
Hindawi Publishing Corporation
Advances in Operations Research
Volume 2009, Article ID 153910, 10 pages
doi:10.1155/2009/153910

Research Article
Batch Scheduling on Two-Machine Flowshop with
Machine-Dependent Setup Times

Lika Ben-Dati,1 Gur Mosheiov,1, 2 and Daniel Oron3

1 Department of Statistics, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
2 School of Business Administration, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
3 Faculty of Economics and Business, The University of Sydney, NSW 2006, Australia

Correspondence should be addressed to Daniel Oron, d.oron@econ.usyd.edu.au

Received 19 August 2008; Revised 21 April 2009; Accepted 23 June 2009

Recommended by George Steiner

We study a batch scheduling problem on a 2-machine flowshop. We assume unit processing time
jobs, batch availability, and machine-dependent setup times. The objective is to find a job allocation
to batches of integer size and a batch schedule that minimize makespan. We introduce a very
efficient closed form solution for the problem.

Copyright q 2009 Lika Ben-Dati et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

The recent survey paper “A Survey on Scheduling Problems with Setup Times and
Costs” [1], classifies batch scheduling problems into those with batching and nonbatching
considerations, with sequence-independent and sequence-dependent setup times, and
according to the machine environment and the objective function. The survey contains
approximately 300 references, a clear indication of the importance and relevance of this topic.

In this paper we study batch scheduling problems on a 2-machine flowshop. The
objective function is minimum makespan. The underlying assumptions in the model studied
are as follows.

(i) Batch availability: all the jobs are completed when the last job of the batch is
completed (and then the entire batch is available for processing on the second
machine, or for delivery to customers).

(ii) Nonanticipatory setups: setups on the second machine may be performed only after
processing of the batch on the first machine has been completed.

(iii) Batch consistency: batch formation is identical on both machines.

(iv) Machine-dependent setup times: machine 1 and machine 2 have different setup times
(which are identical for all batches).



2 Advances in Operations Research

The 2-machine flow-shop under the above assumptions was shown to be strongly
NP-hard by Cheng et al. [2], and Glass et al. [3]. We focus, however, on an important
special case, which is shown to have an elegant closed form solution. Specifically, we assume
unit processing time jobs. This setting is known to have various applications, and in the
manufacturing context, for example, it reflects the common systems in which sequences
of identical items are produced. Scheduling with unit jobs has been studied extensively in
many scheduling contexts. Batch scheduling on flowshops with unit processing time jobs
have been studied by Mosheiov and Oron [4, 5], Ng and Kovalyov [6], and Mosheiov, et al.
[7].

In all the above papers, the authors consider identical (i.e., machine-independent)
setup times. Our study, as mentioned, focuses on machine-dependent setups. Scheduling
problems containing machine-dependent setups exist in numerous real-life applications,
and have been extensively studied in various contexts. It appears, however, that a model
assuming both unit jobs and machine-dependent setups is considered in this paper for the
first time. Possible applications for such a setting, when similar or identical operations, are
performed on the jobs on the different machines, but an additional operation requiring
constant time must be performed on one of the machines (or different constant time
operations are performed on the different machines). These operations may be viewed as
batching operations, where all jobs of a given batch undergo some type of process which is
performed in constant time, independent of the number of jobs in the batch. Such operations
may include special loading or recording of arriving batches on the first machine, initial
quality assurance, or special preparation of batches prior to processing. Constant time
operations on the last machine include, again, preparation of batches for shipment and
dispatching of batches (stamping, spray painting), quality assurance procedures (random
testing of a fixed number of items or batching procedures such as scanning), or administrative
operations which may include paperwork, recording of data, and so forth.

We distinguish between the following two (similar but nonsymmetric) cases: (i) the
setup on the first machine is larger than the setup on the second machine, and, (ii) the setup
on the first machine is smaller than the setup on the second machine. For both cases, we
show that the makespan minimization problem is solved efficiently in O(

√
n) time, where

n is the number of jobs. It is important to note that the existing algorithms solve a special
case of the problem studied in this paper, namely, when s1 = s2, in O(n) time. Thus, the
algorithm presented in this paper reduces the computational effort required to obtain an
optimal solution even if the problem is more complex. It should be noted that both the
existing algorithms and the current solution procedure are not polynomial in the problem
input size. Since we consider unit processing time jobs, the input consists of three values
(O(1)), the number of jobs, and the setup time on each of the two machines. Thus, even a
procedure requiring O(

