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Robust, scaled cosmological equations are derived for simulating the evolution of the scalar field,
the scale factor, and the Hubble parameter during both expanding and contracting phases of the
universe. These scaled equations are applied to both stable (always expanding universe) and
unstable axion quintessence (expanding and then collapsing universe). When applied to unstable
axion quintessence, these scaled equations allow the simulations presented here to proceed much
closer to the singularity at the end of a collapsing universe than any previous simulations.

1. Introduction

Typically in quintessence theories with an asymptotically vanishing effective cosmological
constant, the energy contrast in dark energy ΩDE rises from near zero for redshifts z > 5 to
near one for z < −0.5, mimicking a true cosmological constant. At late times, the quintessence
field may begin to oscillate about its minimum, behaving like nonrelativistic matter, or the
quintessence field may evolve toward infinity—in both cases with vanishing vacuum energy.
In such theories, there is a period between roughly 3.5 Gyr and 20 Gyr after the big bang
when 0.1 ≤ ΩDE ≤ 0.9. However, if the universe continues to expand forever, or even if
positive curvature begins to dominate at late times (after the quintessence field has evolved
to its minimum) and the universe enters a contracting stage, this period when the energy
densities of dark energy and matter are comparable is a small or vanishing fraction of the
total lifetime of the universe. This is called the cosmic coincidence problem.

However in axion quintessence (as in other unstable de Sitter quintessence models),
the cosmological era with 0.1 ≤ ΩDE ≤ 0.9 may represent a significant fraction of the
universe’s lifetime if the minimum of the axion potential is negative (unstable [de Sitter]
axion quintessence), thus resolving [1] the cosmic coincidence problem. (Negative ρΛ or ρDE

and the fate of the universe are discussed in [1] plus references therein.)
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The unstable axion quintessence potential V (ϕ) = A cos(ϕ), where ϕ ≡ φ/MP and the
Planck mass MP = 1/

√
8πG = 2.4 × 1018 GeV, addresses the main drawbacks of quintessence

models, since the facts that the minimum of the potential is at −A ≈ −ρΛ, ρDE,0 = ρΛ, and
w0 /= − 1 but ≈ −1 are interrelated aspects of the model, and they occur for an appreciable
range of initial values for φ (the subscript “0” denotes present values).

For V (ϕ) = A cos(ϕ), the initial value of the scalar field need only satisfy 0 ≤ ϕi/π ≤
0.23 to produce a universe like ours [2] (due to symmetry, we can restrict our attention to
0 ≤ ϕi ≤ π). Thus, there is a significant 23% range of the possible initial values ϕi which
will produce a universe like ours. (Qualitatively similar results to those presented here are
obtained for V (ϕ) = A cos(λϕ) for λ = O(1).). For these initial values, the contracting universe
enters a late time era of kination (during which the scalar field kinetic energy dominates over
all other forms of energy)—the negative Hubble parameter acting like a negative friction
term in the Klein-Gordon equation—and the axion field makes many transits of (but never
remains in) its vacuum state. (The coupling of the quintessence field to other particles must
be very small and will for the most part be neglected in this investigation.)

In Section 2, the basic cosmological equations are presented for the evolution of the
scalar field, the scale factor, and the Hubble parameter, and cast in the form of a scaled,
dimensionless system of first-order equations in the conformal time, appropriate for a
contracting (or expanding) universe. These equations allow the simulations of unstable
axion quintessence presented in Section 3 (see Figures 6–9) to proceed much closer to the
singularity at the end of the collapsing universe than any other simulations presented in the
literature and provide the basis for a more detailed analysis of the last stages of the collapsing
universe than has appeared before. We also present simulations of stable axion quintessence
V (ϕ) = A(1 + cos(ϕ)) which produce a universe like ours—and where asymptotically ΩDE

saturates near ΩDE,0 for 0.40 ≤ ϕi/π ≤ 0.52.

