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We prove a version of the Jacobs-de Leeuw-Glicksberg splitting theorem for weak∗ continuous one-
parameter semigroups on dual Banach spaces. This result is applied to give sufficient conditions for
a quantum dynamical semigroup to display decoherence. The underlying notion of decoherence
is that introduced by Blanchard and Olkiewicz (2003). We discuss this notion in some detail.

1. Introduction

The theory of environmental decoherence starts from the question of why macroscopic
physical systems obey the laws of classical physics, despite the fact that our most
fundamental physical theory—quantum theory—results in contradictions when directly
applied to these objects. The infamous Schrödinger cat is a well-known illustration of this
problem. This is an embarrassing situation since, from its inception in the 1920s until today,
quantum theory has seen a remarkable success and an ever increasing range of applicability.
Thus the question of how to reconcile quantum theory with classical physics is a fundamental
one, and efforts to find answers to it persisted throughout its history. At present, the most
promising and most widely discussed answer is the notion of environmental decoherence.
The starting point is the contention that quantum theory is universally valid, in particular
in the macroscopic domain, but that one has to take into account the fact that macroscopic
objects are strongly interacting with their environment, and that precisely this interaction is
the origin of classicality in the physical world. Thus classicality is a dynamically emergent
phenomenon due to the essential openness of macroscopic quantum systems, that is, their
interaction with other quantum systems surrounding them leads to an effective restriction
of the superposition principle and results in a state space with properties different from the
pure quantum case.
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In order to clarify the status of decoherence and to provide a rigorous definition,
Ph. Blanchard and R. Olkiewicz suggested a notion of decoherence formulated in the
algebraic framework [1, 2] of quantum physics in [3], drawing on earlier work in [4]. The
algebraic framework is especially useful for the discussion of decoherence, since it is able to
accommodate classical systems, provides an elegant formulation of superselection rules, and
can even describe systems with infinitely many degrees of freedom in a rigorous way. This is
why it is becoming increasingly popular in the discussion of foundational and philosophical
problems of quantum physics [5, 6].

In the present paper, we assume that the algebra of observables of the system under
study is a von Neumann algebra, and due to its openness the time evolution is irreversible
and hence given by a family {Tt}t≥0 of normal completely positive and unital linear maps on
the von Neumann algebra [7, 8]. In the Markovian approximation, the family {Tt}t≥0 becomes
a so-called quantum dynamical semigroup. It is our purpose to discuss the Blanchard-
Olkiewicz notion of decoherence for quantum dynamical semigroups. To this end we study
a weak∗ version of the so-called Jacobs-de Leeuw-Glicksberg splitting for one-parameter
semigroups on dual Banach spaces. In the Markovian case, the Blanchard-Olkiewicz notion
of decoherence relies on the so-called isometric-sweeping splitting, which is similar to the
Jacobs-de Leeuw-Glicksberg splitting, and we will be able to prove a new criterion for
the appearance of decoherence in the case of uniformly continuous quantum dynamical
semigroups by examining the connection between the two asymptotic splittings.

The paper is organized as follows. In Section 2 we establish the Jacobs-de Leeuw-
Glicksberg splitting for weak∗ continuous contractive one-parameter semigroups on dual
Banach spaces. We provide a sufficient condition which ensures that the semigroup is
weak∗ stable on the stable subspace of the splitting (Proposition 2.3). In Section 3 we turn
to the study of quantum dynamical semigroups on von Neumann algebras. We begin by
applying the results of Section 2 in the von Neumann algebra setting (Proposition 3.3). As
a complement to Proposition 2.3, we prove Proposition 3.6, which gives another condition
for weak∗ stability on the stable subspace of the splitting. In Section 4, we discuss a notion
of decoherence which is very close to that given in [3] and establish some mathematical
results related to it. In the final Section 4.2, we use the previous results to give a sufficient
condition that a uniformly continuous quantum dynamical semigroup having a faithful
normal invariant state displays decoherence.

2. The Jacobs-de Leeuw-Glicksberg Splitting

Suppose that X is a Banach space and assume that it has a predual space denoted by X∗, that
is, (X∗)

∗ ∼= X. If x ∈ X and ϕ ∈ X∗, we will denote the evaluation of x at ϕ by 〈x, ϕ〉 and
consider this as a dual pairing between X and X∗. The set of all bounded linear operators
from X to X, endowed with the operator norm, will be denoted by L(X), and its unit ball by
L(X)1 = {T ∈ L(X) : ‖T‖ ≤ 1}. Operators from L(X)1 are called contractive. We consider the
algebraic tensor product X
X∗ and endow it with the projective cross norm γ ; the completion
of X 
 X∗ with respect to γ is a Banach space which will be denoted by X⊗γX∗. Then its dual
space (X⊗γX∗)

∗ is isometrically isomorphic in a canonical way with L(X, (X∗)
∗) = L(X): If

ψ ∈ (X⊗γX∗)
∗, we define Φ(ψ) ∈ L(X) by

〈
x ⊗ ϕ, ψ〉 =

〈
Φ
(
ψ
)
(x), ϕ

〉
(2.1)

for all x ∈ X and ϕ ∈ X∗. It can now be shown that ψ �→ Φ(ψ) extends to an isometric
isomorphism, and we can thus write (X⊗γX∗)

∗ ∼= L(X).
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We now introduce the pointwise weak∗ topology on L(X). Let x ∈ X, ϕ ∈ X∗, and
define the seminorm L(X) � T �→ px,ϕ(T) = |〈T(x), ϕ〉|. The pointwise weak∗ topology is the
locally convex topology on L(X) induced by the family {px,ϕ : x ∈ X, ϕ ∈ X∗} of seminorms.
If T = Φ(ψ) ∈ L(X), we see that px,ϕ(T) = |〈T(x), ϕ〉| = |〈x ⊗ ϕ, ψ〉|; thus the pointwise weak∗

topology coalesces with the σ(L(X),X⊗γX∗) topology on L(X), that is, the pointwise weak∗

topology is a weak∗ topology as well. Thus we can conclude from Alaoglu’s theorem that
L(X)1 is compact in the pointwise weak∗ topology.

