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The problem of electromagnetic TM wave propagation through a layer with Kerr nonlinearity
is considered. The layer is located between two half-spaces with constant permittivities. This
electromagnetic problem is reduced to the nonlinear boundary eigenvalue problem for ordinary
differential equations. It is necessary to find eigenvalues of the problem (propagation constants
of an electromagnetic wave). The dispersion equation (DE) for the eigenvalues is derived. The
DE is applied to nonlinear metamaterial as well. Comparison with a linear case is also made.
In the nonlinear problem there are new eigenvalues and new eigenwaves. Numerical results are
presented.

1. Introduction

Problems of electromagnetic wave propagation in nonlinear waveguide structures are
intensively investigated during several decades. First known studies about nonlinear optics’
problems are given in the monographs [1, 2]. Propagation of electromagnetic wave in a layer
and a circle cylindrical waveguide are among such problems. Phenomena of electromagnetic
wave propagation in nonlinear media have original importance and also find a lot of
applications, for example, in plasma physics, microelectronics, optics, and laser technology.
There are a lot of different nonlinear phenomena in media when an electromagnetic wave
propagates, such as self-focusing, defocusing, and self-channeling [1–5].

Investigation of nonlinear phenomena leads us to solve nonlinear differential
equations. In some cases it is necessary to solve nonlinear boundary eigenvalue problems
(NBEPs), which rarely can be solved analytically. One of the important nonlinear
phenomenan is the case when the permittivity of the sample depends on electric field
intensity. And one of the simplest nonlinearities is a Kerr nonlinearity [4, 6, 7]. When we
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speak about NBEPswemean that differential equations and boundary conditions nonlinearly
depend on the spectral parameter and also the differential equations nonlinearly depend on
the sought-for functions. These facts do not allow to apply well-known methods of spectral
problems’ investigation.

Here we consider electromagnetic TM wave propagation in a layer with Kerr
nonlinearity. Perhaps, the papers [6, 7] were the first studies where some problems of
electromagnetic wave propagation are considered in a strong electromagnetic statement.
Propagation of polarized electromagnetic waves in a layer and in a circle cylindrical
waveguide with Kerr nonlinearity is considered in this paper. When one says that the
permittivity ε is described by Kerr law this means that (for an isotropic material) ε =
εconst + α|E|2, εconst is the constant part of the permittivity ε; α is the nonlinearity coefficient;
|E|2 = E2

x+E
2
y+E

2
z, where E = (Ex, Ey, Ez) is an electric field. Belowwe consider an anisotropic

case (some results were presented in [8]). The first approximation for eigenvalues of the
problem is presented in [9].

Problems of electromagnetic wave propagation in a linear layer (with constant
permittivity) and in a linear circle cylindrical waveguide were deeply studied many years
ago, see, for example, [10]. Such problems are formulated as boundary eigenvalue problems
for ordinary differential equations. Indeed, the main interest in this problem is the value
of the spectral parameter (eigenvalues) which corresponds to the propagating wave. If
an eigenvalue is known it is easy to solve differential equations numerically. Otherwise
numerical methods cannot be successfully applied. However, in nonlinear cases it is often
paid more attention to solve the differential equations (see, e.g., [11–13]). Though the first
problem is to find eigenvalues therefore to find Des, from the mathematical standpoint the
DE is an equationwith respect to the spectral parameter. Analysis of this equation allows us to
make conclusions about problem’s solvability, eigenvalues’ localization, and so forth. In most
cases the equations of the problem cannot be integrated in an explicit form. Of course, if one
has the explicit solutions of the differential equations it is easy to derive the DE. Therefore,
when the equations cannot be integrated things do not go to a DE. However, in some cases
the DE can be found in an explicit form and it is not necessary to have explicit solutions of
differential equations.

Let us discuss in detail the case of Kerr nonlinearity. The work [4] contains a wide
range of details of third-order nonlinear electromagnetic TE and TM guided waves. Problems
of surface wave propagation along the interface between two semi-infinite linear or/and
nonlinear media were studied completely (see the results in [4]). At the same time we should
notice that problems of wave propagation in a nonlinear layer that is located between two
semi-infinite linear or/and nonlinear media are much more difficult than (and cannot be
reduced to) the problems where surface waves are considered only at the interface between
two semi-infinite linear or/and nonlinear media. Propagation of TEwaves was more studied.
The work [14] is devoted to the problem of electromagnetic wave propagation in a nonlinear
dielectric layer with absorption and the case of Kerr nonlinearity is considered separately.
One of the most interesting works about propagation of TE waves in a layered structure with
Kerr nonlinearity is the paper [15]. Also the reader can see the work [16], where a layer with
Kerr nonlinearity without absorption is considered.

The case of TM wave propagation in a nonlinear medium is more complicated. This is
due to the fact that two components of the electric field make the analysis much harder [17].

In the work [18] a linear dielectric layer is considered. The layer is located between
two half-spaces. The half-spaces are filled by nonlinear medium with Kerr nonlinearity. This
problem for TE waves is solved analytically [19, 20]. For the TM case in [18] obtained DE is



Advances in Mathematical Physics 3

an algebraic equation. It should be noticed that in [18] authors simplify the problem. Earlier
in [21] the DE is obtained with other simplifying assumption (authors take into account
only one component Ex of the electric field). Later in [22] it is proved that the dominating
nonlinear contribution in the permittivity is proportional to the transversal component Ez. In
the works [11] propagation of TM waves in a nonlinear half-space with Kerr nonlinearity
is considered. Formal solutions of differential equations in quadratures are obtained. In
the paper [11] DEs are presented for isotropic and anisotropic media in a half-space with
nonlinear permittivity. The DEs are rational functions with respect to the value of field’s
components at the interface. Authors found the first integral of the system of differential
equations (so called a conservation law). This is also very interesting work to study, another
way to simplify the problem pointed out in [23].