√
n) time is exponential in the input size. Nevertheless, we doubt that

there is a way to express the optimal solution to this problem more efficiently.
It should be noted that a first step in the solution consists of solving the “relaxed

version” in which integrality of the batch sizes is not required (see below). This, in fact, is
a lot streaming problem, as it consists of splitting given jobs into sublots in order to allow their
overlapping processing on the two successive machines of the flowshop. Chen and Steiner
[8, 9], and Liu [10] addressed lot streaming problems on flow-shops with batches of integer
size. Vickson [11] addressed lot streaming of a flow-shop with machine-dependent setup
times. However, to the best of our knowledge, the model considered in this paper (assuming
machine-dependent setups, and requiring integrality of batch sizes), has not been studied
before.



Advances in Operations Research 3

In Section 2, we present the notation and formulation of the problem. The optimal
solution is provided in Section 3 (and the appendix). Section 4 contains concluding remarks
and ideas for future research.

2. Formulation

n independent jobs are available for processing on a 2-machine flowshop at time zero. pij
denotes the processing time of job j (j = 1, 2, . . . , n) on machine i (i = 1, 2). We assume unit
processing times, therefore pij = 1 for j = 1, 2, . . . , n and for i = 1,2. The scheduler’s task is
to partition jobs into batches (i.e., find their optimal number and size), and to schedule the
batches so as to minimize makespan.

Prior to processing a new batch, an (integer) machine dependent setup time, si, i =
1, 2, is incurred. As mentioned above, setups are assumed to be nonanticipatory. For a given
allocation to batches, let k denote the number of batches, and let nj denote the size of the jth
batch. The total processing time of batch j is clearly equal to its size. We assume (see above)
batch-availability and batch consistency. Cj denotes the completion time of batch j, which is
the completion time of all the jobs contained in batch j. Using the conventional three field
notation, the problem studied in this paper is F2/s-batch, pij = 1, si/Cmax.

Comment 1. A standard assumption is that all input parameters are nonnegative integers,
implying in our case that both the (identical) processing times and the (machine-dependent)
setups are integers. One can assume that after appropriate scaling all processing times
have unit time, but clearly the setups do not necessarily remain integers. Thus, we do
allow and investigate the case of noninteger setup times; see Comment 3 in Section 3 and
Comment A.1 in the appendix. (Note that the computational effort for this more general case
remains O(

√
n) through the use of the proposed algorithm.)

3. A Closed Form Solution for F2/pij = 1, si/Cmax

We focus here on the case that the setup time on the first machine is smaller, that is s1 < s2.
(The case s1 > s2, although not completely symmetric, is similar and its analysis appears
in the appendix. The case of machine independent setups, that is, when s1 = s2, is studied
in [4, 6].) For convenience we begin by solving the relaxed version of the problem (denoted
by PR), in which batch sizes are allowed to have noninteger values.

First, we introduce a lower bound on the optimal makespan for a given number of
batches, k. As in the classical 2-machine flow-shop problem, a lower bound is obtained when
no idle time is incurred between consecutive batches on the second machine. Given the
unavoidable idle time prior to the processing of the first batch on the second machine, we
obtain

LB = s1 + n1 + ks2 + n. (3.1)

A schedule attaining this lower bound must contain no idle time between consecutive
jobs on the second machine. A necessary and sufficient condition for no idle time is the
following: nj+1 ≤ n1 + j(s2 − s1), j = 1, . . . , k − 1 . This is true since the completion time of
batch j +1 on the first machine (= (j +1)s1 +n1 +n2 + · · ·+nj+1 ) cannot exceed the completion
time of batch j on the second machine (= s1 + n1 + js2 + n1 + n2 + · · · + nj ). One schedule



4 Advances in Operations Research

satisfying these conditions consists of batch sizes obtained by the following set of equalities:
nj+1 = n1+j(s2−s1), j = 1, . . . , k−1. The resulting schedule consists of the following sequence
of increasing batch sizes: nj+1 = nj + (s2 − s1), j = 1, . . . , k − 1. Given the fact that

∑k
j=1 nj = n,

we easily obtain that

n1 =
n

k
− k − 1

2
(s2 − s1), nj+1 = nj + (s2 − s1), j = 1, . . . , k − 1. (3.2)

The above schedule has a makespan value which is equal to the lower bound, and is therefore
optimal for problem PR and a given k value.