A linear operator T ∈ L(X) will be called normal provided it is a continuous map
from X to X when X is endowed with the weak∗ topology. We denote the set of all normal
operators by Ln(X). We can consider the set of all normal contractive operators Ln(X)1 as
a semigroup under multiplication of operators, that is, if T1, T2 ∈ Ln(X)1, then T1 ◦ T2 is
normal and contractive; moreover, the multiplication is associative. The semigroup Ln(X)1 is
semitopological when endowedwith the pointwise weak∗ topology, that is, themultiplication
is separately continuous. This means that the maps T �→ T ◦ S and S �→ T ◦ S are both
continuous with respect to the pointwise weak∗ topology. Finally we remark that it is
important to note that Ln(X)1 is not closed in L(X)1 with respect to the pointwise weak∗

topology. Moreover, recall that an operator T ∈ L(X) is normal if and only if there exists
a (unique) predual operator T∗ from X∗ into X∗, defined by 〈T(x), ϕ〉 = 〈x, T∗(ϕ)〉, x ∈ X,
ϕ ∈ X∗.

In this section, our goal is to study one-parameter semigroups on dual Banach spaces.
A contractive one-parameter semigroup [9, 10] is a family {Tt}t≥0 of linear and contractive
operators on X, such that Ts ◦ Tt = Ts+t for all s, t ≥ 0 and T0 = idX. The semigroup is called
weak∗ continuous provided each Tt is a normal operator and [0,∞[� t �→ Tt(x) is weak∗

continuous for any x ∈ X. For a weak∗ continuous semigroup there exists the following
concept of a weak∗ generator Z:

Zx = lim
t↓0

Tt(x) − x
t

in the weak∗ topology, (2.2)

domZ = {x ∈ X : the limit in (2.2) exists}. (2.3)

The predual semigroup {Tt,∗}t≥0 of a weak∗ continuous semigroup {Tt}t≥0 is strongly contin-
uous, and the adjoint of its generator Z∗ is equal to the weak∗ generator Z.

Suppose now that {Tt}t≥0 is a weak∗ continuous contractive semigroup on X, and write
S0 = {Tt : t ≥ 0} ⊆ Ln(X)1. In the following, we assume that the closure of S0 in L(X)1 with
respect to the pointwise weak∗ topology consists of normal operators, that is, we assume that
S = S0 ⊆ Ln(X)1, where the bar denotes closure in the pointwise weak∗ topology. Then S is
a compact commutative semitopological subsemigroup of Ln(X)1. We now use the fact that
every compact commutative semitopological semigroup has a unique minimal ideal G ⊆ S,
the so-called Sushkevich kernel [9], which is given by

G =
⋂

R∈S
R ◦ S, (2.4)

andQ ∈ G will denote the unit of G. We then have G = Q ◦ S. By compactness of G, it follows
that G is, in fact, a commutative topological group. In the following, we will simplify our
notation by writing T1T2 instead of T1 ◦ T2.
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We are now able to prove a weak∗ version of the Jacobs-de Leeuw-Glicksberg splitting
theorem, originally going back to Jacobs [11] and de Leeuw and Glicksberg [12, 13], see also
[14]. The present proof mimics the one given in [9] for weakly almost periodic one-parameter
semigroups.

Theorem 2.1. Let S0 = {Tt}t≥0 be a weak∗ continuous contractive one-parameter semigroup with
generatorZ. Assume that S = S0 consists of normal operators. Then there exist weak∗ closed subspaces
Xs,Xr of X invariant under all operators Tt, t ≥ 0, such that X = Xs ⊕ Xr, and

Xs =
{
x ∈ X : 0 ∈ {Tt(x) : t ≥ 0}w

∗}
, (2.5)

Xr = lin{x ∈ domZ : ∃α ∈ R such that Zx = iαx}w
∗

= lin{x ∈ X : ∃α ∈ R such that Tt(x) = eiαtx ∀t ≥ 0}w
∗
.

(2.6)

Proof. Since Q2 = Q, the unit Q is a normal projection such that [Q, Tt] = 0 for all t ≥ 0. The
theorem will be established once we prove that Xs = kerQ and Xr = ranQ.

Let x ∈ kerQ. Since Q ∈ S, there is a net {Ti}i∈I ⊆ S0 such that Ti → Q relative to

the pointwise weak∗ topology; hence Ti(x) → Qx = 0, so 0 ∈ {Tt(x) : t ≥ 0}w
∗
. Conversely,

assume 0 ∈ {Tt(x) : t ≥ 0}w
∗
for some x. Then there is a net {Ti}i∈I ⊆ S0 such that Ti(x) → 0

relative to the weak∗ topology. By compactness of S, there is a subnet {Tj}j∈J ⊆ {Ti}i∈I with

Tj → R relative to the pointwise weak∗ topology for some R ∈ S, and it follows that Rx = 0.
Hence R′QRx = 0 for all R′ ∈ S. Choosing R′ to be the inverse of QR in G, we get Qx = 0,
hence x ∈ kerQ. We have thus proved that Xs = kerQ.

Let Ĝ be the character group of G. For each χ ∈ Ĝ define the operator

X � x �−→ Pχx =
∫

G
χ(S)Sx dμ(S), (2.7)

where μ is the normalized Haar measure of G. The integral is to be understood as a weak∗

integral, thus Pχ is a well-defined bounded operator in L(X)with ‖Pχ‖ ≤ 1. Then for all R ∈ G
we get

RPχx =
∫

G
χ(S)RSx dμ(S) = χ(R)

∫

G
χ(RS)RSx dμ(S)

= χ(R)
∫

G
χ(S)Sx dμ(S) = χ(R)Pχx,

(2.8)

in particular QPχ = Pχ; therefore, TtPχ = TtQPχ = χ(TtQ)Pχ for all t ≥ 0. Since t �→ χ(TtQ) is
continuous and satisfies the functional equation

