA.

The basic idea of Riemann that has been incorporated in the context of General
Relativity is that geometry should be built from the infinitesimal to the global. Geometry
in this context is understood in terms of metric structures that can be defined on differential
manifolds. If we adopt the algebraic/physical viewpoint, geometry as a result of interactions,
requires the extension of scalars of the algebra A by infinitesimal quantities, defined as a
fibration

d∗ : A ↪→ A ⊕M · ε,

f �−→ f + d∗
(
f
)
· ε,

(2.1)
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where d∗(f) =: df is considered as the infinitesimal part of the extended scalar, and ε the
infinitesimal unit obeying ε2 = 0 [21]. The algebra of infinitesimally extended scalars [A ⊕
M · ε] is called the algebra of dual numbers overA with coefficients in theA-moduleM. It is
immediate to see that the algebra [A⊕M ·ε], as an abelian group is just the direct sumA⊕M,
whereas, the multiplication is defined by

(
f + df · ε

)
•
(
f ′ + df ′ · ε

)
= f · f ′ +

(
f · df ′ + f ′ · df

)
· ε. (2.2)

Note that, we further require that the composition of the augmentation [A ⊕M · ε] → A,
with d∗ is the identity. Equivalently, the above fibration can be formulated as a derivation
[26], that is as an additive morphism:

d : A −→M (2.3)

which satisfies the Leibniz rule, that is,

d
(
f · g

)
= f · dg + g · df. (2.4)

Since the formal symbols of differentials {df, f ∈ A}, are reserved for the universal
derivation, the A-module M is identified as the free A-module Ω1(A) ≡ Ω(A) ≡ Ω of 1-
forms generated by these formal symbols, modulo the Leibniz constraint, where the scalars
of the distinguished subalgebra R, that is the real numbers, are treated as constants.

In this purely algebraic context, the fundamental insight of Kähler has been that
the free A-module Ω can be constructed explicitly from the fundamental form of scalars
extension ofA, that is ι : A ↪→ A⊗RA by considering the morphism:

μ : A⊗RA −→ A,
∑

i

fi ⊗ gi �−→
∑

i

fi · gi.
(2.5)

Then, by taking the kernel of this morphism of algebras, that is, the ideal:

I = Kerμ =
{
θ ∈ A⊗RA : μ(θ) = 0

}
⊂ A⊗RA (2.6)

it can be proved that the morphism ofA-modules:

Σ : Ω −→ I
I2
,

df �−→ 1 ⊗ f − f ⊗ 1
(2.7)

is an isomorphism.
In order to show this, we notice that the fractional object I/I2 has an A-module

structure defined by:

f ·
(
f1 ⊗ f2

)
=
(
f · f1

)
⊗ f2 = f1 ⊗

(
f · f2

)
. (2.8)
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for f1 ⊗ f2 ∈ I, f ∈ A. We can check that the second equality is true by proving that the
difference of (f · f1) ⊗ f2 and f1 ⊗ (f · f2) belonging to I is actually an element of I2, namely,
the equality is true modulo I2. So we have

(
f · f1

)
⊗ f2 − f1 ⊗

(
f · f2

)
=
(
f1 ⊗ f2

)
·
(
f ⊗ 1 − 1 ⊗ f

)
. (2.9)

The first factor of the above product of elements belongs to I by assumption, whereas the
second factor also belongs to I, since we have that

μ
(
f ⊗ 1 − 1 ⊗ f

)
= 0. (2.10)

Hence, the product of elements above belongs to I · I = I2. Consequently, we can define a
morphism ofA-modules:

Σ : Ω −→ I
I2
,

df �−→ 1 ⊗ f − f ⊗ 1.
(2.11)

Now, we construct the inverse of that morphism as follows: theA-moduleΩ can be made an
ideal in the algebra of dual numbers overA, namely,A ⊕Ω · ε. Moreover, we can define the
morphism of algebras:

A ×A −→ A ⊕Ω · ε,
(
f1, f2

)
�−→ f1 · f2 + f1 · df2ε.

(2.12)

This is an R-bilinear morphism of algebras, and thus, it gives rise to a morphism of algebras:

Θ : A⊗RA −→ A ⊕Ω · ε. (2.13)

Then, by definition, we have that Θ(I) ⊂ Ω, and also, Θ(I2) = 0. Hence, there is obviously
induced morphism ofA-modules:

Ω←− I
I2

(2.14)

which is the inverse of Σ. Consequently, we conclude that

Ω ∼=
I
I2
. (2.15)

Thus, the free A-module Ω of 1-forms is isomorphic with the free A-module I/I2 of Kähler
differentials of the algebra of scalars A over R, conceived as distinguished ideals within the
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algebra of infinitesimally extended scalars [A ⊕ Ω · ε] due to interaction, according to the
following split short exact sequence:

Ω ↪→ A ⊕Ω · ε � A (2.16)

or equivalently formulated as:

0 −→ Ω −→ A⊗RA −→ A. (2.17)

By dualizing, we obtain the dualA-module ofΩ, that is, Ξ := Hom(Ω,A). Consequently, we
have at our disposal, expressed in terms of infinitesimal scalars extension of the algebra A,
semantically intertwinedwith the generation of geometry as a result of interaction, new types
of observables related with the incorporation of differentials and their duals, called vectors.

