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Discriminant Analysis (DA) is widely applied in many fields. Some recent researches raise the fact
that standard DA assumptions, such as a normal distribution of data and equality of the variance-
covariance matrices, are not always satisfied. A Mathematical Programming approach (MP) has
been frequently used in DA and can be considered a valuable alternative to the classical models of
DA. The MP approach provides more flexibility for the process of analysis. The aim of this paper
is to address a comparative study in which we analyze the performance of three statistical and
some MP methods using linear and nonlinear discriminant functions in two-group classification
problems. New classification procedures will be adapted to context of nonlinear discriminant
functions. Different applications are used to compare these methods including the Support Vector
Machines- (SVMs-) based approach. The findings of this study will be useful in assisting decision-
makers to choose the most appropriate model for their decision-making situation.
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1. Introduction

Discriminant Analysis (DA) is widely applied in many fields such as social sciences, finance
and marketing. The purpose of DA is to study the difference between two or more mutually
exclusive groups and to classify this new observation into an appropriate group. The popular
method used in DA is a statistical approach. The pioneer of these methods is Fisher [1]
who proposed a parametric method introducing linear discriminant functions for two-
group classification problems. Somewhat later, Smith [2] introduced a quadratic discriminant
function, which along with other discriminant analyses, such as logit and probit, has received
a good deal of attention over the past several decades. Some recent researches raise the fact
that standard assumptions of DA, such as the normality of the data distribution and the
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equality of the variance-covariance matrices, are not always verified. The MP approach has
also been widely used in DA and it can be considered a valuable alternative to the classical
models of DA. The aim of these MP models is either to minimize the violations (distance
between the misclassified observations and the cutoff value) or to minimize the number of
misclassified observations. They require no assumptions about the population’s distribution
and provide more flexibility for the analysis by introducing new constraints, such as those
of normalization, or by including weighted deviations in the objective functions including
higher weightings for misclassified observation deviations and lower weightings for correctly
classified observation deviations. However, special difficulties and even anomalous results
restrict the performance of these MP models [3]. These difficulties may be classified under the
headings of “degeneracy” and “stability” [4, 5]. The solutions can be classed as degenerate if
the analysis presents unbounded solutions in which improvement of the objective function is
unconstrained. Similarly, the results can be classed as unstable if, for example, they depend on
the position of the data in relation to the origin. A solution would be deemed unacceptable
in a situation where all of the coefficients of the discriminant function were equal to zero,
thus leading to of all the observations being incorrectly classified in the same group [6, 7].
To overcome these problems, different normalization constraints have been identified and
variants of MP formulations for classification problems have been proposed [4, 8–11].

For any given discriminant problem, the choice of an appropriate method for
analyzing the data is not always an easy task. Several studies comparing statistical and MP
approaches have been carried out by a number of researchers. A number of comparative
studies using both statistical and MP approaches have been performed on real data [12–
14] and most of them use linear discriminant functions. Recently, new MP formulations
have been developed based on nonlinear functions which may produce better classification
performance than can be obtained from a linear classifier. Nonlinear discriminant functions
can be generated from MP methods by transforming the variables [15], by forming
dichotomous categorical variables from the original variables [16], based on piecewise-
linear functions [17] and on kernel transformations that attempt to render the data linearly
separable, or by using Multihyperplanes formulations [18].

The aim of this paper is, thus, to conduct a comparative study in which we analyze
the performance of three statistical methods: (1) the Linear Discriminant Function method
(LDF), (2) the Logistic function (LG), and (3) Quadratic Discriminant Function (QDF) along
with five MP methods based on linear discriminant functions: the MSD model, the Ragsdale
and Stam [19] (RS) model, the model of Lam et al. [12] (LPM), the Lam and Moy [10]
model MC, and the MCA model [20]. These methods will be compared to the second-order
MSD model [15], the popular SVM-based approach, the piecewise-linear models, and the
Multihyperplanes models. New classification procedures adapted to the last models based on
nonlinear discriminant functions will be proposed. Different applications in the financial and
medicine domains are used to compare the different models. We will examine the conditions
under which these various approaches give similar or different results.

In this paper, we report on the results of the different approaches cited above. The
paper is organized as follows: first, we discuss the standard MP discriminant models,
followed by a presentation of MP discriminant models based on nonlinear functions.
Then, we develop new classification model based on piecewise-nonlinear functions and
hypersurfaces. Next, we present the datasets used in the analysis process. Finally, we compare
the performance of the classical and the different MP models including the SVM-based
approach and draw our conclusions.
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2. The MP Methods

In general, DA is applied to two or multiple groups. In this paper, we discuss the case of
discrimination with two groups. Consider a classification problem with k attributes. Let Xh

be an (nh x k) matrix representing the attributing scores of a known sample of nh objects
from the group h(Gh h = 1, 2). Hence, xij is the value of the jth attribute for the ith object,
aj is the weight assigned to the jth attribute in the linear combination which identifies the
hyperplane, and

∑
h(k x k) is the variance-covariance matrices of group h.