2. Cosmological Equations

In the quintessence/cold dark matter (QCDM) model, the total energy density ρ = ρm+ρr+ρφ,
where ρm, ρr , and ρφ are the energy densities in (nonrelativistic) matter, radiation, and the
axion quintessence scalar field φ, respectively. Ratios of energy densities to the critical energy
density ρc for a flat universe will be denoted by Ωm = ρm/ρc, Ωr = ρr/ρc, and Ωφ = ρφ/ρc,
while ratios of present energy densities ρm0, ρr0, and ρφ0 to the present critical energy density
ρc0 will be denoted by Ωm0, Ωr0, and Ωφ0, respectively. ΩDE will denote

ΩDE =

⎧
⎨

⎩

ΩΛ, ΛCDM,

Ωφ, QCDM, if wφ < −1
3
.

(2.1)

Using WMAP5 [3] central values, we will set ΩDE,0 = 0.72, Ωr0 = 8.5 × 10−5, Ωm0 =
1 −ΩDE,0 −Ωr0 ≈ 0.28, and ρ1/4

c0 = 2.5 × 10−3 eV, with the present time t0 = 13.73 Gyr after the
big bang for ΛCDM.

The homogeneous scalar field obeys the Klein-Gordon equation:

φ̈ + 3Hφ̇ = −dV
dφ

≡ −Vφ. (2.2)
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The evolution of the universe is described by the Friedmann equations for the Hubble para-
meter H = ȧ/a and the scale factor a(t):

H2 =
ρ

3M2
P

− k

a2
, (2.3)

ä

a
= − 1

6M2
P

(
ρ + 3P

)
, (2.4)

where the energy density ρ = ρφ + ρm + ρr and the pressure P = Pφ + Pm + Pr , with Pm = 0,
Pr = ρr/3, and

ρφ =
1
2
φ̇2 + V

(
φ
)
, Pφ =

1
2
φ̇2 − V (

φ
)
. (2.5)

The curvature signature k = +1, 0, −1 for a closed, flat, or open geometry. Equation (2.4)
shows that P < −ρ/3 for an accelerating universe.

The conservation of energy equation for matter, radiation, and the scalar field is

ρ̇ + 3H
(
ρ + P

)
= 0. (2.6)

Equation (2.6) gives the evolution of ρm and ρr , and with (2.5) the Klein-Gordon equation
(2.2) for the weakly coupled scalar field. The time rate of change of the Hubble parameter is
given by

Ḣ = −ρ + P
2M2

P

+
k

a2
. (2.7)

Only two of (2.3), (2.4), (2.6), and (2.7) are independent. We will assume a flat universe after
inflation and henceforth set k = 0.

The logarithmic time variable (number of e-folds of the scale factor) is defined as τ =
ln(a/a0) = − ln(1 + z). Note that for de Sitter space τ = HΛt, where H2

Λ = ρΛ/(3M2
P ), and

that HΛt is a natural time variable for the era of Λ-matter domination (see, e.g., [4]). We will
make the simple approximations:

ρr = ρr0e
−4τ , ρm = ρm0e

−3τ . (2.8)

The equation of state parameter for the scalar field φ iswφ = Pφ/ρφ. Since τ is a natural
time variable for the era of Λ-matter domination, we define the recent average of wφ as

w0 =
1
τ

∫z

0
wφdτ. (2.9)

We will take the upper limit of integration to correspond to z = 1.75. The SNe Ia observations
[5] bound the recent average −1.1 < w0 < −0.85 (95% CL).
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For numerical simulations, the cosmological equations should be put into a scaled,
dimensionless form. Equations (2.2) and (2.3) can be cast [2] in the form of a system of two
first-order equations in τ plus a scaled version of H:

H̃
dϕ

dτ
= ψ,

H̃

(
dψ

dτ
+ ψ

)

= −3Ṽϕ

H̃2 = ρ̃,

ρ̃ =
1
6
ψ2 + Ṽ + ρ̃m + ρ̃r ,

(2.10)

where ϕ ≡ φ/MP , ψ ≡ e2τ ϕ̇/H0, H̃ = e2τH/H0, Ṽ = e4τV/ρc0, Ṽϕ = e4τVϕ/ρc0, ρ̃ =
e4τρ/ρc0, ρ̃m = e4τρm/ρc0 = Ωm0e

τ , and ρ̃r = e4τρr/ρc0 = Ωr0. This scaling results in a set
of equations that is numerically more robust, especially near and before the time of big-bang
nucleosynthesis (BBN)—see [2].