Let us now explain the function of geometry, as related with the infinitesimally
extended algebras of scalars defined above, in the context of General Relativity. As we have
argued before, the absolute representability principle of this theory, necessitates that our form
of observation is semantically equivalent with real numbers representability. This means that
all types of observables should possess uniquely defined dual types of observables, such that
their representability can be made possible by means of real numbers. This is exactly the role
of a geometry induced by a metric g. Concretely, a metric structure assigns a unique dual to
each observable, by effectuating an isomorphism g̃ between the A-module Ω and its dual
A-module Ξ = Hom(Ω,A), that is,

g̃ : Ω −→ Ξ (2.18)

with

g̃ : Ω ∼= Ξ,

df �−→ vf := g̃
(
df

)
.

(2.19)

Equivalently, a metric g stands for an R-valued symmetric bilinear form on Ω, that is, g Ω ×
Ω → R, yielding an invertible R-linear morphism g̃ : Ω → Ξ. Notice that for df , dh ∈ Ω, a
symmetric bilinear form g acts, via g̃, on df to give an element of the dual g̃(df) ∈ Ξ, which
then acts on dh to give (g̃(df))(dh) = (g̃(dh))(df), or equivalently, vf(dh) = vh(df) ∈ R. Also
note that the invertibility of g̃ amounts to the property of nondegeneracy of g, meaning that
for each df ∈ Ω, there exists dh ∈ Ω, such that (g̃(df))(dh) = vf(dh)/= 0.

Thus, the functional role of a metric geometry forces the observation of extended
scalars, bymeans of representability in the field of real numbers, and is reciprocally conceived
as the result of interactions causing infinitesimal variations in the scalars of the R-algebraA.

Before proceeding further, it is instructive at this point to clarify the meaning of a
universal derivation, playing a paradigmatic role in the construction of extended algebras of
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scalars as above, in appropriate category-theoretic terms as follows [21]: the covariant functor
of leftA-modules valued derivations ofA:

←−
∇A(−) :M(A) −→ M(A),

N �−→
←−
∇A(N)

(2.20)

is being representable by the left A-module of 1-forms Ω1(A) in the category of left A-
modulesM(A), according to the isomorphism:

←−
∇A(N) ∼= HomA

(
Ω1(A),N

)
. (2.21)

This isomorphism is induced by the derivation d : A → Ω1(A). Thus,Ω1(A) is characterized
categorically as a universal object in M(A), and the derivation d : A → Ω1(A) as the
universal derivation [21]. Furthermore, we can define algebraically, for each n ∈ N, n ≥ 2,
the n-fold exterior product

Ωn(A) =
∧n

Ω1(A), (2.22)

where Ω(A) := Ω1(A), A := Ω0(A), and finally show analogously that the left A-modules
of n-forms Ωn(A) inM(A) are representable objects inM(A) of the covariant functor of left

A-modules valued n-derivations of A, denoted by
←−
∇

n

A(−) : M(A) → M(A). We conclude
that, all infinitesimally extended algebras of scalars that have been constructed from A by
fibrations, presented equivalently as derivations, are representable as left A-modules of n-
forms Ωn(A) in the category of leftA-modulesM(A).

We emphasize that the physical intelligibility of the algebraic differential mechanism
is based on the conception that infinitesimal variations in the scalars of A are caused by
interactions, meaning that they are being effectuated by the presence of a physical field,
identified as the gravitational field in the context of General Relativity. Thus, it is necessary
to establish a purely algebraic representation of the notion of physical field and explain the
functional role it assumes for the interpretation of the theory.

3. Functorial Representation of the Gravitational Field

The key idea serving the purpose of modeling the notion of the gravitational field in General
Relativity algebraically amounts to expressing the process of infinitesimal scalars extension in
functorial terms, and by anticipation, identifies the functor of infinitesimal scalars extension
due to gravitational interaction with the physical field that causes it.