χ(TtQ) · χ(TsQ) = χ(Tt+sQ) ∈ {z ∈ C : |z| = 1} (2.9)
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for all t, s ≥ 0, we have χ(TtQ) = eiαt for some α ∈ R. Thus TtPχ = eiαtPχ, hence PχX ⊆ domZ

and ZPχ = iαPχ for all χ ∈ Ĝ. We next define the subspace

M = lin

⎧
⎨

⎩

⋃

χ∈Ĝ
PχX

⎫
⎬

⎭

w∗

⊆ Xr. (2.10)

Weprove that ran Q ⊆M ⊆ Xr. Let ϕ ∈M⊥ = {ϕ ∈ X∗ : 〈x, ϕ〉 = 0 ∀x ∈M}. Then 〈Pχx, ϕ〉 = 0
for all x ∈ X, χ ∈ Ĝ, that is,

∫

Ĝ
χ(S)

〈
Sx, ϕ

〉
dμ(S) = 0 (2.11)

for all x ∈ X, χ ∈ Ĝ. Since the character group Ĝ is total in L2(G, μ) by the Stone-Weierstraß
theorem and since S �→ 〈Sx, ϕ〉 is continuous it follows that 〈Sx, ϕ〉 = 0 for all S ∈ G and
x ∈ X. Take S = Q, then we obtain ϕ ∈ ran Q⊥ and thus M⊥ ⊆ ran Q⊥. By the bipolar
theorem we obtain ran Q ⊆ co M = M, since ran Q is a weak∗ closed subspace. Conversely,
let x ∈ domZ with Zx = iαx for some α ∈ R. It follows that Tt(x) = eiαtx for all t ≥ 0
and consequently Rx = eiαx for R ∈ S. Thus there exists β ∈ R such that Qx = eiβx = Q2x.
Consequently, we must have β = 0 which implies Qx = x ∈ ran Q, hence Xr ⊆ ran Q, and the
proof is finished.

Corollary 2.2. Under the hypothesis of Theorem 2.1, there exists a weak∗ continuous one-parameter
group {αt}t∈R

of isometries on Xr such that αt = Tt � Xr for t ≥ 0.

Proof. Let T ∈ S, then QT ∈ G, and let R be the inverse of QT in G, that is, R(QT) = Q. Then
for all x ∈ Xr, we have RTx = RQTx = Qx = x. Now write αt = QTt for t ≥ 0 and let α−t be the
inverse of αt in G. The foregoing calculation shows that {αt}t∈R

is a one-parameter group on
Xr. Moreover, it is clear that it is weak∗ continuous and contractive. Now assume that there is
x ∈ Xr and t ≥ 0 such that ‖αt(x)‖ < ‖x‖. Then it follows that ‖α−t‖ > 1, contradiction; thus
{αt}t∈R

is isometric.

The subspace Xr is called the reversible subspace and Xs is called the stable subspace; its elements
are sometimes called flight vectors.

In applications it is sometimes desirable to have a stronger characterization of the
subspace Xs, namely, we are interested in a stronger stability property of the elements in
Xs. In particular, this is relevant in the applications to decoherence we discuss in Section 4.
The next result provides a sufficient condition for weak∗ stability to hold on Xs based on the
boundary spectrum spec Z ∩ iR of the generator Z.

Proposition 2.3. Assume that the hypothesis of Theorem 2.1 is satisfied and additionally that
specZ ∩ iR is at most countable. Then the stable subspace (2.5) is given by

Xs =
{
x ∈ X : lim

t→∞
Tt(x) = 0 relative to the weak∗ topology

}
. (2.12)

Moreover, the convergence in (2.12) is uniform for x in Xs ∩ X1.
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Proof. Consider the predual semigroup {Tt,∗}t≥0 with generatorZ∗; as already remarked, (Z∗)
∗

isZ. The predualQ∗ ofQ is a projection and induces a splitting X∗ = Xr,∗⊕Xs,∗ by way of Xr,∗ =
ranQ∗ and Xs,∗ = kerQ∗. Let {Tst,∗}t≥0 be the restriction of {Tt,∗}t≥0 to Xs,∗. Since Xs,∗ is closed;
the generator Zs

∗ of {T s
t,∗}t≥0 is given by the restriction Zs

∗ = Z∗ � Xs,∗, domZs
∗ = domZ∗ ∩ Xs,∗.

A similar construction applies to the reversible subspace Xr. We check that specZs
∗ ⊆ specZ∗.

Let λ ∈ ρ(Z∗), that is, the map (λ1 − Z∗) : domZ∗ → X∗ is bijective. Then clearly the map
(λ1 −Zs

∗) = (λ1 −Z∗) � Xs,∗ : domZ∗ ∩ Xs,∗ → Xs,∗ is injective. It is also surjective: let ϕ ∈ Xs,∗,
then there is ψ = ψs ⊕ ψr ∈ domZ∗ such that (λ1 − Z∗)ψ = ϕ. Now

(λ1 − Z∗)ψ = (λ1 − Z∗)
(
ψs ⊕ ψr

)
= ϕ ⊕ 0, (2.13)

so (λ1 − Z∗)ψr = 0 and ψr = 0 by injectivity. Thus (λ1 − Zs
∗) is bijective and λ ∈ ρ(Zs

∗). In
particular, using spec Z = spec Z∗ we find that

spec Zs
∗ ∩ iR is countable. (2.14)

We now see that

specpZs ∩ iR = ∅, (2.15)

for if iλ ∈ specpZs, λ ∈ R, then the corresponding eigenvector x ∈ domZs ⊆ Xs satisfying
Zx = iλx must lie in Xr by (2.6), hence x = 0, contradiction.

From (2.14) and (2.15), it follows by the Arendt-Batty-Lyubich-Vũ theorem [15, 16],
see also [9], that the semigroup {T s

t,∗}t≥0 is strongly stable, that is, for all x∗ ∈ Xs,∗ we have
limt→∞‖T s

t,∗(x∗)‖ = 0. Thus if x ∈ Xs and x∗ ∈ X∗ it follows that

|〈Tt(x), x∗〉| =
∣∣∣
〈
Q⊥(Tt(x)), x∗

〉∣∣∣ =
∣∣∣
〈
x, Tt,∗

(
Q⊥

∗ (x∗)
)〉∣∣∣

≤ ‖x‖ · ‖T s
t,∗
(
Q⊥

∗ (x∗)
)
‖ −→ 0

(2.16)

as t → ∞ uniformly for x ∈ Xs ∩ X1, where Q⊥ = idX −Q denotes the projection onto Xs.