In the case of TE wave you can see the papers [24–26]. Propagation of TM wave
in terms of the magnetic component is studied in [12, 13]. The paper [21] is devoted to
the question (from physical standpoint) why it is possible to take into account only one
component of the electric field in the expression for permittivity in the case of TM waves
in a nonlinear layer. The results are compared with the case of TE waves.

The most important results about TM wave propagation in a layer with Kerr
nonlinearity (system of differential equations, first integral) and a circle cylindrical
waveguide (system of differential equations) were obtained in [6, 7]. In some papers (e.g.,
[12]) polarized wave propagation in a layer with arbitrary nonlinearity is considered.
However, DEs were not obtained and no results about solvability of the boundary eigenvalue
problem were obtained as well. The problem of TM wave propagation in a layer with Kerr
nonlinearity is solved at first for a thin layer and then for a layer of arbitrary thickness [27–29].
Theorems of existence and localization of eigenvalues are proved in [30, 31]. Some numerical
results are shown in [8, 9].

In this paper the DE is an equation with additional conditions. Only for linear media
(when permittivity is a constant) in a layer or in a circle cylindrical waveguide the DEs are
sufficiently simple (but even for these cases the DEs are transcendental equations). For a
nonlinear layer the DE is quite complicated nonlinear integral equation, where the integrand
is defined by implicit algebraic function. It should be stressed that in spite of the fact that the
DE is complicated it can be rather easily solved numerically.

This DE allows to study both nonlinear materials and nonlinear metamaterials. It
should be noticed that in this paper materials with nonlinear permittivity and constant
positive permeability are studied. But it is not difficult to take into account the sign of the
permeability.

Problems of propagation of TE and TM waves in a nonlinear circle cylindrical
waveguide are also close to the problem considered here. These problems are more
complicated in comparison with corresponding problems in nonlinear layers. And even in
the case of Kerr nonlinearity the results are not so complete as in the case in layers [30, 32, 33].

2. Statement of the Problem
Let us consider electromagnetic wave propagation through a homogeneous anisotropic
nonmagnetic dielectric layer. The layer is located between two half-spaces: x < 0 and x > h
in Cartesian coordinate system Oxyz. The half-spaces are filled with isotropic nonmagnetic
media without any sources and characterized by permittivities ε1 ≥ ε0 and ε3 ≥ ε0,
respectively, where ε0 is the permittivity of free space. Assume that everywhere μ = μ0 is
the permeability of free space (see Figure 1).
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Figure 1: The geometry of the problem.

It should be noticed that conditions ε1 ≥ ε0, ε3 ≥ ε0 are not necessary. They are not
used for derivation of DEs, but they are useful for DEs’ solvability analysis.

The electromagnetic field depends on time harmonically [6]:

˜E
(

x, y, z, t
)

= E+
(

x, y, z
)

cosωt + E−
(

x, y, z
)

sinωt,

˜H
(

x, y, z, t
)

= H+
(

x, y, z
)

cosωt +H−
(

x, y, z
)

sinωt,
(2.1)

where ω is the circular frequency; ˜E, E+, E−, ˜H, H+, H− are real functions. Everywhere below
the time multipliers are omitted.

Form complex amplitudes of the electromagnetic field

E = E+ + iE−, H = H+ + iH−, (2.2)

where E = (Ex, Ey, Ez)
T ,H = (Hx,Hy,Hz)

T , and ( · )T denotes the operation of transposition,
and each component of the fields is a function of three spatial variables.

Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE, rotE = iωμH, (2.3)

the continuity condition for the tangential field components on the media interfaces x = 0,
x = h, and the radiation condition at infinity: the electromagnetic field exponentially decays
as |x| → ∞ in the domains x < 0 and x > h.

The permittivity inside the layer is described by the diagonal tensor

ε̂ =

⎛

⎝

εxx 0 0
0 εyy 0
0 0 εzz

⎞

⎠, (2.4)

where

εxx = ε2x + b|Ex|2 + a|Ez|2, εzz = ε2z + a|Ex|2 + b|Ez|2 (2.5)

and a, b, ε2 > max(ε1, ε3) are positive constants (below the solutions are sought under more
general conditions). It does not matter what a form εyy has. Since εyy is not contained in the
equations below for the TM case, it should be noticed that ε̂ describes tensor Kerr nonlinearity.
When a = b we obtain scalar Kerr nonlinearity. Moreover, chosen nonlinearity satisfies
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the condition ∂εxx/∂E2
z = ∂εzz/∂E2

x. This equation is satisfied by almost every known non-
linear Kerr mechanism, such as electronic distortion, molecular orientation, electrostriction,
and Kerr nonlinearities described within the uniaxial approximation mentioned in the paper
[11]. The casewhen ε2x = ε2z is studied in [8]. Pay heed to the fact that the problem considered
here is not studied in [31].

The solutions to the Maxwell equations are sought in the entire space.