For a contracting phase (in which H goes through zero), a different set of equations
and a different scaling should be used. Here, we will use the conformal time variable,

η =
∫ t

0

a0H0

a
dt, (2.11)

where t = 0 corresponds to the big bang.
Equations (2.2) and (2.7) can be cast in the form of a system of three first-order equa-

tions in η:

dϕ

dη
= ψ,

dψ

dη
= −2Hψ − 3V ϕ,

dH

dη
= −1

2

(
ρ + 3P

)
= −1

3
ψ2 + V − Ωm0

2
e−τ −Ωr0e

−2τ ,

(2.12)

ρ =
1
6
ψ2 + V + ρm + ρr, P =

1
6
ψ2 − V +

1
3
ρr, (2.13)

where ϕ ≡ φ/MP , ψ ≡ eτ ϕ̇/H0, H = eτH/H0, V = e2τV/ρc0, V ϕ = e2τVϕ/ρc0, ρ = e2τρ/ρc0,
ρm = e2τρm/ρc0 = Ωm0e

−τ , and ρr = e2τρr/ρc0 = e−2τΩr0. This scaling results in a set
of numerically more robust equations, especially near the turn-around time t∗ between
expanding and contracting phases of the universe.

Note that the conformal time η is related to the logarithmic time τ by

dτ

dη
= H. (2.14)
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Table 1: Parameters for the potential V = A cos(ϕ). t0 is the current age of the universe with t0 ≡ 13.73 Gyr
in the ΛCDM model, 0.1 ≤ ΩDE ≤ 0.9 for t0.1 ≤ t ≤ t0.9, the “coincidence” time interval Δtc = t0.9 − t0.1, t∗
is the turn-around time, tf is the time of the big crunch, and a∗ = a(t∗). All times are in Gyr. ∗For ϕi/π =
0.20 (0.23), ΩDE ≤ 0.85 (0.77) and in these cases t0.9 ≡ t0.85 and t0.77, respectively.

ϕi/π A/ρc0 w0 t0 t0.1 t0.9 t∗ tf tc/tf a∗/a0

0.05 0.73 −0.998 13.72 3.6 20.0 63.2 72.7 0.23 12.0
0.10 0.78 −0.99 13.70 3.5 20.3 47.6 56.8 0.30 5.0
0.15 0.88 −0.97 13.64 3.5 21.2 37.6 46.2 0.38 3.0
0.20 1.09 −0.93 13.49 3.3 21.2∗ 29.2 37.0 0.48 2.0
0.23 1.41 −0.87 13.25 3.0 16.8∗ 23.9 30.7 0.45 1.6

3. Simulations of Axion Quintessence

The original axion quintessence potential V = A(1+cos(ϕ)) was based onN = 1 supergravity
[6, 7], with m2

φ
= 3H2

Λ. As ϕ → π , the universe evolves to Minkowski space.

The unstable de Sitter axion potential V = A cos(ϕ) is based on M/string theory
reduced to an effective N = 1 supergravity theory [8], with m2

φ = −3H2
Λ at the maximum

of V .
Both axion quintessence models are derivable (up to a constant) from string theory as

axion monodromy [9].
The quintessence axion is a pseudo-Nambu-Goldstone boson: at the perturbative level

the theory is shift symmetric under ϕ → ϕ + const with ϕ = φ/M. The shift symmetry
is broken—before or during inflation—by nonperturbative instanton effects to a discrete
symmetry ϕ → ϕ + 2π , generating a potential V (ϕ) = A(C + cos(ϕ)). In these theories,
quantum corrections to the classical axion potential are suppressed. For quintessence (or for
natural inflation [10]), M ∼ MP ; we will take M = MP . C = 0 and C = 1 are the most
interesting unstable axion and original axion cases, respectively.