3. Semigroups on von Neumann Algebras

The results of the previous section apply to the case of Neumann algebras. LetH be a Hilbert
space. A von Neumann algebra is a ∗-subalgebra of the Banach-∗-algebra L(H) of all bounded
linear operators acting on H, which is additionally closed in the weak (or equivalently
strong) operator topology. The identity operator will be denoted by 1, and we will always
assume that 1 ∈ M. The ultraweak topology on M is defined by the seminorms pρ(x) = | tr(ρx)|,
where ρ runs through the trace class operators on H, it agrees with the weak operator
topology on bounded portions of M. The set of all ultraweakly continuous linear functionals
onM forms a Banach space, and this Banach space is the unique (up to isomorphism) predual
space ofM, for this reason we denote it byM∗. The ultraweak topology onM can be shown to
be equivalent to the σ(M,M∗) (i.e., weak∗) topology. Hence the setup of the previous section
applies to this case. The set of all positive operators of M will be denoted by M+. A functional
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ϕ in M∗ which is positive (i.e., ϕ(x) ≥ 0 provided x ∈ M+) and normalized (i.e., ‖ϕ‖ = 1,
equivalently ϕ(1) = 1) will be called a normal state. A state is called faithful if x ∈ M+ and
ω(x) = 0 implies x = 0. For proofs of these results, we refer to [10, 17].

Let T ∈ L(M). Then T is called positive if T(M+) ⊆ M+. A positive operator is
normal (i.e., weak∗ continuous) if and only if for every uniformly bounded increasing net
{xi}i∈I ⊆ M+ we have supiT(xi) = T(supixi). Furthermore, T is called strongly positive
whenever it satisfies Kadison’s inequality, that is, ‖T(1)‖T(x∗x) ≥ T(x)∗T(x) for any x ∈ M.
Clearly strong positivity implies positivity. An even stronger notion of positivity is complete
positivity: T ∈ L(M) is called completely positive whenever

∑n
i,j=1 y

∗
i T(x

∗
i xj)yj ≥ 0 for all n ∈ N

and all x1, . . . , xn and y1, . . . , yn from M. The map T is called unital if T(1) = 1; a positive
unital map is automatically contractive, that is, ‖T(x)‖ ≤ ‖x‖ for all x ∈ M.

The following result has been established in [18].

Proposition 3.1. Suppose that S ⊆ Ln(M)1 is a subset of normal contractive linear operators. Then
the following assertions are equivalent.

(1) The set {T∗(ϕ) : T ∈ S} ⊆ M∗ is relatively weakly compact for every ϕ ∈ M∗.

(2) The set S is equicontinuous when M is endowed with the Mackey topology (i.e., the
τ(M,M∗) topology).

(3) The pointwise weak∗ closure of S consists of normal operators: S ⊆ Ln(M)1.

Moreover, these conditions are satisfied whenever there is a faithful normal state ω on M such that

ω(T(x∗)T(x)) ≤ ω(x∗x) for any T ∈ S, x ∈ M. (3.1)

In particular, if each element in S is strongly positive we conclude that (3.1) can be rewritten as
ω(T(x)) ≤ ω(x) for all x ∈ M+, T ∈ S, or briefly ω ◦ T ≤ ω, for all T ∈ S.

If S ⊆ Ln(M)1 is a subset of normal contractive linear operators and ω a normal state,
we call ω an invariant state under S provided ω(T(x)) = ω(x) for all x ∈ M and T ∈ S.
We now apply the results of Section 2 to weak∗ continuous semigroups on von Neumann
algebras. This gives us the following result.

Corollary 3.2. Suppose that {Tt}t≥0 is a weak∗ continuous contractive strongly positive one-param-
eter semigroup on a von Neumann algebra M with ultraweak generator Z, and suppose that there
exists a faithful normal invariant state ω. Then there exist weak∗ closed and Tt-invariant subspaces
Mr and Ms of M, given by (2.5) and (2.6), such that M = Mr ⊕ Ms.

Proof. By Kadison’s inequality, (3.1) holds; thus Proposition 3.1 implies that the pointwise
weak∗ closure S = S0, with S0 = {Tt}t≥0, consists of normal operators. Hence Theorem 2.1
applies.

It is worth pointing out that a similar result was recently established in [19] for general
semigroups acting on a W∗-algebra and possessing a faithful family of subinvariant states.

We now prove thatMr is actually a vonNeumann subalgebra. Recall that a conditional
expectation Q from a C∗-algebra A onto a C∗-subalgebra B ⊆ A is a completely positive
contraction with Q(x) = x for x ∈ B and Q(xyx) = xQ(y)x for x ∈ B, y ∈ A.
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Proposition 3.3. Let {Tt}t≥0 be a weak∗ continuous semigroup of strongly positive unital operators
and suppose there exists a faithful normal invariant state ω. Then Mr is a von Neumann subalgebra
of M and there exists a group of ∗-automorphisms {αt}t∈R

on Mr such that Tt � Mr = αt for all t ≥ 0.
Moreover, there exists a normal conditional expectation Q from M onto Mr such that ω ◦ Q = ω.
Finally, Ms is ∗-invariant.