3. TM Waves

Let us consider TM waves

E = (Ex, 0, Ez)T , H =
(

0,Hy, 0
)T
, (3.1)

and Ex, Ez,Hy are functions of three spatial variables. It is easy to show that the components
of the fields do not depend on y. Waves propagating along medium interface z depend on z
harmonically. This means that the fields components have the form

Ex = Ex(x)eiγz, Ez = Ez(x)eiγz, Hy = Hy(x)eiγz, (3.2)

where γ is the spectral parameter of the problem.
So we obtain from system (2.3) [6]

iγEx(x) − E′
z(x) = iωμHy(x),

H ′
y(x) = − iωεzzEz(x),

iγHy(x) = iωεxxEx(x),

(3.3)

where ( · )′ ≡ d/dx.
The following equation can be easily derived from the previous system:

Hy(x) =
1

iωμ

(

iγEx(x) − E′
z(x)

)

. (3.4)

Differentiating (3.4) and using the second and the third equations of system (3.3) we
obtain

γ(iEx(x))′ − E′′
z(x) = ω2μεzzEz(x),

γ2(iEx(x)) − γE′
z(x) = ω2μεxx(iEx(x)).

(3.5)

Let us denote k2
0 := ω2μ0ε0 and perform the normalization according to the formulas

x̃ = k0x, d/dx = k0(d/dx̃), γ̃ = γ/k0, ε̃j = εj/ε0 (j = 1, 2, 3), ã = a/ε0, ˜b = b/ε0. Denoting by
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Z(x̃) := Ez, X(x̃) := iEx and omitting the tilde symbol, from system (3.5)we obtain

−Z′′ + γX′ = εzzZ,

−Z′ + γX = γ−1εxxX.
(3.6)

It is necessary to find eigenvalues γ of the problem that correspond to surface waves
propagating along boundaries of the layer 0 < x < h. We seek the real values of the spectral
parameter γ such that real solutions X(x) and Z(x) to system (3.6) exist. Indeed, in this case
|E|2 does not depend on z. Since E = (Ex(x)eiγz, 0, Ez(x)eiγz) = eiγz(Ex, 0, Ez), therefore, |E| =
|eiγz| ·

√

|Ex|2 + |Ez|2. It is known that |eiγz| = 1 as Im γ = 0. Let γ = γ ′ + iγ ′′. Then, we obtain
|eiγz| = |eiγ ′z| · |e−γ ′′z| = e−γ

′′z. If γ ′′ /= 0, then e−γ
′′z is a function on z. In this case the components

Ex and Ez depend on z, but it contradicts to the choice of Ex(x) and Ez(x). So we can consider
only real values of γ .

We consider that

ε =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ε1, x < 0,
ε̂, 0 < x < h,

ε3, x > h.

(3.7)

Also we assume that max(ε1, ε3) < γ2 < min(ε2x, ε2z). This two-sided inequality
naturally appears for the problem in a layer with a constant permittivity tensor.

Functions X, Z are supposed to be sufficiently smooth due to physical nature of the
problem

X(x) ∈ C(−∞, 0] ∩ C[0, h] ∩ C[h,+∞) ∩ C1(−∞, 0] ∩ C1[0, h] ∩ C1[h,+∞),

Z(x) ∈ C(−∞,+∞) ∩ C1(−∞, 0] ∩ C1[0, h] ∩ C1[h,+∞) ∩ C2(−∞, 0) ∩ C2(0, h) ∩ C2(h,+∞).
(3.8)

It is clear that system (3.6) is an autonomous one. System (3.6) can be rewritten in
a normal form. This system in the normal form can be considered as a dynamical system
with analytical with respect to X and Z right-hand sides. Of course, in the domain where
these right-hand sides are analytical with respect to X and Z, it is well known (see, e.g.,
[34]) that the solutions X and Z of such a system are analytical functions with respect to the
independent variable as well. This is an important fact for DEs’ derivation.

We consider that γ2 > max(ε1, ε3).

4. Differential Equations of the Problem

In the domain x < 0 we have ε = ε1. From system (3.6)we obtain X′ = γZ, Z′ = γ−1(γ2 − ε1)X.
In accordance with the radiation condition we obtain

X(x) = Aex
√

γ2−ε1 ,

Z(x) = −Aγ−1
√

γ2 − ε1e
x
√

γ2−ε1 .
(4.1)
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We assume that γ2 − ε1 > 0; otherwise it will be impossible to satisfy the radiation
condition.

In the domain x > h we have ε = ε3. From system (3.6) we obtain X′ = γZ, Z′ =
γ−1(γ2 − ε3)X. In accordance with the radiation condition we obtain

X(x) = Be−(x−h)
√

γ2−ε3 ,

Z(x) = −Bγ−1
√

γ2 − ε3e
−(x−h)

√
γ2−ε3 .

(4.2)

Here for the same reason as above we consider that γ2 − ε3 > 0.
ConstantsA and B in (4.1) and (4.2) are defined by transmission conditions and initial

conditions.
Inside the layer 0 < x < h system (3.6) takes the form

−d
2Z

dx2
+ γ

dX

dx
=
[

ε2z + aX2 + bZ2
]

Z,

−dZ
dx

+ γX = γ−1
[

ε2x + bX2 + aZ2
]

X.

