
Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2013, Article ID 806984, 4 pages
http://dx.doi.org/10.1155/2013/806984

Research Article
Solving Abel’s Type Integral Equation with Mikusinski’s
Operator of Fractional Order

Ming Li1 and Wei Zhao2

1 School of Information Science & Technology, East China Normal University, No. 500, Dong-Chuan Road, Shanghai 200241, China
2Department of Computer and Information Science, University of Macau, Avenida Padre Tomas Pereira, Taipa, Macau

Correspondence should be addressed to Ming Li; ming lihk@yahoo.com

Received 21 April 2013; Accepted 10 May 2013

Academic Editor: Carlo Cattani

Copyright © 2013 M. Li and W. Zhao. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper gives a novel explanation of the integral equation of Abel’s type from the point of view of Mikusinski’s operational
calculus. The concept of the inverse of Mikusinski’s operator of fractional order is introduced for constructing a representation of
the solution to the integral equation of Abel’s type.The proof of the existence of the inverse of the fractional Mikusinski operator is
presented, providing an alternative method of treating the integral equation of Abel’s type.

1. Introduction

Abel studied a physical problem regarding the relationship
between kinetic and potential energies for falling bodies [1].
One of his integrals stated in [1] is expressed in the form

𝑓 (𝑡) = ∫
𝑡

𝑎

𝑔 (𝑢)

√𝑡 − 𝑢
𝑑𝑢, 𝑎 > 0, (1)

where 𝑓(𝑡) is known, but 𝑔(𝑡) is unknown. The previous
expression is in the literature nowadays called Abel’s integral
equation [2]. In addition to (1), Abel also worked on the
integral equation in [1] in the following form:

𝑓 (𝑡) = ∫
𝑡

𝑎

𝑔 (𝑢)

(𝑡 − 𝑢)𝜆
𝑑𝑢, 𝑎 > 0, 0 < 𝜆 < 1, 𝑎 ≤ 𝑡 ≤ 𝑏,

(2)
which is usually termed the integral equation of Abel’s type
[3] or the generalizedAbel integral equation [4].The function
(𝑡 − 𝑢)−𝜆 may be called Abel’s kernel. It is seen that (1) is a
special case of (2) for 𝜆 = 1/2. This paper is in the aspect of
(2). Without generality losing, for the purpose of facilitating
the discussions, we multiply the left side of (1) with the
constant 1/Γ(𝜆), and let 𝑎 = 0. That is, we rewrite (2) by

𝑓 (𝑡) =
1

Γ (𝜆)
∫
𝑡

0

𝑔 (𝑢)

(𝑡 − 𝑢)𝜆
𝑑𝑢, 0 < 𝜆 < 1, 0 ≤ 𝑡 ≤ 𝑏. (3)

The integral equation ofAbel’s type attracts the interests of
mathematicians and physicists. In mathematics, for example,
for solving the integral equation of Abel’s type, [5] discusses a
transformation technique, [6] gives a method of orthogonal
polynomials, [7] adopts the method of integral operators,
[8, 9] utilize the fractional calculus, [10] is with the Bessel
functions, [11, 12] study the wavelet methods, [13, 14] describe
the methods based on semigroups, [15] uses the almost
Bernstein operational matrix, and so forth [16, 17], just to
mention a few. Reference [18] represents a nice description of
the importance of Abel’s integral equations inmathematics as
well as engineering, citing [19–23] for the various applications
of Abel’s integral equations.

The above stands for a sign that the theory of Abel’s
integral equations is developing. New methods for solving
such a type of equations are demanded in this field.This paper
presents a new method to describe the integral equation of
Abel’s type from the point of view of the Mikusinski operator
of fractional order. In addition, we will give a solution to the
integral equation of Abel’s type by using the inverse of the
Mikusinski operator of fractional order.

The remainder of this article is organized as follows. In
Section 2, we shall express the integral equation of the Abel’s
type using the Mikusinski operator of fractional order and
give the solution to that type of equation in the constructive
way based on the inverse of the fractional-order Mikusinski
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operator. Section 3 consists of two parts. One is the proof of
the existence of the inverse of the fractional-orderMikusinski
operator. The other is the computation of the solution to
Abel’s type integral equation. Finally, Section 4 concludes the
paper.