The makespan value of the above schedule is

Cmax(k) = s1 +
n

k
− k − 1

2
(s2 − s1) + ks2 + n =

n

k
+ n +

k + 1
2

(s1 + s2). (3.3)

Note that (3.3) is a strictly convex function in k and the unique minimum is given by

k∗ =

√
2n

s1 + s2
. (3.4)

Recall that k denotes the optimal (integer) number of batches, and therefore, due to the
convexity of(3.3)

k = �k∗ � or k = �k∗ �. (3.5)

Both k = �k∗� and k = �k∗� should be considered.
We conclude that an optimal solution for the relaxed version of the problem (PR) is

given by (3.4), (3.5), and (3.2).
We now consider the original problem, where batch sizes are restricted to be integers,

denoted byPINT. A lower bound on the optimal solution is

LB(k) =
⌈

s1 +
n

k
− k − 1

2
(s2 − s1) + n + ks2

⌉

= s1 +
⌈
n

k
− k − 1

2
(s2 − s1)

⌉

+ n + ks2. (3.6)

(Note that as defined above n1 is the size of the first batch of the solution of relaxed version.
In the special case that n1 = n/k − ((k − 1)/2)(s2 − s1) is integer, then, clearly, the “ceiling” is
redundant, and the lower bound is identical to the makespan value given in (3.3).)

The lower bound given in (3.6) is the smallest integer which is larger than or equal
to the makespan value for problem PR. Any schedule that consists of batches of integer size
yielding this makespan is clearly optimal.

If n1 (given in (3.2)) is integer, then clearly all batches are integers and the solution
for problem PR is optimal for the original problem, PINT. For the general case, where n1 is not
necessarily integer, let Δ = n1 − �n1� (= ni − �ni�, i = 1, . . . , k).

Since n =
∑k

i=1 ni =
∑k

i=1(�ni� + Δ) =
∑k

i=1�ni� + kΔ, we obtain that kΔ is an integer
(strictly smaller than k). Based on the solution for problem PR, we construct a solution



Advances in Operations Research 5

for problem PINT by rounding down the size of l batches and rounding up the size of the
remaining k − l batches, where l = (1−Δ)k. One option is to round up the size of the first k − l
batches, and round down the size of the last l batches. The resulting job allocation to batches is
�n1�, �n2�, . . . , �nk−l�, �nk−l+1�, �nk−l+2�, . . . , �nk� . It is easily verified that in the above schedule:
(i) the idle time prior to batch 1 on machine 2 is s1 + �n1� = s1 + �n/k − ((k − 1)/2)(s2 − s1)� ,
and (ii) there is no idle time between consecutive batches on machine 2. Thus, the makespan
value of this schedule is

Cmax(k) = s1 +
⌈
n

k
− k − 1

2
(s2 − s1)

⌉

+ n + ks2 . (3.7)

Note that the above value for the makespan is identical to the lower bound for problem PINT

given in (3.6). We conclude that for any value of k, the above schedule is optimal.

Comment 2. It is worth mentioning that the optimal solution is not unique, and other round-
ing procedures may lead to other optimal schedules. One alternative example consists of
rounding down the first l batches and rounding up the last k − l batches.

The resulting job allocation to batches is �n1�, �n2�, . . . , �nl�, �nl+1�, �nl+2�, . . . , �nk�.
In this case, it is easily verified that (i) there is no idle time between consecutive batches

on machine 2 for j = 1, 2, . . . , l, (ii) there exists 1 unit of idle time between batches l and l + 1,
and (iii) there is no idle time between consecutive batches on machine 2 for j = l + 1, . . . , k.
The makespan value of this schedule (clearly, given that n1 is not integer) is

Cmax(k) = �n1� + s1 + n + ks2 + 1 =
⌊
n

k
− k − 1

2
(s2 − s1)

⌋

+ s1 + n + ks2 + 1. (3.8)

This value for the makespan is identical to the value given in (3.7), implying that this schedule
is optimal as well.