(4.3)

Differentiating the second equation and substituting its right-hand side instead of left-
hand side into the first equation we can rewritten system (4.3) in the following form:

dX

dx
=

2a
γ

ε2x − γ2 + bX2 + aZ2

ε2x + 3bX2 + aZ2
X2Z + γ

ε2z + aX2 + bZ2

ε2x + 3bX2 + aZ2
Z,

dZ

dx
= −γ−1

[

ε2x − γ2 + bX2 + aZ2
]

X.

(4.4)

Now system (4.4) is written in a normal form. If the right-hand sides are analytic
functions with respect to X and Z, then the solutions are analytic functions with respect to its
independent variable.

Dividing the first equation in system (4.4) to the second one we obtain the ordinary
differential equation

−
(

ε2x + 3bX2 + aZ2
)dX

dZ
= 2aXZ + γ2

ε2z + aX2 + bZ2

ε2x − γ2 + bX2 + aZ2

Z

X
. (4.5)

Equation (4.5) can be transformed into a total differential equation.
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Its solution (first integral of system (4.4)) can be easily found and be written in the
following form:

C = b2X6 + 2abX4Z2 + a2X2Z4 +
1
2

(

4ε2x − 3γ2
)

bX4 +
(

2ε2x − γ2
)

aX2Z2 +
1
2
γ2bZ4

+ γ2
(

ε2x − γ2
)

X2 +
(

ε2x − γ2
)2
X2 + γ2ε2zZ

2,

(4.6)

where C is a constant of integration.

5. Transmission Conditions and the Transmission Problem

Tangential components of an electromagnetic field are known to be continuous at media
interfaces. In this case the tangential components are Hy and Ez. Hence, we obtain

Hy(h + 0) = Hy(h − 0), Hy(0 − 0) = Hy(0 + 0),
Ez(h + 0) = Ez(h − 0), Ez(0 − 0) = Ez(0 + 0).

(5.1)

From the continuity conditions for the tangential components of the fields E and H
and using (3.4) we obtain

γX(h) − Z′(h) = H
(h)
y , γX(0) − Z′(0) = H

(0)
y ,

Z(h) = Ez(h + 0) = E
(h)
z , Z(0) = Ez(0 − 0) = E

(0)
z ,

(5.2)

where H(h)
y := i(√μ/

√
ε0)Hy(h + 0), H(0)

y := i(√μ/
√
ε0)Hy(0 − 0).

The constant E(h)
z := Ez(h+0) is supposed to be known (initial condition). Let us denote

X0 := X(0), Xh := X(h), Z0 := Z(0), and Zh := Z(h). So we obtain that A = (γ/
√

γ2 − ε1)Z0,

B = (γ/
√

γ2 − ε3)Zh.
Then from conditions (5.2) we obtain

H
(h)
y = −Zh

ε3
√

γ2 − ε3

, H
(0)
y = Z0

ε1
√

γ2 − ε1

. (5.3)

In accordance with (3.6), (3.7) inside the layer

−Z′(x) + γX(x) = γ−1
(

ε2x + bX2(x) + aZ2(x)
)

X(x). (5.4)

Then for x = h, using (5.2), we obtain from (5.4)

γ−1
[

ε2x + bX2
h + aZ2

h

]

Xh = H
(h)
y . (5.5)
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From (5.5)we obtain the equation with respect to Xh:

X3
h + b−1

(

ε2x + aZ2
h

)

Xh − b−1γH(h)
y = 0. (5.6)

Under taken assumptions (in regard to ε2 and a) the value a−1(ε2 + aZ2
h) > 0. Hence,

this equation has at least one real root, which is considered (the root can be find explicitly by
using Cardanus-Ferrari formula [35].

Using first integral (4.6) at x = h, we find the value CX
h := C|x=h from the equation

CX
h = b2X6

h + 2abX4
hZ

2
h + a2X2

hZ
4
h + 2−1

(

4ε2x − 3γ2
)

bX4
h +

(

2ε2x − γ2
)

aX2
hZ

2
h + 2−1γ2bZ4

h

+ γ2
(

ε2x − γ2
)

X2
h +

(

ε2x − γ2
)2
X2

h + γ2ε2zZ
2
h.

(5.7)

In order to find the values X0 and Z0 it is necessary to solve the following system (this
system is obtained using formula (5.4) at x = 0 and the first integral at the same point):

γε1Z0 =
√

γ2 − ε1
[

ε2x + bX2
0 + aZ2

0

]

X0,

CX
h = b2X6

0 + 2abX4
0Z

2
0 + a2X2

0Z
4
0 + 2−1

(

4ε2x − 3γ2
)

bX4
0

+
(

2ε2x − γ2
)

aX2
0Z

2
0 + 2−1γ2bZ4

0 + γ2
(

ε2x − γ2
)

X2
0 +

(

ε2x − γ2
)2
X2

0 + γ2ε2zZ
2
0 .

(5.8)

It is easy to see from the second equation of this system that the values X0 and Z0 can
have arbitrary signs. At the same time from the first equation of this system we can see that
X0 and Z0 must be positive or negative simultaneously.