3.1. Unstable Axion Quintessence

For the unstable axion quintessence V = A cos(ϕ) computations (with an expanding and
then contracting universe), we will use (2.12) and (2.14) with initial conditions ϕi and ϕ̇i = 0
specified at matter-radiation equality zmr = 3280, which corresponds to

ηmr =
2
(√

2 − 1
)

√
Ωm0

√
1 + zmr

. (3.1)

The constant A in the potential is adjusted so that Ωφ0 = 0.72. This involves the usual single
fine tuning. Note that the same anthropic arguments that limit the magnitude of a present-
day cosmological constant also limit A < 100ρc0, so the tuning of A is no worse than the
tuning of a cosmological constant.

Results for the unstable axion potential are presented in Table 1 for various ϕi and for
ϕi/π = 0.1 in Figures 1–9. (As ϕi → 0, classically tf → ∞, but quantum effects destabilize
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Figure 1: Ω versus log10(1 + z) for the potential V = A cos(ϕ), ϕi/π = 0.1 (solid) versus ΛCDM (dotted).
The light yellow rectangles are the bounds on ΩDE from LSS, CMB, and BBN.
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Figure 2: Comoving Hubble parameter aH/(a0H0) versus t/t0. The dot indicates the value H = 0 at t∗.

ϕi ≈ 0 so that the maximum tf ∼ 100t0 [1].) For the values in the table, as ϕi increases,
|Vφ(φi)| also increases and φ starts to move earlier, leading to a decrease in t0.1, t0, t∗, and
tf , and correspondingly to an increase in w0 away from −1. Note that, for ϕi/π = 0.2, the
coincidence time ratio approaches 50%.

The QCDM universe mimics the ΛCDM model (see Figure 1; for clarity, only the
beginnings of the contracting stage are shown in this figure) until about z = −0.5, after which
the QCDM universe begins to decelerate and ultimately to rapidly contract to a big crunch
(Figures 2 and 3).

During the contracting stage, H < 0 acts as a negative friction in

φ̈ + 3Hφ̇ + Vφ = 0, (3.2)

amplifying the axion field and its kinetic energy to bring about a late-stage kination era
during which the scalar field kinetic energy dominates over all other forms of energy.

The quintessence axion is an ultra-light scalar field with m2
φ ∼ H2

Λ, so φ “sits and
waits” during the early evolution of the universe, and it only starts to move when H2 ∼ m2

φ
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Figure 4: ϕ/π versus t/t0. The dot indicates the value ϕ/π = 0.67 at t∗.

(Figures 4 and 5). In this way, it is easy to satisfy the BBN (z ∼ 109–1011), cosmic microwave
background (CMB) (z ∼ 103–105), and large-scale structure (LSS) (z ∼ 10–104) bounds on
ΩDE � 0.1, as in Figure 1. An ultra-light scalar field also reflects the observational evidence
that the universe has only recently become dominated by dark energy.

In Figure 2, the Hubble parameter goes through zero at the turn-around time between
an expanding and contracting universe. At the beginning of the contacting stage, φ has yet
to reach the minimum of the potential energy (see Figure 6), and thus the negative Hubble
parameter amplifies the kinetic energy of the scalar field, bringing about an era of kination
withwφ = 1, as seen in Figures 4, 5, 7, and 8. Also, note that Figures 2, 4, and 5 indicate thatH,
φ, and φ̇ are approaching a singularity near tf . In fact, in an era of kination during contraction
during whichH = −|φ̇|/(√6MP ), ϕ̇ =

√
2/3MP/(tf −t), and ϕ = −

√
2/3 ln(MP (tf −t)), while

a ∼ (tf − t)1/3 (see Figure 3).
Figure 6 shows that as φ increases without bound, the potential energy V (φ), since a

periodic function of φ, oscillates more and more rapidly. Depending on the strength of the
coupling between the quintessence axion and other particles, φ may decay and populate the
universe with additional radiation and matter. (The monotonically increasing field φ in a
periodic potential can be interpreted as an oscillating field.) At the very least, there should be
gravitational production of particles by φ during contraction.
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Figure 5: ϕ̇/H0 and 10ϕ̇/H0 versus t/t0.
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Figure 6: Potential V (φ)/ρc0 versus t/t0. The dot indicates the value of V/ρc0 at t∗.
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Figure 7: wφ versus t/t0. The dot indicates t∗.
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Figure 8: Overview of wφ versus t/t0. The dot indicates t∗.
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Figure 9: Scalar field kinetic energy density φ̇2/2 and potential energy density V (φ) versus t/t0. The dot
indicates t∗.