2.1. The Linear MP Models for Classification Problem

In this section, we will present seven MP formulations for classification problem. These
formulations assume that all group G1(G2) cases are below (above) the cutoff score c. This
score defines the hyperplane which allows the two groups to be separated as follows:

k∑

j=1

xijaj ≤ c ∀i ∈ G1, (2.1)

k∑

j=1

xijaj > c ∀i ∈ G2 (2.2)

(aj and c are free), with c: the cutoff value or the threshold.
The MP models provide unbounded, unacceptable solutions and are not invariant to a

shift of origin. To remove these weaknesses, different normalization constraints are proposed:
(N1)

∑k
j=1 aj + c = 1; (N2)

∑k
j=1 aj = c [4]; (N3) the normalization constant ± 1, that is,

c = ± 1, by defining binary variables c+and c− such as c = c+ − c− with c+ + c− = 1; and
(N4) the normalization for invariance under origin shift [11]. In the normalization (N4), the
free variables aj are represented in terms of two nonnegative variables (a+j and a−j ) such as
aj = a+j −a−j and constraining the absolute values of the aj(j = 1, 2, . . . , k) to sum to a constant
as follows:

k∑

j=1

(
a+j + a

−
j

)
= 1. (2.3)

By using the normalization (N4), two binary variables ζ+j and ζ−j will be introduced in the
models in order to exclude the occurrence of both a+j > 0 and a−j > 0 [11]. The definition of ζ+j
and ζ−j requires the following constraints:

εζ+j ≤ a+j ≤ ζ+j , εζ−j ≤ a−j ≤ ζ−j j = 1, . . . , k, (2.4)

ζ+j + ζ
−
j ≤ 1 j = 1, . . . , k,

ζ+j =
0
1
, ζ−j =

0
1
, a+j ≥ 0, a−j ≥ 0.

(2.5)

The classification rule will assign the observation x0 into group G1 if
∑k

j=1 x0jaj ≤ c and into
group G2, otherwise.
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2.1.1. MSD Model (Minimize the Sum of Deviations)

The problem can be expressed as follows:

minimize
∑

i

di (2.6)

subject to

k∑

j=1

xijaj ≤ c + di ∀i ∈ G1, (2.6a)

k∑

j=1

xijaj > c − di ∀i ∈ G2 (2.6b)

(aj and c are free and di ≥ 0 for all i), where di is the external deviation from the hyperplane
for observation i.

The objective takes zero value if the two groups can be separated by the hyperplane.
It is necessary to introduce one of the normalization constraints cited above to avoid
unacceptable solutions that assign zero weights to all discriminant coefficients.

2.1.2. Ragsdale and Stam Two-Stage Model (RS) [19]

minimize
∑

i

di (2.7)

subject to

k∑

j=1

xijaj − di ≤ c1 ∀i ∈ G1, (2.7a)

k∑

j=1

xijaj + di > c2 ∀i ∈ G2 (2.7b)

(aj are free and di ≥ 0 for all i), where c1 and c2 are two predetermined constants with c1 < c2.
The values chosen by Ragsdale and Stam are c1 = 0 and c2 = 1. Two methods were proposed
to determine the cutoff value. The first method is to choose the cutoff value equal to (c1+c2)/2.
The second method requires the resolution of another LP problem which minimizes only the
observation deviations whose classification scores lie between c1 and c2. The observations
that have classification scores below c1 or above c2 are assumed to be correctly classified.
The advantage of this latter method is to exclude any observation with classification scores
on the wrong side of the hyperplane. However, for simplicity, we use the first method in
our empirical study. Moreover, we will solve the model by considering c1 and c2 decision
variables by adding the constraints:

c2 − c1 = 1. (2.7c)



Advances in Operations Research 5

2.1.3. Lam et al. Method [9, 12]

This model abbreviated as LPC is defined by the following.

minimize
∑

i∈G1

(
d+
i + d

−
i

)
+
∑

i∈G2

(
e+i + e

−
i

)
(2.8)

subject to

k∑

j=1

xijaj + d−
i − d+

i = c1 ∀i ∈ G1, (2.8a)

k∑

j=1

xijaj + e−i − e+i = c2 ∀i ∈ G2, (2.8b)

c2 − c1 ≥ 1 (normalization constraint) (2.8c)

(c1, c2, aj are free), where d+
i and d−

i are, respectively, the external and the internal devi-
ations from the discriminant axis to observation i in group 1.

e+i and e−i are, respectively, the internal and the external deviations from the dis-
criminant axis to observation i in group 2.

c1 and c2 are defined as decision variables and can have different significant
definitions.