Normal components of electromagnetic field are known to be discontinues at media
interfaces. And it is the discontinuity of the first kind. In this case the normal component is
Ex. It is also known that the value εEx is continuous at media interfaces. From the above and
from the continuity of the tangential component Ez it follows that the transmission conditions
for the functions εX and Z are

[εX]x=0 = 0, [εX]x=h = 0, [Z]x=0 = 0, [Z]x=h = 0, (5.9)

where [f]x=x0
= limx→x0−0f(x) − limx→x0+0f(x) denotes a jump of the function f at the

interface.
We also suppose that functions X(x) and Z(x) satisfy the condition

X(x) = O

(

1
|x|

)

, Z(x) = O

(

1
|x|

)

as |x| −→ ∞. (5.10)
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6. Dispersion Equation

Introduce the new variables

τ(x) =
ε2x + bX2(x) + aZ2(x)

γ2
, η(x) = γ

X(x)
Z(x)

τ(x). (6.1)

Using new variables rewrite system (4.4),

dτ

dx
= 2

τη
(

γ2τ − ε2x
)

bη2 + aγ2τ2
×
(

bη2 + aγ2τ2
)(

bε2z − aγ2τ(τ − 1)
)

+
(

aη2 + bγ2τ2
)(

γ2τ − ε2x
)

γ2τ
(

bη2 + aγ2τ2
)

+ 2bη2
(

γ2τ − ε2x
) ,

dη

dx
=

τ − 1
τ

η2 + ε2z +
(

γ2τ − ε2x
)aη2 + bγ2τ2

bη2 + aγ2τ2
,

(6.2)

and (4.6)

γ2τ − ε2x

bη2 + aγ2τ2

[

η2
(

(

γ2τ − ε2x
)2

+ ε2x
(

ε2x − γ2
)

)

+ γ4ε2zτ
2
]

+

(

γ2τ − ε2x
)2

2
(

bη2 + aγ2τ2
)2

×
[(

4ε2x − 3γ2
)

bη4 + 2
(

2ε2x − γ2
)

aγ2τ2η2 + γ6bτ4
]

= C,

(6.3)

where constant C is equal to the constant C in (4.6).
In order to obtain the DE for the propagation constants it is necessary to find the values

η(0), η(h).
It is clear that η(0) = γ(X(0)/Z(0))τ(0), η(h) = γ(X(h)/Z(h))τ(h). Taking into account

that γ2X(x)τ(x) = εX(x) and using formulas (5.2), (5.3), it is easy to obtain that

η(0) =
ε1

√

γ2 − ε1

> 0, η(h) = − ε3
√

γ2 − ε3

< 0. (6.4)

It is easy to see that the right-hand side of the second equation of system (VI) is strictly
positive. This means that the function η(x)monotonically increases on interval (0, h). Taking
into account (6.4) we obtain that the function η(x) cannot be differentiable on the entire
interval (0, h). This means that the function η(x) has a break point. Let x∗ ∈ (0, h) be the
break point. From (6.3) it is obvious that x∗ is such that τ∗ = τ(x∗) is a root of the equation
Cτ

h + 3(τ∗)2 − 2(τ∗)3 − 2τ0(2 − τ∗)τ∗ = 0. In addition η(x∗ − 0) → +∞ and η(x∗ + 0) → −∞.
It is natural to suppose that the function η(x) on interval (0, h) has several break points

x0, x1, . . . , xN . The properties of function η(x) imply

η(xi − 0) = +∞, η(xi + 0) = −∞, where i = 0,N. (6.5)
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Let

1
w

:=
τ − 1
τ

η2 + ε2z +
(

γ2τ − ε2x
)aη2 + bγ2τ2

bη2 + aγ2τ2
, (6.6)

where w = w(η); τ = τ(η) is expressed from (5.4).
Taking into account our hypothesis we will seek the solutions on each interval

[0, x0), (x0, x1), . . . , (xN, h]:

−
∫η(x0)

η(x)
wdη = x + c0,

∫η(x)

η(xi)
wdη = x + ci,

∫η(x)

η(xN)
wdη = x + cN,

(6.7)

where 0 ≤ x ≤ x0, xi ≤ x ≤ xi+1, and xN ≤ x ≤ h, respectively, and i = 0,N − 1.
Substituting x = 0, x = xi+1, and x = xN into equations in (6.7) (into the first, the

second, and the third, resp.,) and taking into account (6.5), we find constants c1, c2, . . . , cN+1:

c0 = −
∫+∞

η(0)
wdη,

ci+1 =
∫+∞

−∞
wdη − xi+1,

cN+1 =
∫η(h)

−∞
wdη − h,

(6.8)

where i = 0,N − 1.
Using (6.8) we can rewrite (6.7) in the following form:

∫η(x0)

η(x)
wdη = − x +

∫+∞

η(0)
wdη,

∫η(x)

η(xi)
wdη = x +

∫+∞

−∞
wdη − xi+1,

∫η(x)

η(xN)
wdη = x +

∫η(h)

−∞
wdη − h,

(6.9)

where 0 ≤ x ≤ x0, xi ≤ x ≤ xi+1, xN ≤ x ≤ h, respectively, and i = 0,N − 1.
Introduce the notation T :=

∫+∞
−∞ wdη. It follows from formula (6.9) that 0 < xi+1 − xi =

T < h, where i = 0,N − 1. This implies the convergence of the improper integral (it will be
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proved in other way below). Now consider x in (6.9) such that all the integrals on the left
side vanish (i.e., x = x0, x = xi, and x = xN), and sum all equations in (6.9). We obtain

0 = −x0 +
∫+∞

η(0)
wdη + x0 + T − x1 + · · · + xN−1 + T − xN + xN +

∫η(h)

−∞
wdη − h. (6.10)

Finally we obtain

−
∫η(0)

η(h)
wdη + (N + 1)T = h, (6.11)

where η(0), η(h) are defined by formulas (6.4).
Expression (6.11) is the DE, which holds for any finite h. Let γ be a solution of DE (6.11)

and an eigenvalue of the problem. Then, there are eigenfunctionsX and Z, which correspond
to the eigenvalue γ . The eigenfunction Z has N + 1 zeros on the interval (0, h).