It remains to find the optimal number of batches, k. Note that due to the integrality of
s1 and s2, the makespan function (3.7) can be slightly modified as follows:

Cmax(k) = s1 +
⌈
n

k
− k − 1

2
(s2 − s1)

⌉

+ n + ks2 =
⌈

s1 +
n

k
− k − 1

2
(s2 − s1) + n + ks2

⌉

. (3.9)

It follows that the k value minimizing (3.7) also minimizes (3.9). Hence the optimal k value
for the relaxed version given in (3.4) and (3.5) is optimal for the integer version. We denote
the latter by kopt. A formal algorithm is provided in Algorithm 3.1 .

Algorithm 3.1 (flowshop makespan s1 < s2). Input: n, s1, s2.

Step 1 (Optimal number of batches). Calculate k1 = �k∗�and k2 = �k∗� (from (3.4) and (3.5)).
If Cmax(k1) ≤ Cmax(k2) (in (3.7)), then kopt = k1; otherwise kopt = k2.



6 Advances in Operations Research

2 2 2 2 2 2n1 = 11 n2 = 12 n3 = 13 n4 = 14 n5 = 15 n6 = 15

3 3 3 3 3 3n1 = 11 n2 = 12 n3 = 13 n4 = 14 n5 = 15 n6 = 15

Cmax = 111

Figure 1: Optimal schedule of a 2-machine flowshop (Example 3.2: n = 80, s1 < s2, s1 = 2, s2 = 3).

Step 2 (Optimal batches).

n1 =
n

kopt −
kopt − 1

2
(s2 − s1), nj+1 = nj + (s2 − s1), j = 1, . . . , kopt − 1 (3.10)

(from (3.2)).

Step 3 (Rounding). Calculate the non-integer part of the batch size,Δ = n1 − �n1� .
Calculate the number of batches to be rounded down, l = (1 −Δ)kopt.
An optimal integer allocation to batches is �n1�, �n2�, . . . , �nkopt−l�, �nkopt−l+1�, �nkopt−l+2�,

. . . , �nkopt� .

Running Time

It is easily verified that the algorithm is performed in O(
√
n) time. While the calculation of

the optimal number of batches and the optimal makespan are performed in constant time,
Step 2 of the algorithm requires calculating the batch sizes. Since the number of batches is
O(

√
n), the computational effort required is O(

√
n). Step 3 can easily be performed in O(

√
n)

time, and consequently, the total running time Algorithm 3.1is O(
√
n).

The use of Algorithm 3.1 is demonstrated in the following example.

Example 3.2. Assume n = 80, and s1 = 2, s2 = 3. In Step 1 we calculate k∗ = 5.66, and kopt = 6,
(the associate optimal makespan value is 111). In Step 2 we obtain the batch sizes (for the
relaxed problem): n1 = 10.833, n2 = 11.833, n3 = 12.833, n4 = 13.833, n5 = 14.833, and n6 =
15.833. The rounding procedure (Step 3) leads to the following optimal sequence of batch
sizes: n1 = 11, n2 = 12, n3 = 13, n4 = 14, n5 = 15, and n6 = 15; see Figure 1. The makespan
as a function of the number of batches (both for the relaxed and for the integer versions) is
presented in Figure 2 .

Comment 3. Consider the interesting generalization to the case of non-integer setup times. In
this case, the optimal k value for (3.7) may be different from that of (3.3), (e.g., if n = 80,
s1 = 2.1 and s2 = 2.2, we obtain k∗ = 6.099, implying that the optimal k value for the relaxed
problem is either 6 or 7, however, the optimal k value for the integer version is 5.) It appears
that in this general case (non-integer setups), a closed form expression for the optimal k value
does not seem to exist, and a search must be performed. Clearly, a search over all possible
k values (1 through n) guarantees an optimal solution. However, a limited search appears
to be sufficient, due to the fact that the smallest batch n1 must be nonnegative. From (3.2)



Advances in Operations Research 7

108

110

112

114

116

118

120

122

124

126

128

130

M
ak

es
pa

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of batches (k)

Makespan of the “relaxed” version
Makespan of the integer version

Figure 2: Makespan as a function of the number of batches for the relaxed and the integer versions
(Example 3.2: n = 80, s1 < s2, s1 = 2, s2 = 3).

we obtain n1 = n/k − ((k − 1)/2)(s2 − s1) ≥ 0. Consequently, 1/2 −
√

1/4 + 2n/(s2 − s1) ≤ k ≤
1/2 +

√
1/4 + 2n/(s2 − s1). The first term is strictly negative (recall that s2 > s1), implying

that k is an integer in the range 1, . . . , m, where

m =

⎢
⎢
⎢
⎣

1
2
+

√
1
4
+

2n
s2 − s1

⎥
⎥
⎥
⎦. (3.11)

We conclude that despite the need to consider a range of possible values for the number of
batches, k, the computational effort required for solving the problem with non-integer setup
times remains O(

√
n).