A particular case of this model is that of Lee and Ord [21] which is based on minimal
absolute deviations with c1 = 0 and c2 = 1.

A new formulation of LPC is to choose ch (h = 1, 2) as the mean group of the
classification scores of the group h, as follows (LPM):

minimize
∑

i∈G1

(
d+
i + d

−
i

)
+
∑

i∈G2

(
e+i + e

−
i

)
(2.9)

subject to

k∑

j=1

(
xij − μ1j

)
aj + d−

i − d+
i = 0 ∀i ∈ G1, (2.9a)

k∑

j=1

(
xij − μ2j

)
aj + e−i − e+i = 0 ∀i ∈ G2, (2.9b)

k∑

j=1

(
μ2j − μ1j

)
aj ≥ 1, (2.9c)

with μhj =
∑

r∈Gh xrj/nh as the mean of all xrj through the group Gh and nh is the number of
observations in the group Gh.
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The objective of the LPM model is to minimize the total deviations of the classification
scores from their group mean scores in order to obtain the attribute weights aj which are
considered to be more stable than those of the other LP approaches. The weighting obtained
from the resolution of LPM will be utilized to compute the classification scores of all the
objects. Lam et al. [12] have proposed two formulations to determine the cutoff value c. One
of these formulations consists of minimizing the sum of the deviations from the cutoff value
c (LP2).

The linear programing model LP2 is illustrated as follows:

minimize
n∑

i=1

di (2.10)

subject to

k∑

j=1

xijaj − di ≤ c ∀i ∈ G1, (2.10a)

k∑

j=1

xijaj + di ≥ c ∀i ∈ G2 (2.10b)

(c is free, and di ≥ 0).

2.1.4. Combined Method [10]

This method combines several discriminant methods to predict the classification of the new
observations. This method is divided into two stages: the first stage consists of choosing
several discriminant models. Each method is then applied independently. The results from
the application of each method provide a classification score for each observation. The group
having the higher group-mean classification score is denoted as GH and the one having the
lower group-mean classification score is denoted asGL. The second stage consists of calculating
the partial weights of the observations using the scores obtained in the first stage. For
group GH , the partial weight tri of the ith observation obtained from solving the r method
(r = 1, . . . , R where R is the number of methods utilized) is calculated as the difference
between the observation’s classification scores and the group-minimum classification score
divided by the difference between the maximum and the minimum classification scores:

tri =

∑k
j=1 xijarj − Min

(∑k
j=1 xijarj , i ∈ GH

)

Max
(∑k

j=1 xijarj , i ∈ GH

)
− Min

(∑k
j=1 xijarj , i ∈ GH

) i ∈ GH. (2.11)

The largest partial weight is equal to 1 and the smallest partial weight is equal to zero.
The same calculations are used for each observation of the group GL, but in this

case, the partial weight of each observation is equal to one minus the obtained value in the
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calculation. Thus, in this group, the observations with the smallest classification scores are
the observations with the greatest likelihood of belonging to this group:

tri = 1 −
∑k

j=1 xijarj − Min
(∑k

j=1 xijarj , i ∈ GL

)

Max
(∑k

j=1 xijarj , i ∈ GL

)
− Min

(∑k
j=1 xijarj , i ∈ GL

) i ∈ GL. (2.12)

The same procedure is repeated for all the discrimination methods used in the combined
method. The final combined weightwi is the sum of all the partial weights obtained. The final
combined weights of all observations are used as the weighting for the objective function of
the LP model in the second stage. A larger combined weight for one observation indicates
that there is little chance that this observation has been misclassified. For each combined
weight, the authors add a small positive constant ε in order to ensure that all the observations
are entered in the classification model, even for those observations with the smallest partial
weights obtained by all the discriminant methods.

The LP formulation which combines the results of different discriminant methods is
the following weighting MSD (W-MSD) model:

minimize
∑

i

widi (2.13)

subject to

k∑

j=1

xijaj ≤ c + di ∀i ∈ G1, (2.13a)

k∑

j=1

xijaj ≥ c − di ∀i ∈ G2, (2.13b)

k∑

j=1

aj + c = 1 (2.13c)

(aj and c are free for all j and di ≥ 0 for all i). The advantage of this model is its ability to
weight the observations. Other formulations are also possible, for example, the weighting RS
model (W-RS).

In our empirical study, the three methods LDF, MSD, and LPM are combined in order
to form the combined method MC1. Methods LDF, RS, and LPM are combined in order to
form the combined method MC2. Other combined methods are also possible.