Notice that improper integrals in DE (6.11) converge. Indeed, function τ = τ(η) is
bounded as η → ∞ since τ = γ−2(ε2x + bX2 + aZ2), and X, Z are bounded.

Then

|w| ≤ 1
αη2 + β

, (6.12)

where α > 0, β > 0 are constants. It is obvious that improper integral
∫+∞
−∞ (dη/(αη2 + β))

converges. Convergence of the improper integrals in (6.11) in inner points results from the
requirement that the right-hand side of the second equation of system (VI) is positive.

The first equation of system (VI) jointly with the first integral can be integrated in
hyperelliptic functions. The solution is expressed in implicit form by means of hyperelliptic
integrals. This is the simple example of Abelian integrals. The inversion of these integrals
is hyperelliptic functions and they are solutions of system (VI). Hyperelliptic functions
are Abelian functions, which are meromorphic and periodic functions. Since function η is
expressed algebraically through τ , therefore, η is a meromorphic periodic function. This
means that the break point x∗ is a pole of function η.

7. Generalized Dispersion Equation

Here we derive the generalized DE, which holds for any real values ε2. In addition the sign of
the right-hand side of the second equation in system (VI) and condition max(ε1, ε3) < γ2 < ε2
are not taken into account. These conditions appear in the case of a linear layer and are used
for derivation of DE (6.11). Though on the nonlinear case it is not necessary to limit the value
γ2 from the right side, at the same time it is clear that γ is limited from the left side, since this
limit appears from the solutions in the half-spaces.



Advances in Mathematical Physics 13

Now we assume that γ satisfies the following two-sided inequality:

max(ε1, ε3) < γ2 < +∞. (7.1)

Using first integral (6.3) it is possible to integrate formally any of the equations of
system (VI). As earlier we integrate the second equation, we cannot obtain the solution on
the entire interval (0, h), since function η(x) can have break points, which belong to (0, h).
It is known that function η(x) has break points only of the second kind (η is an analytical
function).

Assume that function η(x) on interval (0, h) has N + 1 break points x0, x1, . . . , xN .
It should be noticed that

η(xi − 0) = ±∞ η(xi + 0) = ±∞, (7.2)

where i = 0, N, and signs ± are independent and unknown.
Taking into account the previous, solutions are sought on each interval

[0, x0), (x0, x1), . . . , (xN, h]:

−
∫η(x0−0)

η(x)
wdη = x + c0,

∫η(x)

η(xi+0)
wdη = x + ci+1,

∫η(x)

η(xN+0)
wdη = x + cN+1,

(7.3)

where 0 ≤ x ≤ x0, xi ≤ x ≤ xi+1, and xN ≤ x ≤ h, respectively, and i = 0,N − 1.
From (7.3), substituting x = 0, x = xi+1, and x = xN into the first, the second, and the

third equations in (7.3), respectively, we find required constants c1, c2, . . . , cN+1:

c0 = −
∫η(x0−0)

η(0)
wdη,

ci+1 =
∫η(xi+1−0)

η(xi+0)
wdη − xi+1,

cN+1 =
∫η(h)

η(xN+0)
wdη − h,

(7.4)

where i = 0,N − 1.
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Using (7.4), (7.3) take the form

∫η(x0−0)

η(x)
wdη = − x +

∫η(x0−0)

η(0)
wdη,

∫η(x)

η(xi+0)
wdη = x +

∫η(xi+1−0)

η(xi+0)
wdη − xi+1,

∫η(x)

η(xN+0)
wdη = x +

∫η(h)

η(xN+0)
wdη − h,

(7.5)

where 0 ≤ x ≤ x0, xi ≤ x ≤ xi+1, and xN ≤ x ≤ h, respectively, and i = 0,N − 1.
From formulas (7.5) we obtain that

xi+1 − xi =
∫η(xi+1−0)

η(xi+0)
wdη, i = 0,N − 1. (7.6)

Expressions 0 < xi+1 − xi < h < ∞ imply that under the assumption about the break
point existence the integral on the right side converges and

∫η(xi+1−0)
η(xi+0)

wdη > 0. In the sameway,

from the first and the last equations of (7.5) we obtain that x0 =
∫η(x0−0)
η(0) wdη and 0 < x0 < h

then

0 <

∫η(x0−0)

η(0)
wdη < h < ∞, (7.7)

and h − xN =
∫η(h)
η(xN+0) wdη and 0 < h − xN < h then

0 <

∫η(x0−0)

η(0)
wdη < h < ∞. (7.8)

These considerations yield that the function w(η) has no nonintegrable singularities
for η ∈ (−∞,∞). And also this proves that the assumption about finite number break points
is true.

Now, setting x = x0, x = xi, and x = xN into the first, the second, and the third
equations in (7.5), respectively, we have that all the integrals on the left sides vanish. We add
all the equations in (7.5) to obtain

0 = − x0 +
∫η(x0−0)

η(0)
wdη + x0 +

∫η(x1−0)

η(x0+0)
wdη − x1 + · · · + xN−1

+
∫η(xN−0)

η(xN−1+0)
wdη − xN + xN +

∫η(h)

η(xN+0)
wdη − h.