Proof. Since each Tt is a contraction; Corollary 3.2 applies. Let M0 = {x ∈ M : ∃α ∈
R such that Tt(x) = eiαtx ∀t ≥ 0}, that is, we have linM0

w∗
= Mr. As in [20] we define

the sesquilinear mapD : M×M → M byD(x, y) = Tt(x∗y)−Tt(x)∗Tt(y) for some fixed t ≥ 0.
By Kadison’s inequality, the sesquilinear form ϕ ◦ D is positive-definite for any ϕ ∈ M+

∗ , so
by the Cauchy-Schwarz inequality, D(x, x) = 0 if and only if D(x, y) = 0 for all y ∈ M. Now
let x ∈ M0, then Tt(x∗x) ≥ Tt(x)

∗Tt(x) = e−iαte+iαtx∗x = x∗x. Thus 0 ≤ ω(Tt(x∗x) − x∗x) ≤
ω(x∗x − x∗x) = 0, and by faithfulness Tt(x∗x) = x∗x, hence D(x, x) = 0 for all x ∈ M0. So
D(x, y) = 0 for all x, y ∈ M0, that is, Tt(x∗y) = Tt(x)

∗Tt(y) = ei(α2−α1)tx∗y, and we conclude
that xy ∈ M0 whenever x, y ∈ M0. It follows that linM0 is a ∗-subalgebra of M (containing
1) and consequently Mr is a von Neumann subalgebra, and Tt(x∗y) = Tt(x∗)Tt(y) for all
x, y ∈ Mr. By Corollary 2.2, the restriction of Tt to Mr extends to a one-parameter group
{αt}t∈R

of isometries and the above argument shows that αt must be a ∗-homomorphism. Let
Q be the Sushkevich kernel of the semigroup S ⊆ Ln(M)1. SinceQ is a projection and ‖Q‖ = 1
it follows from Tomiyama’s theorem [21] thatQ is a conditional expectation; sinceQ ∈ S; it is
also clear that ω ◦Q = ω. The last assertion is clear as well.

In the following, we will be interested in the stronger characterization of Ms by a
stability property as in (2.12). We start by quoting the following result.

Lemma 3.4. Suppose that {Tt}t≥0 is a weak∗ continuous one-parameter semigroup of strongly positive
unital operators on the von Neumann algebra M with a faithful normal invariant state ω. Introduce
the subsets

M =
{
x ∈ M : Tt(x∗x) = Tt(x)∗Tt(x) ∀t ≥ 0

}
,

M∗ =
{
x ∈ M : Tt(xx∗) = Tt(x)Tt(x)∗ ∀t ≥ 0

}
,

M1 =M ∩M∗.

(3.2)

ThenM1 is a Tt-invariant von Neumann subalgebra ofM, and there exists a group of ∗-automorphisms
{αt}t∈R

on M1 such that Tt � M1 = αt for t ≥ 0. Moreover, M1 is a maximal (in the sense of not being
properly contained in a larger von Neumann subalgebra) von Neumann subalgebra on which the
restriction of {Tt}t≥0 is given by a group of ∗-automorphisms.

A proof can be found in [22] (see the proof of Proposition 2). It is easy to see that we always
have Mr ⊆ M1.

Lemma 3.5. Under the assumptions of Lemma 3.4, for every x ∈ M the weak∗ limit points of the net
{Tt(x)}t∈R+ lie in M1.

A proof of this statement is contained in the proof of Theorem 3.1 of [23].
We can now establish the following result.



Advances in Mathematical Physics 9

Proposition 3.6. Let {Tt}t≥0 be a weak∗ continuous semigroup of strongly positive unital operators
on the von Neumann algebra M with a faithful normal invariant state ω. If Mr = M1, it follows that

Ms =
{
x ∈ M : lim

t→∞
Tt(x) = 0 in the weak∗ topology

}
. (3.3)

Proof. Let x ∈ Ms and assume without loss of generality that ‖x‖ ≤ 1. By Alaoglu’s theorem
the net {Tt(x)}t∈R+ contained in the unit ball of M has a limit point x0 for t → ∞. Then using
Lemma 3.5, we find that x0 ∈ M1 = Mr . But since x ∈ Ms, it follows that also x0 ∈ Ms, that
is, x0 ∈ Ms ∩ Mr = {0}; hence x0 = 0. This proves that any limit point of the net {Tt(x)}t∈R+

is equal to 0; therefore we conclude that limt→∞Tt(x) = 0 in the weak∗ topology for all x ∈
Ms.

Moreover, let us remark the following: suppose that {Tt}t≥0 is a weak∗ continuous semigroup
of strongly positive unital operators with generator Z having a faithful normal invariant
state ω, and assume that the peripheral spectrum specZ ∩ iR is at most countable. Then by
using Proposition 2.3 the conclusion of Proposition 3.6 holds. These results will be used in the
next section when we discuss the notion of decoherence for uniformly continuous quantum
dynamical semigroups.

4. Applications to Decoherence

4.1. The Notion of Decoherence in the Algebraic Framework

Consider a closed quantum system whose algebra of observables is a von Neumann
algebra N, and its reversible time evolution is given by a weak∗ continuous group of ∗-
automorphisms {βt}t∈R

on N. A subsystem can be described by a von Neumann subalgebra
M ⊆ N containing the observables belonging to the subsystem. We will assume that there
exists a normal conditional expectation E from N onto M. In this situation, we can define the
reduced dynamics as follows:

Tt(x) = E ◦ βt(x), x ∈ M, t ≥ 0. (4.1)

This is the Heisenberg picture time evolution an observer whose experimental capabilities are
limited to the system described by M would witness. Since it is the time evolution of an open
system it is, in general, irreversible. From (4.1) we can isolate some mathematical properties
of the reduced dynamics.

(1) {Tt}t≥0 is a family of completely positive and normal linear operators on M.

(2) Tt(1) = 1 for all t ≥ 0, in particular; each Tt is contractive.

(3) t �→ Tt(x) is weak∗ continuous for any x ∈ M.

In general the reduced dynamics {Tt}t≥0 is not Markovian, that is, memory-free, and hence
the operators {Tt}t≥0 do not form a one-parameter semigroup. However, in many physically
relevant situations it is a good approximation to describe the reduced dynamics by a
semigroup satisfying the above properties (1)–(3), that is, a weak∗ continuous semigroup
of completely positive unital maps on the von Neumann algebra M. Such a semigroup is
called a quantum dynamical semigroup. We remark that in many physically relevant models
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we have the following structure: N = M⊗M0, acting on a tensor product H ⊗ H0 of two
Hilbert spaces, where M0 describes the environment of the system (e.g., a heat bath). The
time evolution of the system and environment is Hamiltonian, that is, βt(x) = eitHxe−itH with
H = H1⊗1+1⊗H2+Hint, whereH1 andH2 are the Hamiltonians belonging to the system and
its environment, andHint is an interaction term. Moreover, the conditional expectation Eω is
given with respect to a reference state ω of the environment, that is, ϕ ⊗ ω(x) = ϕ(Eω(x)) for
all x ∈ N and ϕ ∈ M∗. In this situation, the predual time evolution is given by the familiar
formula

Tt,∗
(
ϕ
)
= tr2

[
e−itH

(
ϕ ⊗ω)

eitH
]
, (4.2)

where ϕ is a normal state on M and tr2 denotes the partial trace with respect to the degrees
of freedom of the environment.