2.1.5. The MCA Model [22]

maximize
2∑

h=1

nh∑

i=1

βhi (2.14)
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subject to

k∑

j=1

xijaj − c + (M + Δ)β1i ≤M i ∈ G1, (2.14a)

k∑

j=1

xijaj − c − (M + Δ)β2i ≥ −M i ∈ G2 (2.14b)

(aj , c are free, βhi = 0, 1, h = 1, 2, i = 1, . . . , nh), with βhi = 1 if the observation is classified
correctly, Δ,Δ > 0 is very small, and M,M > 0 is large. The model must be normalized to
prevent trivial solutions.

2.1.6. The MIP EDEA-DA Model (MIP EDEA-DA) [23]

Two stages characterize this model:
First stage (classification and identification of misclassified observations) is to

minimize d (2.15)

subject to

k∑

j=1

xij
(
a+j − a−j

)
− c − d ≤ 0 i ∈ G1, (2.15a)

k∑

j=1

xij
(
a+j − a−j

)
− c + d ≥ 0 i ∈ G2, (2.15b)

k∑

j=1

(
a+j + a

−
j

)
= 1, (2.15c)

εζ+j ≤ a+j ≤ ζ+j , εζ−j ≤ a−j ≤ ζ−j j = 1, . . . , k, (2.15d)

ζ+j + ζ
−
j ≤ 1 j = 1, . . . , k, (2.15e)

k∑

j=1

(
ζ+j + ζ

−
j

)
= k, (2.15f)

(ζ+j = 0/1, ζ−j = 0/1, d and c are free), with a∗j = (a+∗j − a−∗j ) with c∗ and d∗ being the optimal
solution of the model (2.15). There are two cases.

(i) If d∗ < 0, then there is no misclassified observations and all the observations are
classed in either group 1 or group 2 by

∑
j xija

∗
j = c∗. We stop the procedure at this

stage.

(ii) If d∗ > 0, then there are misclassified observations and then comes stage 2 after
classifying the observations in these appropriate ensembles (E1, E2).
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The classification rule is

if
∑k

j=1 a
∗
j xij < c

∗ + d∗, then i ∈ G1 (= E1),

if
∑k

j=1 a
∗
j xij > c

∗ − d∗, then i ∈ G2 (= E2),

if c∗ − d∗ ≤ ∑k
j=1 a

∗
j xij ≤ c∗ + d∗, then the appropriate group of observation i is

determined by the second stage.

Second stage (classification) is to

minimize
∑

i∈C1

ri +
∑

i∈C2

ri (2.16)

subject to

k∑

j=1

xij
(
a+j − a−j

)
− c −Mri ≤ −ε i ∈ C1, (2.16a)

k∑

j=1

xij
(
a+j − a−j

)
− c +Mri ≥ 0 i ∈ C2, (2.16b)

k∑

j=1

(
a+j + a

−
j

)
= 1, (2.16c)

εζ+j ≤ a+j ≤ ζ+j , εζ−j ≤ a−j ≤ ζ−j j = 1, . . . , k, (2.16d)

ζ+j + ζ
−
j ≤ 1 j = 1, . . . , k, (2.16e)

k∑

j=1

(
ζ+j + ζ

−
j

)
= k, (2.16f)

where (ζ+j = 0/1, ζ−j = 0/1, a+j ≥ 0, a−j ≥ 0, ri = 0/1, and c is free), with C1 = G1 − E1, C2 =
G2 − E2.

The classification rule is

if
∑k

j=1 a
∗
j xij ≤ c∗ − ε, then i ∈ G1,

if
∑k

j=1 a
∗
j xij > c

∗, then i ∈ G2.

The advantage of this model is to minimize the number of misclassified observations.
However, the performance of the model depends on the choice of numbers M and ε which
are subjectively determined by the searcher and depends also on the choice of the computer
science used for resolving the model.
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2.2. The Nonlinear MP Models

2.2.1. The Second-Order MSD Formulation [15]

The form of the second-order MSD model is to

minimize
∑

i∈G1

d+
1i +
∑

i∈G2

d−
2i (2.17)

subject to

k∑

j=1

xijajL +
k∑

j=1

x2
ijajQ +

∑

h/=m

xihximahm + d−
1i − d+

1i ≤ c ∀i ∈ G1, (2.17a)

k∑

j=1

xijajL +
k∑

j=1

x2
ijajQ +

∑

h/=m

xihximahm + d−
2i − d+

2i ≥ c ∀i ∈ G2, (2.17b)

k∑

j=1

ajL +
k∑

j=1

ajQ +
∑

h/=m

ahm + c = 1 (2.17c)

where (ajL, ajQ, ahm are free, h, j, m = 1, . . . , k, d+
ri, d

−
ri ≥ 0, r = 1, 2, i = 1, . . . , n), ajL is the

coefficient for the linear terms xij of attribute j, ajQ are the coefficients for quadratic terms x2
ij

of attribute j, ahm are the coefficients for the cross-product terms involving attributes h and
m, d+

ri, d
−
ri are the external deviations of group r observations, and c is the cutoff value.