(7.9)
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From (7.9) we obtain

∫η(x0−0)

η(0)
wdη +

∫η(h)

η(xN+0)
wdη +

N−1
∑

i=0

∫η(xi+1−0)

η(xi+0)
wdη = h. (7.10)

It follows from formulas (7.6) that

η(xi + 0) = ±∞, η(xi − 0) = ∓∞, where i = 0,N, (7.11)

and it is necessary to choose the infinities of different signs.
Thus we obtain that

∫η(x1−0)

η(x0+0)
wdη = · · · =

∫η(xN−0)

η(xN−1+0)
wdη =: T ′. (7.12)

Hence x1 − x0 = · · · = xN − xN−1.
Now we can rewrite (7.10) in the following form:

∫η(x0−0)

η(0)
wdη +

∫η(h)

η(xN+0)
fdη +NT ′ = h. (7.13)

Let T ≡ ∫+∞
−∞ wdη; then we finally obtain

−
∫η(0)

η(h)
wdη ± (N + 1)T = h, (7.14)

where η(0), η(h) are defined by formulas (6.4).
Expression (7.14) is the DE, which holds for any finite h. Let γ be a solution of DE (7.14)

and an eigenvalue of the problem. Then, there are eigenfunctionsX and Z, which correspond
to the eigenvalue γ . The eigenfunction Z has N + 1 zeros on the interval (0, h). It should be
noticed that for every numberN+1 it is necessary to solve two DEs: forN+1 and for −(N+1).

Note 1. If there is a certain value γ2∗ , such that some of the integrals in DEs (6.11) or (7.14)
diverge at certain inner points this simply means that the value γ2∗ is not a solution of chosen
DE and the value γ2∗ is not an eigenvalue of the problem.

Note 2. It is necessary to emphasize that this boundary eigenvalue (transmission) problem
essentially depends on the initial condition Zh. The transmission problem for a linear layer
does not depend on the initial condition. If the nonlinearity function is a specific one, then
in some cases it will be possible to normalize the Maxwell equations in such a way that the
transmission problem does not depend on initial condition Zh explicitly (it is possible e.g.,
for Kerr nonlinearity in a layer and in a circle cylindrical waveguide). Once more we stress
the fact that the opportunity of such normalization is an exceptional case. What is more, in
spite of the fact that in certain cases this normalization is possible it does not mean that the
normalized transmission problem is independent of the initial condition. In this case one of
the problem’s parameter depends on the initial condition.
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8. Passage to the Limit in the Generalized Dispersion Equation

In this section we assume that ε2x = ε2z = ε2 and b = a. Now consider the passage to the limit
as a → 0. The value a = 0 corresponds to the case of a linear medium in the layer. Two cases
are possible:

(a) ε2 > 0,
(b) ε2 < 0 (metamaterial case).
Let us examine case (a). The DE for a linear case is well known [10] and has the form

tg

(

h
√

ε2 − γ2
)

=
ε2
√

ε2 − γ2
(

ε1
√

γ2 − ε3 + ε3
√

γ2 − ε1
)

ε1ε3
(

ε2 − γ2
) − ε22

√

γ2 − ε3
√

γ2 − ε1

. (8.1)

Let

f =
τ

γ2τ2 + η2(τ − 1)
, f1 =

ε2
ε2 − γ2

1
ε22/

(

ε2 − γ2
)

+ η2
. (8.2)

Using passage to the limit as a → 0 we obtain the function f1 from the function f . We
seek bounded solutions X(x) and Z(x). This implies that the denominator of the function f1
cannot vanish. What is more, the function f as a → 0 tends to the function f1 uniformly on
x ∈ [0, h]. It is possible to pass to the limit under integral sign as a → 0 in (7.14) using results
of classical analysis

h = − ε2
ε2 − γ2

∫η(0)

η(h)

1
ε22/

(

ε2 − γ2
)

+ η2
dη +

ε2
ε2 − γ2

(N + 1)
∫+∞

−∞

1
ε22/

(

ε2 − γ2
)

+ η2
dη, (8.3)

where η(0), η(h) are defined by formulas (6.4).
The integrals in (8.3) are calculated analytically. Calculating these integrals we obtain

h
√

ε2 − γ2 = arctg
ε2
√

ε2 − γ2
(

ε1
√

γ2 − ε3 + ε3
√

γ2 − ε1
)

ε1ε3
(

ε2 − γ2
) − ε22

√

γ2 − ε3
√

γ2 − ε1

+ (N + 1)π. (8.4)

Expression (8.4) can be easily transformed into expression (8.1).
Let us examine (b) case. We have ε2 < 0 (metamaterial) and the DE for the linear case

has the form [31]

e2h
√

γ2−ε2 =
ε1
√

γ2 − ε2 − ε2
√

γ2 − ε1

ε1
√

γ2 − ε2 + ε2
√

γ2 − ε1

ε3
√

γ2 − ε2 − ε2
√

γ2 − ε3

ε3
√

γ2 − ε2 + ε2
√

γ2 − ε3

,
(8.5)

where γ2 − ε1 > 0, γ2 − ε2 > 0, and γ2 − ε3 > 0.
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Figure 2: Plot of γ(h). The first few dispersion curves are shown. Solid curves for the nonlinear case
(solutions of (7.14)); dashed curves for the linear case (solutions of (8.1)). The following parameters are
used for both cases: ε1 = 1.44, ε2 = 9, ε3 = 1, and for the nonlinear case a = 0.1, and E

(h)
z = 1. Dashed

lines are described by formulas: h∗ = 3.206 (thickness of the layer), γ = 1.2 (lower bound for γ), and γ = 3
(upper bound for γ in the case of linear medium in the layer).