Since the reduced dynamics is in general not reversible, new phenomena like the
approach to equilibrium can appear. In this paper, we are particularly interested in an effect
called decoherence. The following general and mathematically rigorous characterization of
decoherence in the algebraic framework was introduced by Blanchard and Olkiewicz [3, 4].
Its present form is taken from [24]; the relation of this form and that given in [3] is discussed
in [25].

Definition 4.1. We say that the reduced dynamics {Tt}t≥0 displays decoherence if the following
assertions are satisfied: there exists a Tt-invariant von Neumann subalgebra M1 of M and an
weak∗ continuous group {αt}t∈R

of ∗-automorphisms on M1 such that Tt � M1 = αt for t ≥ 0,
and a Tt-invariant and ∗-invariant weak∗ closed subspace M2 of M such that

M = M1 ⊕ M2, (4.3)

lim
t→∞

Tt(x) = 0 in the weak∗ topology for any x ∈ M2. (4.4)

Moreover, we require that M1 is a maximal von Neumann subalgebra of M (in the sense
of not being properly contained in any larger von Neumann subalgebra) on which {Tt}t≥0
extends to a group of ∗-automorphisms. We call M1 the algebra of effective observables.

The physical interpretation of this definition is rather clear: if decoherence takes place
there is a (maximal) von Neumann subalgebra on which the reduced dynamics is reversible,
that is, given by an automorphism group, and a complementary subspace on which the
expectation values with respect to any normal state of all its elements tend to zero in time.
Thus any observable x ∈ M has a decomposition x = x1 + x2, where xi ∈ Mi, such that
ϕ(Tt(x2)) → 0 as t → ∞ for any normal state ϕ on M. Hence after a sufficiently long time the
system behaves effectively like a closed system described by M1 and {αt}t∈R

. By analyzing
the structure of the algebra of effective observables M1 and the reversible dynamics {αt}t∈R

various physically relevant and well-known phenomena of decoherence can be identified,
like the appearance of pointer states, environment-induced superselection rules, and classical
dynamical systems. In this way it is possible to obtain an exhaustive classification of possible
decoherence scenarios, see [3] for a thorough discussion of this point. Particularly interesting
is the case when M1 is a factor, that is, after decoherence we still have a system of pure
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quantum character. This is of interest in the context of quantum computation since in this
way one may obtain a system which retains its quantum character despite decoherence.

According to Definition 4.1, if {Tt}t≥0 is a group of automorphisms, decoherence takes
place and the splitting (4.3) is trivial with M2 = {0}. However, we will keep this slightly
unfortunate terminology since it simplifies the statements of theorems, keeping in mind
that physically decoherence corresponds to the case when M2 /= {0}. This can only happen
if {Tt}t≥0 is irreversible.

We remark that the algebra M1 has been studied in [26] and explicit representations of
M1 are obtained for quantum dynamical semigroups with unbounded generators. Moreover,
in [27] a different notion of decoherence for quantum dynamical semigroups is introduced
in a mathematically rigorous way, and its connection to the Blanchard-Olkiewicz notion is
briefly discussed in [28]. In [29] an asymptotic property similar to (4.3) and (4.4) is discussed
under the designation “limited relaxation.”

In connection with Definition 4.1, the following question arises: if there exists a maxi-
mal von Neumann subalgebra of M on which {Tt}t≥0 extends to a group of automorphisms,
is this subalgebra necessarily unique? The following theorem answers this question.

Theorem 4.2. Let {Tt}t≥0 be a quantum dynamical semigroup and suppose it has a faithful normal
invariant state ω. Then there exists a unique maximal von Neumann subalgebra on which {Tt}t≥0
extends to a group of automorphisms.

Proof. Let Mi, where i ∈ I is some index set, be a collection of von Neumann subalgebras on
each of which {Tt}t≥0 extends to a group of automorphisms. Then we put

B =
∨

i∈I
Mi = lin{xi1 · · ·xik : i1, . . . , ik ∈ I, k ∈ N, xi ∈ Mi}, (4.5)

where the closure is taken in the ultraweak topology. We proceed as in the proof of
Proposition 3.3 and introduce D(x, y) = Tt(x∗y) − Tt(x)∗Tt(y) for a fixed t ≥ 0 and x, y ∈ M.
Then D(x, x) = 0 if and only if D(x, y) = 0 for all y ∈ M. Now if x ∈ Mi, we get D(x, x) = 0,
thus D(x, y) = 0 for y ∈ M, where i ∈ I, that is, Tt(xy) = Tt(x)Tt(y). Proceeding inductively
we have

Tt(xi1 · · ·xik) = Tt(xi1) · · · Tt(xik), (4.6)

for an arbitrary monomial xi1 · · ·xik , where xi ∈ Mi , i1, . . . , ik ∈ I. Therefore, if B0 =
lin{xi1 · · ·xik : i1, . . . , ik ∈ I, k ∈ N}, then Tt : B0 → B0 is a ∗-homomorphism of the ∗-sub-
algebra B0, and Tt : B → B is a ∗-homomorphism as well.

Next we note that Tt � B is injective. Namely, if x ∈ ker(Tt � B), we get ω(x∗x) =
ω(Tt(x∗x)) = ω(Tt(x)

∗Tt(x)) = 0, thus x = 0 by faithfulness of ω and so ker(Tt � B) = {0}.
We now establish that Tt : B → B is surjective. Since Tt is an injective ∗-homo-

morphism on the C∗-algebra B, it follows that ‖Tt(x)‖ = ‖x‖ for all x ∈ B. Moreover,
notice that Tt : B0 → B0 is invertible since each restriction Tt � Mi is invertible. This implies
‖T−1

t (x)‖ = ‖Tt(T−1
t (x))‖ = ‖x‖ for any x ∈ B0. Now for the proof of surjectivity choose y ∈ B.