The constraint (2.17c) is the normalization constraints which prevent trivial solution.
Other normalization constraints are also possible [4, 11]. It is interesting to note that the cross-
product terms can be eliminated from the model when the attributes are uncorrelated [15].

In order to reduce the influence of the group size and give more importance to each
group deviation costs, we propose the replacement of the objective function (2.17) by the
following function (2.17′):

(1 − λ)
∑n1

i=1 d+
1i

n1
+ λ

∑n2
i=1 d−

2i

n2
, (2.17′)

with λ ∈ [0, 1] a constant representing the relative importance of the cost associated with
misclassification of the first and the second groups.

The classification rule is

if
∑

j

xija
∗
jL +

∑

j

x2
ija

∗
jQ +

∑

h/=m

xihxima
∗
hm ≤ c∗, then x0 ∈ G1,

otherwise x0 ∈ G2.

(2.18)

2.2.2. The Piecewise-Linear Models [17]

Recently, two piecewise-linear models are developed by Glen: the MCA and MSD piecewise
models. These methods suppose the nonlinearity of the discriminant function. This
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B’

A’

B

Group 1
Group 2

Figure 1: A two-group discriminant problem in two variables.

nonlinearity is approximated by piecewise-linear functions. The concept is illustrated in
Figure 1.

In Figure 1, the piecewise-linear functions are ACB’ and BCA’, while the component
linear functions are represented by the lines AA’ and BB’. Note that for the piecewise-
linear function ACB’, respectively, BCA’, the region of correctly classified group 2 (group
1) is convex. However, the region for correctly classified group 1 (group 2) observations
is nonconvex. The optimal of the linear discriminant function is obtained when the two
precedent cases are considered separately. The MP must be solved twice: once to constrain
all of group 1 elements to a convex region and once to constrain all of group 2 elements to a
convex region. Only the second case is considered in developing the following MP models.

(a) The Piecewise-Linear MCA Model [17]

The MCA model for generating a piecewise-linear function in s segment is:

maximize
2∑

h=1

nh∑

i=1

βhi (2.19)

subject to

k∑

j=1

xij
(
a+lj − a−lj

)
+ (M + ε)δli ≤ cl +M i ∈ G1, l = 1, . . . , s, (2.19a)

k∑

j=1

xij
(
a+lj − a−lj

)
− (M + ε)β2i ≥ cl −M i ∈ G2, l = 1, . . . , s, (2.19b)

s∑

l=1

δli − β1i ≥ 0 i ∈ G1, (2.19c)

k∑

j=1

(
a+lj + a

−
lj

)
= 1 l = 1, . . . , s, (2.19d)
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where cl is free, a+lj , a
−
lj ≥ 0, l = 1, . . . , s, j = 1, . . . , k, βhi = 0, 1, h = 1, 2, i = 1, . . . , nh, and

δli = 0, 1, l = 1, 2, . . . , s i = 1, . . . , n1, with ε, ε > 0 being a small interval, within which the
observations are considered as misclassified, and M is a positive large number,

βhi = 1 if the observation is correctly classified,
δli = 1 (i ∈ G1), if the group 1 observation is correctly classified by function l on its

own.
The correctly classified group 2 observation can be identified by the s constraints of

type (2.19b). An observation of group 1 is correctly classified only if it is correctly classified
by at least one of the s segments of the piecewise-linear function (constraint (2.19c)).

The classification rule of an observation x0 is

if
k∑

j=1

x0ja
∗
lj ≤ c∗l , then x0 ∈ G1,

otherwise x0 ∈ G2.

(2.20)

A similar model must also be constructed for the case in which the nonconvex region is
associated with group 2 and the convex region is associated with group 1.

(b) The Piecewise-Linear MSD Model [17]:

minimize
2∑

h=1

nh∑

i=1

dhi, (2.21)

subject to

k∑

j=1

xij
(
a+lj − a−lj

)
− eli ≤ cl − ε i ∈ G1, l = 1, ..., s, (2.21a)

k∑

j=1

xij
(
a+lj − a−lj

)
+ fli ≥ cl + ε i ∈ G2, l = 1, ..., s, (2.21b)

k∑

j=1

(
a+lj + a

−
lj

)
= 1 l = 1, . . . , s, (2.21c)

d2i − fli ≥ 0 i ∈ G2, l = 1, . . . , s, (2.21d)

eli − epi +Uδli ≤ U i ∈ G1, l = 1, . . . , s, p = 1, . . . , s
(
p /= l
)
, (2.21e)

d1i − eli +Uδli ≥ −U i ∈ G1, l = 1, . . . , s, (2.21f)

s∑

l=1

δli = 1 i ∈ G1, (2.21g)
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where cl is free, a+lj , a
−
lj ≥ 0, (l = 1, . . . , s, j = 1, . . . , k), dhi = 0, 1 (h = 1, 2, i = 1, . . . , nh), eli ≥