Comment 4. It is easily verified that the algorithm proposed in this section generalizes the
algorithm introduced in Mosheiov and Oron [4], for the case of machine-independent setups.
When substituting s1 = s2 = s in the expressions along the above algorithm, we obtain the
optimal solution for this special case. In particular, substituting s1 = s2 = s in Step 2 leads to
“equal allocation” to batches (using the terminology of [4]), and the rounding procedure, that
is, rounding up the size of the first k − l batches and rounding down the size of the remaining
l batches generates an optimal integer solution.

4. Conclusion

We study a new version of makespan minimization on a 2-machine flowshop. We consider
unit time jobs which may be grouped into batches. The setup times are assumed to be
machine-dependent. We introduce an elegant closed form solution for two different cases.

A challenging extension is to the setting of an m-machine flowshop (m ≥ 3). Another
interesting question refers to a 2-machine jobshop setting. Although not published yet,



8 Advances in Operations Research

both problems appear to have similar properties and structures and may have closed form
solutions for the number of batches and their sizes. The m-machine jobshop case is known
to be strongly NP-hard even with no setups [12]. Thus, future research dealing with this
extension may focus either on an introduction of heuristics/approximations or on developing
exact (pseudopolynomial) solution algorithms.

Appendix

The Case s1 > s2

As mentioned, the analysis of the case s1 > s2 is similar to that of the case s1 < s2. Again,
we focus first on the relaxed version. It is easily verified that lower bound (3.1) for a given
number of batches k, still holds. As in the previous case, a schedule attaining this lower bound
must have no idle time between consecutive jobs on the second machine. The conditions
nj+1 ≤ n1 + j(s2 − s1), j = 1, . . . , k − 1 are still valid, and since s1 > s2, these could be written
as nj+1 ≤ n1 − j(s1 − s2), j = 1, . . . , k − 1. A schedule based on equalities clearly satisfies these
conditions, leading, again, to a constant difference between the size of consecutive batches:
nj+1 = nj − (s1 − s2), j = 1, . . . , k − 1. Since the total size of all the batches is n, we obtain the
following schedule of decreasing batch sizes:

n1 =
n

k
+
k − 1

2
(s1 − s2), nj+1 = nj − (s1 − s2), j = 1, . . . , k − 1. (A.1)

Note that the resulting schedule is identical to the one obtained for the case s1 < s2, in a
reversed order: the largest batch becomes first, the second-to-largest second, and so forth. This
schedule has a makespan value identical to the lower bound (3.1), and is therefore optimal
for the relaxed problem and a given k value.

The makespan value is given by

Cmax(k) = s1 +
n

k
+
k − 1

2
(s1 − s2) + ks2 + n =

n

k
+ n +

k + 1
2

(s1 + s2). (A.2)

(Note that (A.2) is identical to the makespan value (3.3) obtained earlier.) Since the function
(A.2) is strictly convex, the optimal (integer) k-value is obtained by a simple differentiation
and rounding to one of the two nearest integers (see (3.4) and (3.5)). Given this optimal
solution for the relaxed problem, we consider again the integer version. We suggest the
rounding procedure introduced earlier, that is, round up the first k-l batches, and round down
the remaining l batches (where l = (1−Δ)k, and Δ = n1 −�n1�). This schedule of integer batch
sizes is optimal since its makespan value (given by (3.7)) is identical to the lower bound (3.6).
Our last argument refers to the optimal number of integer batches. As in the previous case,
due to the integrality of s1 and s2, the (integer) makespan value is given by

Cmax(k) =
⌈

s1 +
n

k
+
k − 1

2
(s1 − s2) + n + ks2

⌉

, (A.3)

which is minimized by the same k value that minimizes the objective of the relaxed version
(A.2). Hence the optimal number of batches is given, as before, by (3.4) and (3.5).