By the Kaplansky density theorem, there exists a net {yj}j∈J ⊆ B0 such that ‖yj‖ ≤ C for all
j ∈ J , and such that limyj = y. Put xj = T−1

t (yj). Then ‖xj‖ = ‖yj‖ ≤ C, and by Alaoglu’s
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theorem the net {xj}j∈J has an ultraweak limit point x0. Thus there is a subnet {xj} ⊆ {xj}j∈J
such that limxj = x0, hence

yj = Tt
(
xj

) −→ y = Tt(x0). (4.7)

We conclude by injectivity that any ultraweak limit point of the net {xj}j∈J is equal to x0,
hence this net is convergent to x0, and Tt(x0) = y, establishing surjectivity. We have thus
proved that Tt � B is a ∗-automorphism.

To finish the proof, we have to choose the collection {Mi : i ∈ I} in (4.5) to consist of
all von Neumann subalgebras on which {Tt}t≥0 extends to a group of automorphisms.

We next prove that in certain cases the splitting (4.3) is always given by a conditional
expectation.

Proposition 4.3. Suppose that the (not necessarily Markovian) reduced dynamics {Tt}t≥0 on the von
Neumann algebra M displays decoherence. If Tt � M1 = idM1 , then there exists a normal conditional
expectation E from M onto M1.

Proof. Let x ∈ M and write x = x1 + x2 with xi ∈ Mi, i = 1, 2, and define E : M → M1

by E(x) = x1. Then E(M) = M1 and E2 = E. Since M2 is ∗-invariant, E(x∗) = E(x∗
1 + x

∗
2) =

x∗
1 = E(x)∗, hence E(Msa) ⊆ Msa. Now let x ∈ M+, consider the decomposition x = x1 + x2,
xi ∈ Mi, i = 1, 2, and suppose that x1 ∈ Msa is not positive. Then there exists ϕ ∈ M+

∗ such that
ϕ(x1) < 0. This implies

0 ≤ ϕ(Tt(x)) = ϕ(Tt(x1)) + ϕ(Tt(x2)) = ϕ(x1) + ϕ(Tt(x2)), (4.8)

and letting t → ∞ yields ϕ(Tt(x2)) → 0, a contradiction. Thus E(M+) ⊆ M+, and since
E(1) = 1 it follows that ‖E‖ ≤ 1. From E2 = E, we get ‖E‖ = 1, so E is a projection of norm 1
and hence by Tomiyama’s theorem a conditional expectation. Since kerE = {x ∈ M : E(x) =
x1 = 0} = M2 is ultraweakly closed, we obtain by a theorem of Tomiyama [30] that E is
normal.

Given a reduced dynamics, the question arises of under what conditions decoherence
will occur. In the Markovian case, sufficient conditions for the appearance of decoherence
in the sense of Definition 4.1 have been formulated in [31]. In fact, we have the following
theorem.

Theorem 4.4. Let {Tt}t≥0 be a weak∗ continuous one-parameter semigroup with a faithful normal
state ω. Assume that the following conditions are satisfied.

(1) Each Tt, t ≥ 0, is strongly positive and unital.

(2) Let {σωt }t∈R
denote the modular group (see, e.g., [10]) corresponding to the stateω. Assume

that [Tt, σωs ] = 0 for all s ∈ R and t ≥ 0.

Then {Tt}t≥0 displays decoherence and there exists a normal conditional expectation E from M onto
M1 such that [Tt, E] = 0 for all t ≥ 0 and ω ◦ E = ω.

The splitting M = M1 ⊕ M2 of {Tt}t≥0 provided by this theorem is called the isometric-
sweeping splitting. In [31] the theorem was proved under the more general hypothesis that
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ω is only a faithful semifinite normal weight. Then some additional technical assumptions
about {Tt}t≥0 are necessary. A simpler proof for the theorem as stated above has been given
in [24].

The Jacobs-de Leeuw-Glicksberg splitting for weak∗ continuous semigroups on von
Neumann algebras established in Corollary 3.2 can now be applied to establish decoherence.

Corollary 4.5. Let {Tt}t≥0 be a weak∗ continuous one-parameter semigroup of strongly positive unital
operators with a faithful normal state ω. Assume that Mr = M1. Then {Tt}t≥0 displays decoherence.

Proof. According to Corollary 3.2, the Jacobs-de Leeuw-Glicksberg splitting exists, and by
Proposition 3.6 we conclude that the requirements of Definition 4.1 are satisfied.

Remark 4.6. Whenever a conditional expectation E from a von Neumann algebra M onto a
von Neumann subalgebra M1 satisfies ω ◦ E = ω for a faithful normal state ω, it is uniquely
determined by these conditions [17, Corollary II.6.10]. Since in case of the isometric-sweeping
splitting as given by Theorem 4.4 we have M1 = EM and M2 = (1 − E)M, and in the Jacobs-
de Leeuw-Glicksberg splitting as given by Corollary 3.2 we have Mr = QM and Ms = (1 −
Q)M, it follows that the isometric-sweeping and Jacobs-de Leeuw-Glicksberg splittings agree
whenever Mr = M1.

4.2. Uniformly Continuous Semigroups

The purpose of this section is to show how the Jacobs-de Leeuw-Glicksberg splitting
can be applied to establish decoherence of quantum dynamical semigroups in the sense
of Definition 4.1. To avoid complications arising from unbounded generators, we will
concentrate on the case of uniformly continuous quantum dynamical semigroups. We will
arrive at a result which avoids assumption (2) in Theorem 4.4.