In the same way as above, passing to the limit in the function f as a → 0 we obtain
f2 = |ε2|/(γ2 − ε2)(1/η2 − ε22/(γ

2 − ε2)). Passing to the limit in equation (7.14) as a → 0 and
integrating the function f2, after simple calculations, we obtain formula(8.5)

The results here show that it is possible to pass to the limit as a → 0. DE in (7.14) for
the nonlinear case turns into (8.1) or (8.5) for the linear case as a → 0.

9. Numerical Results

The way of solution to the DE in (7.14) is the following: we choose the segment on γ then
cut this segment into p pieces with nods γi, i = 0, 1, . . . , p. Then for each γi we can calculate
all necessary values in (7.14). The integral in (7.14) can be calculated using any method of
numerical integration. In order to calculate the value of the integrand at the point γi it is
necessary to use first integral (6.3). For each value γi we calculate value hi, so we obtain the
grid {γi, hi}, i = 0, 1, . . . , p. Choosing reasonably dense grid on γ we can plot dependence γ
on h, as it is done below.

Dispersion curves (DC) calculated from (7.14), (8.1), and (8.5) are shown in Figures 2
and 4. Eigenmodes for eigenvalues indicated in Figures 3 and 5 are shown in Figures 3 and 5.

As it is known and it is shown in Figure 2, the line γ = 3 is an asymptote for DCs
in the linear case. It should be noticed that in the linear case there are no DCs in the region
γ2 ≥ ε2. It can be proved that function h ≡ h(γ) defined from equation (7.14) is continuous at
the neighborhood γ2 = ε2 when a/= 0 (see Figure 2). This is the important distinction between
linear and nonlinear cases.
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Figure 3: Eigenfunctions (fields) for the nonlinear problem are shown. Solid curves for X; dashed curves
for Z. The same parameters as in Figure 2 are used. For (a), γ = 2.994; for (b), γ = 3.892: for (c), γ = 8.657,
and h = 3.206 is used for all three cases. The eigenvalues are marked in Figure 2.
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Figure 4: Plot of γ(h). The first few dispersion curves are shown. Solid curves for the nonlinear case
(solutions of (7.14)); dashed curve for the linear case (solutions of (8.5)). The following parameters are
used for both cases: ε1 = 1, ε2 = −1.5, ε3 = 1, and for the nonlinear case a = 5.2 and E

(h)
z = 1. Dashed lines

are described by formulas: h∗ = 1.71 (thickness of the layer), γ = 1 (lower bound for γ) and γ = 3 (upper
bound for γ in the case of linear medium in the layer).

Further, it can be proved that function h ≡ h(γ) defined from equation (7.14) when
a/= 0 has the following property:

lim
γ2 →+∞

h
(

γ
)

= 0. (9.1)
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Figure 5: Eigenfunctions (fields) for the nonlinear problem are shown. Solid curves for X; dashed curves
for Z. The same parameters as in Figure 4 are used. For (a), γ = 2.620, and a = 0 (see (8.5)); for (b),
γ = 1.565; for (c), γ = 3.481, and h = 1.71 is used for all three cases. The eigenvalues are marked in Figure 4.
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Figure 6: Plot of γ(h) for the different values of a: 1 – a = 1; 2 – a = 0.1; 3 – a = 0.01; 4 – a = 0.001; 5 –
a = 0.0001; 6 – a = 0 (linear case). The following parameters are used for both cases: ε1 = 4, ε2 = 9, ε3 = 1,
and for the nonlinear case E

(h)
z = 1. Dashed lines are described by formulas: γ = 2 (lower bound for γ),

γ = 3 (upper bound for γ in the case of linear medium in the layer). Curves (solid) 1–5 are solutions of
(7.14), and curve 6 (dashed) is solutions of (8.1).
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In Figure 2 for h = 3.206 in the case of a linear layer there are 3 eigenvalues (black dots
where the line h = 3.206 intersects with DCs). These eigenvalues correspond to 3 eigenmodes.
In the case of a nonlinear layer in Figure 2 are shown 5 eigenvalues (uncolored dots). These
eigenvalues correspond to 5 eigenmodes. Taking into account the last paragraph’s statement
it is clear that in this case there is infinite number of eigenvalues.

It is easy to see in Figure 6 that the less nonlinearity coefficient a is the more stretched
DCs in the nonlinear case. The maximum points of the curves h(γ) (in Figure 6 they are
marked by asterisks)move to the right. The parts of the DCs that locate below the maximum
points asymptotically tend to the DCs for the linear case as a → 0.

It should be noticed that in the case of Kerr nonlinearity in a layer and TE waves there
are strong constraints on the value a depending on the value ε2 (for details see [16]). It is
natural to suppose that there are constraints of the kind in the case under consideration.

As far as we know experiments to observe the new nonlinear eigenmodes were not
carried out. So the question if the modes corresponding to the new eigenvalues exist (in an
experiment) stays open! We should like to emphasize that it is interesting to observe purely
nonlinear modes that do not arise in a linear limiting case. If to see Figure 2 then points (b)
and (c) correspond to these purely nonlinear modes.
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