Regarding the first step of this strategy, we clarify that the general process of scalars
extension from an algebra S to an algebra T is represented functorially by means of the
functor of scalars extension, from S to T as follows:

ExtST := [−]⊗ST :M(S) −→ M(T),

E �−→ T⊗SE.
(3.1)
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The functor ExtST is called the extension of scalars functor from the category of S-modules to
the category of T-modules. Furthermore, the algebraic functorial processes of restriction and
extension of scalars are conceptually inverse, namely, given a morphism of commutative and
unital algebras of scalars S → T, and there exists a categorical adjunction

L :M(S) �M(T) : R, (3.2)

where ExtST := L is left adjoint to ResTS := R.
The second step involves the application of the functorial algebraic procedure for the

case admitting the identifications S = A, T = [A ⊕Ω1(A) · ε] corresponding to infinitesimal
scalars extension. Consequently, the physical field as the causal agent of interactions admits
a purely algebraic description as the functor of infinitesimal scalars extension, called a
connection-inducing functor:

∇̂ :M(A) −→ M(A⊕Ω1(A)·ε),

E �−→
[
A ⊕Ω1(A) · ε

]
⊗AE.

(3.3)

Thus, the effect of the action of the physical field on the vectors of the leftA-module E can be
expressed by means of the following morphism of leftA-modules:

∇�
E : E −→ E ⊕

[
Ω1(A)⊗AE

]
· ε. (3.4)

The irreducible amount of information incorporated in the above morphism can be,
equivalently, expressed as a connection on E, namely, as an R-linear morphism ofA-modules
[3]:

∇E : E −→ Ω1(A)⊗AE = E⊗AΩ1(A) = Ω1(E) (3.5)

such that, the following Leibniz type constraint is satisfied:

∇E
(
f · v

)
= f · ∇E(v) + df ⊗ v (3.6)

for all f ∈ A, v ∈ E.
In the context of General Relativity, the absolute representability principle over the

field of real numbers necessitates as we have explained above the existence of uniquely
defined duals of observables. Thus, the gravitational field is identified with a linear
connection on the A-module Ξ = Hom(Ω,A), being isomorphic with Ω1, by means of a
metric

g̃ : Ω1 � Ξ = Ω1∗ (3.7)
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and consequently, it may be represented by the pair (Ξ,∇Ξ). The metric compatibility of the
connection required by the theory is simply expressed as:

∇HomA(Ξ,Ξ∗)
(
g̃
)
= 0. (3.8)

It is instructive to emphasize that the functorial conception of physical fields in
general, according to the proposed schema, based on the notion of causal agents of
infinitesimal scalars extension, does not depend on any restrictive representability principle,
like the absolute representability principle over the real numbers, imposed by General
Relativity. Consequently, the meaning of functoriality implies covariance with respect to
representability, and thus, covariance with respect to generalized geometric realizations. In
the same vein of ideas, the reader has already noticed that all the algebraic arguments refer,
on purpose, to a general observable algebra A, that has been identified with the R-algebra
C∞(M) in the model case of General Relativity. Of course, the functorial mechanism of
understanding the notion of interaction should not depend on the observable algebras used
for the particular manifestations of it, thus, the only actual requirement for the intelligibility
of functoriality of interactions by means of physical fields rests on the algebra-theoretic
specification of what we characterize structures of observables. Put differently, the functorial
coordinatization of the universal mechanism of encoding physical interactions in terms of
observables, by means of causal agents, namely, physical fields effectuating infinitesimal
scalars extension, should respect the algebra-theoretic structure.

4. The Algebraic De Rham Complex and the Role of Curvature

The next stage of development of the algebraic schema of comprehending the mechanism
of dynamics involves the satisfaction of appropriate global constraints that impose
consistency requirements referring to the extension from the infinitesimal to the global. These
requirements are homological and characterize the integrability property of the variation
process induced by a connection. Moreover, they are properly addressed by the construction
of the De Rham complex associated to an integrable connection. For this purpose, it is
necessary to review briefly the mathematical construction of algebraic de Rham complexes
[1–3, 17]. In parallel, we provide the corresponding dynamical physical interpretation.

We start by reminding the algebraic construction, for each n ∈ N, n ≥ 2, of the n-fold
exterior product as follows: Ωn(A) =

∧nΩ1(A), where Ω(A) := Ω1(A), A := Ω0(A). We
notice that there exists an R-linear morphism:

dn : Ωn(A) −→ Ωn+1(A) (4.1)

for all n ≥ 0, such that d0 = d. Let ω ∈ Ωn(A), then ω has the form:

ω =
∑

fi
(
dli1

∧
· · ·

∧
dlin

)
(4.2)

with fi, lij , ∈ A for all integers i, j. Further, we define

dn(ω) =
∑

dfi
∧

dli1
∧
· · ·

∧
dlin. (4.3)
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Then, we can easily see that the resulting sequence of R-linear morphisms,