LetM be a vonNeumann algebra acting on a separable Hilbert spaceH, and let {Tt}t≥0
be a quantum dynamical semigroup such that t �→ Tt is continuous in the uniform topology.
Then by [32] the generator Z of {Tt}t≥0, which is a bounded operator on M, is given by

Zx = G∗x + xG + Φ(x), (4.9)

where G ∈ L(H) and Φ : M → L(H) is a normal completely positive map. Since we have
Tt(1) = 1 for all t ≥ 0, it follows that Z1 = 0 which forces G∗ = −G −Φ(1). Upon introducing
the operator H = iG + (1/2)iΦ(1), it is seen that H is a bounded selfadjoint operator on H
and Z may be written as

Zx = i[H,x] − 1
2
{Φ(1), x} + Φ(x), (4.10)

where {·, ·} denotes the anticommutator. Let us suppose now that Φ has a Kraus decomposi-
tion

Φ(x) =
∞∑

n=1

A∗
nxAn, (4.11)

where {An}n∈N
is a sequence of bounded linear operators on H and the series converges in

the weak∗ topology. This is always the case if M is injective or equivalently, by the Connes
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theorem [33] and separability of H, that M is hyperfinite (this includes the case M = L(H)).
The preadjoint operator of Z on M∗ then has the familiar Lindblad form [34]

Z∗ρ = −i[H,ρ] − 1
2

∞∑

n=1

(
ρA∗

nAn +A∗
nAnρ

)
+

∞∑

n=1

AnρA
∗
n, (4.12)

where ρ ∈ M∗. We are now able to prove the following theorem.

Theorem 4.7. Let {Tt}t≥0 be as above. Assume that there is a faithful normal state ω such that ω ◦
Tt = ω for all t ≥ 0 and thatH in (4.10) has pure point spectrum. Then {Tt}t≥0 displays decoherence,
and for the effective subalgebra M1 we have

M1 ⊆ {An,A
∗
n : n ∈ N}′ ∩ M, (4.13)

where the prime denotes the commutant. Moreover, there exists a normal conditional expectation Q
from M onto M1 such that ω ◦Q = ω. If the derivation x �→ i[H,x] leaves the subalgebra {An,A

∗
n :

n ∈ N}′ ∩ M invariant, equality holds in (4.13).

Proof. First note that the assumptions of Proposition 3.3 are satisfied, that is, Mr is a von
Neumann subalgebra. Consider the subalgebra M1 defined in Lemma 3.4, then {Tt}t≥0
restricted toM1 extends to a group of automorphisms. We start by proving (4.13). By a simple
calculation as in [20], one obtains

Z(x∗x) − Z(x∗)x − x∗Z(x) = x∗Φ(1)x + Φ(x∗x) −Φ(x∗)x − x∗Φ(x)

=
∞∑

n=1

[An, x]∗[An, x].
(4.14)

The generator Z, when restricted to M1, is a ∗-derivation; thus if x ∈ M1, then

0 = Z(x∗x) − x∗Z(x) − Z(x∗)x =
∞∑

n=1

[An, x]∗[An, x], (4.15)

that is, [An, x] = 0 for all n ∈ N, and, moreover, [A∗
n, x] = 0 for all n ∈ N since M1 is a ∗-

subalgebra. This proves that M1 ⊆ {An,A
∗
n : n ∈ N}′ ∩ M. Conversely, under the assumption

that i[H, ·] leaves the right-hand side of (4.13) invariant, we have Zx = i[H,x] or Tt(x) =
eitHxe−itH on {An,A

∗
n : n ∈ N}′ ∩ M, which implies equality in (4.13).

Now let x ∈ Ms ∩ M1, x /= 0. Then there exist eigenvectors ξ, η ∈ H of H with corres-
ponding eigenvalues Eξ and Eη such that 〈ξ, xη〉/= 0, thus

〈
ξ, Tt(x)η

〉
=

〈
e−itHξ, xe−itHη

〉
= eit(Eξ−Eη)

〈
ξ, xη

〉
(4.16)

is bounded away from 0, so 0 is not a weak∗ limit point of {Tt(x) : t ≥ 0}. Since x ∈ Ms, this is
a contradiction in view of (2.5), hence Ms ∩M1 = {0}. Now let x ∈ M1 and write x = xs +xr ∈
Ms ⊕ Mr. Since Mr ⊆ M1, we have xr ∈ M1, and xs = x − xr ∈ Ms ∩ M1 = {0}, thus x ∈ Mr.
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This proves M1 = Mr and it follows by Proposition 3.6 that Ms has the property (3.3). So we
conclude that {Tt}t≥0 displays decoherence. The last assertion is clear from Proposition 3.3.

We remark that in [29, equation (34)], a class of generators has been given for which equality
in (4.13) always holds. As a corollary, we obtain the following result which is similar to the
one proved in [35] and is also contained in [36].

Corollary 4.8. Let {Tt}t≥0 be a uniformly continuous semigroup on M consisting of normal com-
pletely positive and contractive operators, and suppose it has a faithful normal invariant state ω. If
{An,A

∗
n : n ∈ N}′ = C1, then

lim
t→∞

Tt(x) = ω(x)1 in the weak∗ topology (4.17)

for any x ∈ M.

Thus if M1 is trivial the semigroup describes the approach to equilibrium.
We remark that the last theorem can be generalized to certain cases when the

semigroup {Tt}t≥0 is not uniformly continuous but has an unbounded generator of the form
(4.10).

The existence of a faithful normal invariant state of a quantum dynamical semigroup
as required by Theorems 4.7 and 4.4 has been discussed in the literature. It is particularly
simple in the case of a finite-dimensional von Neumann algebra, that is, a matrix algebra.
Suppose M = MC(d) is the d × d-matrix algebra and consider a quantum dynamical
semigroup {Tt}t≥0 on M, then its generator is given by (4.10) and its preadjoint by (4.12),
thus if the An are normal, ρ0 = (1/d)1 is a faithful normal invariant state for {Tt}t≥0. Such
generators arise, for example, in the singular coupling limit ofN-level systems, see [8].
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vol. 41, no. 3, pp. 349–373, 2005.

[28] R. Rebolledo, “A view on decoherence via master equations,”Open Systems and Information Dynamics,
vol. 12, no. 1, pp. 37–54, 2005.

[29] R. Alicki, “Controlled quantum open systems,” Lecture Notes in Physics, vol. 622, pp. 121–139, 2003.
[30] J. Tomiyama, “On the projection of norm one inW∗-algebras II,” The Tôhoku Mathematical Journal, vol.
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