2. Constructive Solution Based on
Fractional-Order Mikusinski Operator

Denote the operation of Mikusinski’s convolution by ⊗. Let ⊕
be the operation of its inverse. Then, for 𝑎(𝑡), 𝑏(𝑡) ∈ 𝐶(0,∞),
one has

𝑎 (𝑡) ⊗ 𝑏 (𝑡) = ∫
𝑡

0

𝑎 (𝑡 − 𝜏) 𝑏 (𝜏) 𝑑𝜏 = 𝑐 (𝑡) . (4)

The inverse of the previous expression is the deconvolution,
which is denoted by (see [24–26])

𝑐 (𝑡) ⊕ 𝑎 (𝑡) = 𝑏 (𝑡) , 𝑐 (𝑡) ⊕ 𝑏 (𝑡) = 𝑎 (𝑡) . (5)

In (4) and (5), the constraint 𝑎(𝑡), 𝑏(𝑡) ∈ 𝐶(0,∞) may be
released. More precisely, we assume that 𝑎(𝑡) and 𝑏(𝑡)may be
generalized functions.Therefore, the Diract-𝛿 function in the
following is the identity in this convolution system. That is,

𝑎 (𝑡) ⊗ 𝛿 (𝑡) = 𝛿 (𝑡) ⊗ 𝑎 (𝑡) = 𝑎 (𝑡) . (6)

Consequently,

𝑎 (𝑡) ⊕ 𝑎 (𝑡) = 𝛿 (𝑡) . (7)

Let 𝑙 be an operator that corresponds to the function 1(𝑡)
such that

𝑙𝑎 (𝑡) = 1 (𝑡) ⊗ 𝑎 (𝑡) = ∫
𝑡

0

𝑎 (𝜏) 𝑑𝜏. (8)

Therefore, the operator 𝑙2 implies

𝑙2 ⇐⇒ 1 (𝑡) ⊗ 1 (𝑡) = ∫
𝑡

0

𝑑𝜏 =
𝑡

1
. (9)

For 𝑛 = 1, . . ., consequently, we have

𝑙𝑛 ⇐⇒
𝑡𝑛−1

(𝑛 − 1)!
, (10)

where 0! = 1.
The Cauchy integral formula may be expressed by using

𝑙𝑛, so that

𝑙𝑛𝑔 (𝑡) =
𝑡𝑛−1

(𝑛 − 1)!
⊗ 𝑔 (𝑡) = ∫

𝑡

0

(𝑡 − 𝜏)𝑛−1

(𝑛 − 1)!
𝑔 (𝜏) 𝑑𝜏. (11)

Generalizing 𝑙𝑛 to 𝑙𝜆 in (12) for 𝜆 > 0 yields the Mikusinski
operator of fractional order given by

𝑙𝜏 ⇐⇒
𝑡𝜆−1

(𝜆 − 1)!
=

𝑡𝜆−1

Γ (𝜆)
. (12)

Thus, taking into account (12), we may represent the integral
equation of Abel’s type by

𝑙𝜆𝑔 (𝑡) =
𝑡𝜆−1

Γ (𝜆)
⊗ 𝑔 (𝑡) = ∫

𝑡

0

(𝑡 − 𝜏)𝜆−1

Γ (𝜆)
𝑔 (𝜏) 𝑑𝜏 = 𝑓 (𝑡) .

(13)

Rewrite the above by

𝑙𝜆𝑔 (𝑡) = 𝑓 (𝑡) . (14)

Then, the solution to Able’s type integral equation (3) may be
represented by

𝑔 (𝑡) = 𝑙−𝜆𝑓 (𝑡) , (15)

where 𝑙−𝜆 is the inverse of 𝑙𝜆.
There are two questions in the constructive solution

expressed by (15). One is whether 𝑙−𝜆 exists. The other is how
to represent its computation. We shall discuss the answers
next section.