A −→ Ω1(A) −→ · · · −→ Ωn(A) −→ · · ·, (4.4)

is a complex of R-vector spaces, called the algebraic de Rham complex of A. The notion of
complex means that the composition of two consecutive R-linear morphisms vanishes, that
is dn+1 ◦ dn = 0, simplified symbolically as:

d2 = 0. (4.5)

If we assume that (E,∇E) is an interaction field, defined by a connection∇E on theA-module
E, then ∇E induces a sequence of R-linear morphisms:

E −→ Ω1(A)⊗AE −→ · · · −→ Ωn(A)⊗AE −→ · · · (4.6)

or equivalently:

E −→ Ω1(E) −→ · · · −→ Ωn(E) −→ · · · , (4.7)

where the morphism

∇n : Ωn(A)⊗AE −→ Ωn+1(A)⊗AE (4.8)

is given by the formula

∇n(ω ⊗ v) = dn(ω) ⊗ v + (−1)nω ∧ ∇(v) (4.9)

for all ω ∈ Ωn(A), v ∈ E. It is immediate to see that ∇0 = ∇E. Let us denote by

R∇ : E −→ Ω2(A)⊗AE = Ω2(E) (4.10)

the composition ∇1 ◦ ∇0. We see that R∇ is actually an A-linear morphism, that is A-
covariant, and is called the curvature of the connection ∇E. We note that for the case of
the gravitational field (Ξ,∇Ξ), in the context of General Relativity, R∇ is equivalent to the
Riemannian curvature of the spacetime manifold. We notice that, the latter sequence of R-
linear morphisms is actually a complex of R-vector spaces if and only if

R∇ = 0. (4.11)

We say that the connection ∇E is integrable if R∇ = 0, and we refer to the above complex
as the de Rham complex of the integrable connection ∇E on E in that case. It is also usual
to call a connection ∇E flat if R∇ = 0. A flat connection defines a maximally undisturbed
process of dynamical variation caused by the corresponding physical field. In this sense, a
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nonvanishing curvature signifies the existence of disturbances from themaximally symmetric
state of that variation. These disturbances can be cohomologically identified as obstructions
to deformation caused by physical sources. In that case, the algebraic de Rham complex of the
algebra of scalarsA is not acyclic, namely, it has nontrivial cohomology groups. These groups
measure the obstructions caused by sources and are responsible for a nonvanishing curvature
of the connection. In the case of General Relativity, these disturbances are associated with
the presence of matter distributions, being incorporated in the specification of the energy-
momentum tensor. Taking into account the requirement of absolute representability over the
real numbers, and thus considering the relevant evaluation trace operator by means of the
metric, we arrive at Einstein’s field equations, which in the absence of matter sources read

R(∇Ξ) = 0, (4.12)

where R(∇Ξ) denotes the relevant Ricci scalar curvature. In more detail, we first define the
curvature endomorphism R∇ ∈ End(Ξ) [3], called Ricci curvature operator. Since the Ricci
curvature R∇ is matrix valued, by taking its trace using the metric, that is by considering its
evaluation or contraction by means of the metric, we arrive at the definition of the Ricci scalar
curvature R(∇Ξ) obeying the above equation.

5. Conclusions

The central focus of the studies pertaining to the current research attempts towards
the construction of a tenable theory of gravitational interactions in the quantum regime
revolves around the issue of background spacetime manifold independence, as it is evident
from the literature [4–14], and especially, the criticism and suggestions offered in [22,
23, 27, 28]. In this communication, we have constructed a general functorial framework
of modeling field dynamics, modeled on the conceptual basis of the Kähler-De Rham
differential mechanism, using homological algebraic concepts and techniques. In particular,
we have applied this framework in the case of General Relativity recovering the classical
gravitational dynamics. The significance of the proposed functorial schema of dynamics
lies on the fact that the coordinatization of the universal mechanism of encoding physical
interactions in terms of observables, by means of causal agents, namely, physical fields
effectuating infinitesimal scalars extension should respect only the algebra-theoretic structure
of observables. Consequently, it is not constrained at all by the absolute representability
principle over the field of real numbers, imposed by classical General Relativity, a byproduct
of which is the fixed background manifold construct of that theory. In this vein of ideas,
the requirement of background manifold independence can be attained, by rejecting the
absolute representability of the classical theory over the real numbers, and thus, the fixed
spacetime manifold substratum, while keeping at the same time, the homological machinery
of functorial dynamics. In a following paper, we will explain in detail that the abolishment
of the above absolute representability requirement of the classical theory, paving the way
towards Quantum Relativity, can be achieved by effectuating a process of sheaf-theoretic
localization suitable for the modeling of quantum phenomena [21, 29], based on the
technique of (pre)-sheafification of observable algebras.
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