Figures 7 and 8 follow the contracting stage further, illustrating that, although wφ →
±∞ twice just after t∗, the universe ultimately enters a stage of kination in which wφ = 1 near
tf . Note that wφ ≈ −1 until well after t0.

After matter-quintessence equality at tmφ ≈ 0.7t0, the scalar field energy density always
dominates over the matter and radiation energy densities. There is a period from t ≈ 2.5t0
until 3.8t0 when the scalar field potential energy is comparable to its kinetic energy, and then
the kinetic energy (which scales as 1/a6) predominates during the rapid contraction to a big
crunch (see Figure 9).

3.2. Stable Axion Quintessence

For the stable axion quintessence V = A(1+cos(ϕ)) computations, we use the same equations
(2.12) and (2.14) with initial conditions ϕi and ϕ̇i = 0 also specified at matter-radiation
equality. Again, the constant A in the potential is adjusted so that Ωφ0 = 0.72.
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Figure 10: Ω versus log10(1 + z) for the potential V = A(1 + cos(ϕ)), ϕi/π = 0.5 (solid) versus ΛCDM
(dotted).

Simulations of stable axion quintessence are presented in [2]. As ϕi → 0, a transient
de Sitter universe is obtained that mimics the ΛCDM model for a long time. Near t0, ϕ is
beginning to evolve toward π . The initial value of the scalar field needs only satisfy 0 ≤
ϕi/π ≤ 0.52 to produce a universe like ours [2]. Thus, there is a significant 52% range of the
possible initial values ϕi which will produce a universe like ours.

For 0.40 ≤ ϕi/π ≤ 0.52, stable axion quintessence not only produces a universe like
ours, but ΩDE also asymptotically saturates near ΩDE,0 (Figure 10).

4. Conclusion

In the unstable axion quintessence case, at late times, the contracting universe enters an era
of kination in which φ ∼ − ln(tf − t), a ∼ (tf − t)1/3, and H ∼ (tf − t)−1. The density and
pressure during this era scale as (tf − t)−2. The singularity behavior is analogous to the Type
III singularity of [11, 12] in which as t → tf , a → as, ρ → ∞, and |P | → ∞, except here
as = 0 (quantum effects though should stabilize as near 1/MP ).

As the universe contracts, density inhomogeneities are amplified and presumably
black holes are formed, similarly to the contracting stage of the ekpyrotic universe [13] with
w = 1. Depending on the strength of the coupling (which we have neglected here) between
the quintessence axion and other particles, φ may decay and produce radiation and matter.
There should at least be gravitational production of particles by φ during contraction. As
the universe reheats during contraction, broken symmetries are restored. It is possible that
inflating patches may be generated, spawning new universes from the old.

In summary, stable axion quintessence can produce a universe like ours, in which for
0.40 ≤ ϕi/π ≤ 0.52, ΩDE asymptotically saturates near ΩDE,0. The unstable axion quintessence
potential resolves the main drawbacks of quintessence: the minimum of the potential is not at
zero, but at a negative value ≈ −ρΛ, ρDE,0 = ρΛ with only a single fine tuning (in the anthropic
range), and w0 naturally satisfies −1 < w0 ≤ −0.87, for an appreciable 23% range of possible
initial values for the quintessence field. And for a universe like ours, the coincidence time
when the energy densities of dark energy and matter are comparable varies (as long as φi/π
is not too small—say, ≥0.05) from 25%–50% of the lifetime of the universe.
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