0, δli = 0, 1 (l = 1, . . . , s, i = 1, . . . , n1), and fli ≥ 0 (l = 1, . . . , s, i = 1, . . . , n2), with ε, ε > 0
being a small interval and U, U > 0 being an upper bound on eli.

eli is the deviation of group 1 observation i from component function l of the piecewise-
linear function, where eli = 0 if the observation is correctly classified by function l on its own
and eli > 0 if the observation is misclassified by function l on its own.

fli is the deviation of group 2 observation i from component function l of the piecewise-
linear function, where fli = 0 if the observation is correctly classified by function l on its own
and fli > 0 if the observation is misclassified by function l on its own. A group 2 observation
is correctly classified if it is classified by each of the s component functions.

d2i is the lower bound on the deviation of group 2 observation i from the s segment
piecewise-linear discriminant function, where d2i = 0 if the observation is correctly classified
and d2i > 0 if the observation is misclassified.

The binary variable δli is introduced in the model to determine d1i by detecting the
minimal deviation eli.

The classification rule is the same as that of the piecewise-linear MCA.
The two piecewise-linear MCA and MSD models must be solved twice: once to

consider all group 1 observations in convex region and once to consider all group 2
observations in convex region, in order to obtain the best classification. Other models have
been developed by Better et al. [18]. These models are more effective for more complex
datasets than for the piecewise-linear models and do not require that one of the groups belong
to a convex region.

2.2.3. The Multihyperplanes Models [18]

The multihyperplanes models can be interpreted as models identifying many hyperplanes
used successively. The objective is to generate tree conditional rules to separate the points.
This approach constitutes an innovation in the area of Support Vector Machines (SVMs) in
the context of successive perfect separation decision tree. The advantage of this approach is to
construct a nonlinear discriminant function without the need for kernel transformation of the
data as in SVM. The first model using multihyperplanes is the Successive Perfect Separation
decision tree (SPS).

(a) The Successive Perfect Separation Decision Tree (SPS)

The specific structure is developed in the context of SPS decision tree. The decision tree is a
tree which results from the application of the SPS procedure. In fact, this procedure permits,
at each depth l < D, to compel all the observations of either group 1 or group 2 to lie on
one side of the hyperplane. Thus, at each depth the tree has one leaf node that terminates the
branch that correctly classifies observations in a given group.

In Figure 2, the points represented as circles and triangles must be separate. The PQ,
QR, and RS segments of the three hyperplanes separate all the points. We can remark that
the circles are correctly classified either by H1 or by H2 and H3. However, the triangles are
correctly classified by the tree if it is correctly classified by H1 and H2 or by H1 and H3.
Several tree types are possible. Specific binary variables called “slicing variables” are used to
describe the specific structure of the tree. These variables define how the tree is sliced in order
to classify an observation correctly.
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Figure 2: One particular type of SPS tree for D = 3.

The specific structure SPS decision tree model is formulated as follows:

D = 3,

minimize
n∑

i=1

δ∗i
(2.22)

subject to

k∑

j=1

xijajd −Mδdi ≤ cd − ε i ∈ G1, d = 1, 2, 3, (2.22a)

k∑

j=1

xijajd +Mδdi ≥ cd + ε i ∈ G2, d = 1, 2, 3, (2.22b)

M(sl1 + sl2) + δ∗i ≥ δ1i + δ2i + δ3i − 2 i ∈ G1, (2.22c)

M(sl1 + sl2) +Mδ∗i ≥ δ1i + δ2i + δ3i i ∈ G2, (2.22d)

M(2 − sl1 − sl2) +Mδ∗i ≥ δ1i + δ2i + δ3i i ∈ G1, (2.22e)

M(2 − sl1 − sl2) + δ∗i ≥ δ1i + δ2i + δ3i − 2 i ∈ G2, (2.22f)

M(1 + sl1 − sl2) + δ∗i ≥ δ1i −Mμi i ∈ G1, (2.22g)

M(1 + sl1 − sl2) +Mδ∗i ≥ δ2i + δ3i −M
[
1 − μi

]
i ∈ G1, (2.22h)

M(1 + sl1 − sl2) + δ∗i ≥ δ1i i ∈ G2, (2.22i)