Advances in Operations Research 9

3 3 3 3 3 3n1 = 16 n2 = 15 n3 = 14 n4 = 13 n5 = 12 n6 = 11

2 2 2 2 2 2n1 = 16 n2 = 15 n3 = 14 n4 = 13 n5 = 12 n6 = 11

Cmax = 111

Figure 3: Optimal schedule of a 2-machine flowshop (Example A.1: n = 80, s1 > s2, s1 = 3, s2 = 2).

We conclude that an optimal solution for the case s1 > s2 is obtained by a very similar
(constant time) algorithm to the one introduced for the case s1 < s2. (Step 2 is slightly
different due to the fact that the sequence of batch sizes is decreasing.) For the sake of
briefness, we omit the formal algorithm.

Example A.1. We replace the values of s1 and s2 in Example 3.2: n = 80, s1 = 3, s2 = 2. The
optimal number of batches (Step 1) remains 6. In Step 2 we obtain the batch sizes (for
the relaxed problem): n1 = 15.833, n2 = 14.833, n3 = 13.833, n4 = 12.833, n5 = 11.833, and
n6 = 10.833. (Note that this sequence is the reversed sequence obtained for the relaxed
problem in Example 3.2.) An optimal integer solution (Step 3) consists of the following
sequence of batch sizes: n1= 16, n2= 15, n3= 14, n4= 13, n5= 12, n6= 10; see Figure 3.

Comment A.1. In the case where the setup times are not necessarily integers, finding the
optimal number of batches requires a search. Using the fact that the size of the smallest batch
(now nk = n/k − ((k − 1)/2)(s1 − s2)) must be non-negative, we obtain (as in the previous
case) the following upper bound on k: m = �1/2 +

√
1/4 + 2n/(s1 − s2)� . Since the search

is limited to the integers in the interval [1,m], the total running time in this case becomes
O(

√
n).

References

[1] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov, “A survey of scheduling problems with
setup times or costs,” European Journal of Operational Research, vol. 187, no. 3, pp. 985–1032, 2008.

[2] T. C. E. Cheng, B. M. T. Lin, and A. Toker, “Makespan minimization in the two machine flowshop
batch scheduling problem,” Naval Research Logistics, vol. 47, no. 2, pp. 128–144, 2000.

[3] C. A. Glass, C. N. Potts, and V. A. Strusevich, “Scheduling batches with sequential job processing for
two machine flow and open shops,” INFORMS Journal on Computing, vol. 13, no. 2, pp. 120–137, 2001.

[4] G. Mosheiov and D. Oron, “A note on flow-shop and job-shop batch scheduling with identical
processing-time jobs,” European Journal of Operational Research, vol. 161, no. 1, pp. 285–291, 2005.

[5] G. Mosheiov and D. Oron, “Open-shop batch scheduling with identical jobs,” European Journal of
Operational Research, vol. 187, no. 3, pp. 1282–1292, 2008.

[6] C. T. Ng and M. Y. Kovalyov, “Batching and scheduling in a multimachine flow shop,” Journal of
Scheduling, vol. 10, no. 6, pp. 353–364, 2007.

[7] G. Mosheiov, D. Oron, and Y. Ritov, “Flow-shop batch scheduling with identical processing time jobs,”
Naval Research Logistics, vol. 51, no. 6, pp. 783–799, 2004.

[8] J. Chen and G. Steiner, “Approximation methods for discrete lot streaming in flow shops,” Operations
Research Letters, vol. 21, no. 3, pp. 139–145, 1997.

[9] J. Chen and G. Steiner, “Discrete lot streaming in two-machine flow shops,” INFOR Journal, vol. 37,
no. 2, pp. 160–173, 1999.

[10] S. C. Liu, “A heuristic method for discrete lot-streaming with variable sublots in a flow-shop,”
International Journal of Advanced Manufacturing Technology, vol. 22, no. 9-10, pp. 662–668, 2003.



10 Advances in Operations Research

[11] R. G. Vickson, “Optimal lot streaming for multiple products in a two-machine flow shop,” European
Journal of Operational Research, vol. 85, no. 3, pp. 556–575, 1995.

[12] J. K. Lenstra and A. H. G. Rinnooy Kan, “Computational complexity of discrete optimization
problems,” Annals of Discrete Mathematics, vol. 4, pp. 121–140, 1979.