3. Results

3.1. Existence of the Inverse of Mikusinski’s Operator of Order
𝜆. Let G and F be two normed spaces for 𝑔(𝑡) ∈ G and
𝑓(𝑡) ∈ F, respectively. Then, the operator 𝑙𝜆 regarding Able’s
type integral equation (13) may be expressed by

𝑙𝜆 : G → F. (16)

The operator 𝑙𝜆 is obviously linear. Note that (3) is
convergent [1]. Thus, one may assume that

𝑚 ≤ ∫
𝑏

0



(𝑡 − 𝜏)𝜆−1

Γ (𝜆)
𝑔 (𝜏)


𝑑𝜏 ≤ 𝑀, (17)

where

𝑚 ≥ 0, 𝑀 ≥ 0. (18)

Define the norm of 𝑓(𝑡) by
𝑓 (𝑡)

 = max
0<𝑡<𝑏

𝑓 (𝑡) . (19)

Then, we have
𝑙
𝜆𝑔 (𝑡)

 ≤ 𝑀
𝑓 (𝑡)

 . (20)

The above implies that 𝑙𝜆 is bounded. Accordingly, it is
continuous [27, 28].

Since
𝑙
𝜆𝑔 (𝑡)

 ≥ 𝑚
𝑓 (𝑡)

 , (21)

𝑙−𝜆 exists. Moreover, the inverse of 𝑙𝜆 is continuous and
bounded according to the inverse operator theorem of
Banach [27, 28]. This completes the proof of (15).
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3.2. Computation Formula. According to the previous anal-
ysis, 𝑙−𝜆 exists. It actually corresponds to the differential of
order 𝜆. Thus,

𝑔 (𝑡) = 𝑙−𝜆𝑓 (𝑡) =
𝑑𝜆𝑓 (𝑡)

𝑑𝑡𝜆
. (22)

In (13), we write ∫
𝑡

0
(((𝑡 − 𝜏)𝜆−1/Γ(𝜆))𝑔(𝜏))𝑑𝜏 = 𝑓(𝑡) by

∫
𝑡

0

(𝑡 − 𝜏)
𝜆−1𝑔 (𝜏) 𝑑𝜏 = Γ (𝜆) 𝑓 (𝑡) . (23)

Following [29, p. 13, p. 527], [30], therefore,

𝑔 (𝑡) = 𝑙−𝜆𝑓 (𝑡) =
sin (𝜋𝜆)

𝜋

𝑑

𝑑𝑡
∫
𝑡

0

Γ (𝜆) 𝑓 (𝑢)

(𝑡 − 𝑢)1−𝜆
𝑑𝑢

=
Γ (𝜆) sin (𝜋𝜆)

𝜋
[
𝑓 (0)

𝑡1−𝜆
+ ∫
𝑡

0

𝑓(𝑡) 𝑑𝑡

(𝑡 − 𝑢)1−𝜆
] .

(24)

Since
sin (𝜋𝜆)

𝜋
=

1

Γ (𝜆) Γ (1 − 𝜆)
, (25)

we write (24) by

𝑔 (𝑡) =
1

Γ (1 − 𝜆)
[
𝑓 (0)

𝑡1−𝜆
+ ∫
𝑡

0

𝑓(𝑡) 𝑑𝑡

(𝑡 − 𝑢)1−𝜆
] . (26)

In the solution (26), if 𝑓(0) = 0, one has

𝑔 (𝑡) =
1

Γ (1 − 𝜆)
∫
𝑡

0

𝑓(𝑡) 𝑑𝑡

(𝑡 − 𝑢)1−𝜆
, (27)

which is a result described by Gelfand and Vilenkin in [9,
Section 5.5].

Note that Mikusinski’s operational calculus is a tool
usually used for solving linear differential equations [24–26],
but we use it in this research for the integral equation of the
Abel’s type from a view of fractional calculus. In addition, we
suggest that the idea in this paper may be applied to studying
other types of equations, for instance, those in [31–50], to
make the possible applications of Mikusinski’s operational
calculus a step further.

4. Conclusions

We have presented the integral equation of Abel’s type using
the method of the Mikusinski operational calculus. The con-
structive representation of the solution to Abel’s type integral
equation has been given with the Mikusinski operator of
fractionally negative order, giving a novel interpretation of
the solution to Abel’s type integral equation.
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