M(1 + sl1 − sl2) + δ∗i ≥ δ2i + δ3i − 1 i ∈ G2, (2.22j)

M(1 − sl1 + sl2) + δ∗i ≥ δ1i i ∈ G1, (2.22k)

M(1 − sl1 + sl2) + δ∗i ≥ δ2i + δ3i − 1 i ∈ G1, (2.22l)

M(1 − sl1 + sl2) + δ∗i ≥ δ1i −Mμi i ∈ G2, (2.22m)

M(1 − sl1 + sl2) +Mδ∗i ≥ δ2i + δ3i −M
[
1 − μi

]
i ∈ G2, (2.22n)

k∑

j=1

3∑

d=1

ajd = 1, (2.22o)



Advances in Operations Research 15

noting that δi ∈ {0, 1} (i ∈ G1 ∪ G2), δdi ∈ {0, 1} (i ∈ G1 ∪ G2, d = 1, 2, 3), μi ∈ {0, 1} (i ∈
G1 ∪ G2), slt ∈ {0, 1} (t = 1, 2), and ajd, cd are free (j = 1, . . . , k), where M is large, while ε is
very small constant. Consider the following:

δ∗i =

⎧
⎨

⎩

0 if i is correctly classified by the tree,

1 otherwise,

δdi =

⎧
⎨

⎩

0 if i is correctly classified by hyperplane d,

1 otherwise.

(2.23)

The (2.22c) and (2.22d) constraints represent the type of tree (0, 0) and are activated
when sl1 = 0 and sl2 = 0. Similarly, the (2.22e) and (2.22f) constraints for tree type (1, 1)
will only be activated when sl1 = 1 and sl2 = 1. However, for the tree types (0, 1) and (1, 0)
corresponding to (2.22g)–(2.22n) constraints, a binary variable μi is introduced in order to
activate or deactivate either of the constraints relevant to these trees. In fact, when sl1 =
0 and sl2 = 1, the (2.22g)–(2.22j) constraints for tree type (0, 1) will be activated so that an
observation from group 1 will be correctly classified by the tree if it is correctly classified
either by the first hyperplane or by both the second and the third hyperplanes. On the other
hand, an observation from group 2 is correctly classified by the tree if it is correctly classified
either by the hyperplanes 1 and 2 or by the hyperplanes 2 and 3.

This classification is established in the case where μi = 0 which permits to activate
constraints (2.22g) and (2.22h). The case that corresponds to tree type (1, 0) is just a “mirror
image” of previous case. However, the model becomes difficult to resolve when the number
of possible tree types increases (D large). In fact, as D increases, the number of possible tree
types increases and so does the number of constraints. For these reasons, Better et al. [18]
developed the following model.

(b) The General Structure SPS Model (GSPS)

minimize
n∑

i=1

δi[D] (2.24)

subject to

k∑

j=1

xijajd −M
(

d−1∑

h=1

vih + δid

)

≤ cd − ε i ∈ G1, d = 1, . . . , D, (2.24a)

k∑

j=1

xijajd +M

(
d−1∑

h=1

vih + δid

)

≥ cd + ε i ∈ G2, d = 1, . . . , D, (2.24b)

μd ≥ δid i ∈ G1, d = 1, . . . , D − 1, (2.24c)

1 − μd ≥ δid i ∈ G2, d = 1, . . . , D − 1, (2.24d)
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Figure 3: A two-group discriminant problem.

vid ≤ μd i ∈ G1, d = 1, . . . , D − 1, (2.24e)

vid ≤ 1 − μd i ∈ G2, d = 1, . . . , D − 1, (2.24f)

vid ≤ 1 − δid i ∈ G1 ∪G2, d = 1, . . . , D − 1, (2.24g)

k∑

j=1

D∑

d=1

ajd = 1, (2.24h)

where δdi ∈ {0, 1} (i ∈ G1 ∪ G2, d = 1, . . . , D), μd ∈ {0, 1} (i ∈ G1 ∪ G2, d = 1, . . . , d − 1), 0 ≤
vid ≤ 1 (d = 1, . . . , D − 1), and ajd, cd are free (j = 1, . . . , k, d = 1, . . . , D). The variables μd and
vid are not included in the final hyperplane (D). The variable μd is defined as

μd =

⎧
⎨

⎩

0

1

if all i ∈ G1 are compelled to lie on one side of hyperplane d,

if all i ∈ G1 are compelled to lie on one side of hyperplane d.
(2.25)

The constraints (2.24c) and (2.24d) permit to lie all group 1 or group 2 observations on one
side of the hyperplane according to μd value. In fact, due to constraint (2.24c), if μd = 0,
all group 1 observations and possibly some group 2 observations lie on one side of the
hyperplane d. However, only observations of group 2 will lie on the other side of hyperplane
d and so these observations can be correctly classified. Conversely, due to constraint (2.24d), if
μd = 1, the observations correctly classified by the tree will be those belonging to group 1. The
variables vi1 permit to identify the correctly classified and misclassified observations of each
group from the permanent value 1—δi1. In fact, in the case where μ1 = 1, the permanent
values δi1 to establish are those of group1 observations such that δi1 = 0, because these
particular observations are separate in such manner that we do not need to consider them
again. Thus, for these last observations, the fact that μ1 = 1 and δi1 = 0 forces the vi1 to
equal 1. If we consider the case to force vi1 = 0 for group 1 observations, it means that these
observations have not yet permanently separated from group 2 observations and one or more
hyperplanes are necessary to separate them. Thus, vi1 = 0 if μ1 = 0 or δi1 = 1 (verified by the
constraints (2.24e) and (2.24g)).
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For the empirical study, the SPS and GSPS model will be resolved using the two
following normalization constraints:

N′1
k∑

j=1

D∑

d=1

ajd = 1,

N′2
k∑

j=1

ajd = 1.

d = 1, . . . , D, (2.26)

The developed models presented previously are based either on piecewise-linear separation
or on the multihyperplanes separation. New models based on piecewise-nonlinear separation
and on multihypersurfaces are proposed in the next section.

3. The Proposed Models

In this section different models are proposed. Some use the piecewise-nonlinear separation
and the others use the multihypersurfaces.

3.1. The Piecewise-Nonlinear Models (Quadratic Separation)

The piecewise-linear MCA and MSD models are based on piecewise-linear functions. To
ameliorate the performance of the models, we propose two models based on piecewise-
nonlinear functions. The base concept of these models is illustrated in Figure 3.

The curves AA’ and BB’ represent the piecewise-nonlinear component functions: ACB’
and BCA’. The interpretations are the same as those in Figure 1. However, we can remark that
the use of piecewise-nonlinear functions permits to minimize the number of misclassified
observations. Based on this idea, we suggest proposing models based on piecewise-nonlinear
functions. In these models we suggest to replace the first constraints of piecewise-linear MCA
and MSD models by the linear constraints which are nonlinear in terms of the attributes as
follows:

∑

j

xijaljL +
∑

j

x2
ijaljQ +

∑

h/=m

xihximalhm + (M + ε)δli ≤ cl +M ∀i ∈ G1 l = 1, . . . , s, (3.22a)

∑

j

xijaljL +
∑

j

x2
ijaljQ +

∑

h/=m

xihximalhm − (M + ε)β2i ≥ cl −M ∀i ∈ G2 l = 1, . . . , s, (3.22b)

where aljL, aljQ, alhm are unrestricted in sign, h, j,m = 1, . . . , k and l = 1, . . . , s, aljL are the linear
terms of attribute j for the function l, aljQ are the quadratic terms of attribute j for the function
l, alhm are the cross-product terms of attributes h and m for the function l.

Note that if the attributes are uncorrelated, the cross-product terms can be excluded
from the models. Other general nonlinear terms can, also, be included in the models. On the
other hand, the normalization constraint is replaced by the following constraint:

∑

j

aljL +
∑

j

aljQ +
∑

h/=m

alhm = 1 l = 1, . . . , s. (3.22c)

The piecewise-quadratic separation models obtained are the following.
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3.1.1. The Piecewise-Quadratic Separation MCA Model (QSMCA)

maximize
2∑

r=1

nr∑

i=1

βri (3.23)

subject to

k∑

j=1

xijaljL +
k∑

j=1

x2
ijaljQ +

∑

h/=m

xihximalhm + (M + ε)δli ≤ cl +M ∀i ∈ G1 l = 1, . . . , s, (3.23a)

k∑

j=1

xijaljL +
k∑

j=1

x2
ijaljQ +

∑

h/=m

xihximalhm − (M + ε)β2i ≤ cl +M ∀i ∈ G2 l = 1, . . . , s, (3.23b)

s∑

l=1

δli − β1i ≥ 0 i ∈ G1, (3.23c)

k∑

j=1

aljL +
k∑

j=1

aljQ +
∑

h/=m

alhm = 1 l = 1, . . . , s, (3.23d)

where cl, aljL, aljQ, alhm are unrestricted in sign (h, j,m = 1, . . . , k and l = 1, . . . , s), βri = 0, 1 (r =
1, 2, i = 1, . . . , nr), and δli = 0, 1 (l = 1, 2, . . . , s i = 1, . . . , n1). The classification rule of an
observation x0 is

if
k∑

j=1

x0ja
∗
ljL +

k∑

j=1

x0jx0ja
∗2
ljQ +

∑

h/=m

x0hx0ma
∗
lhm ≤ c∗l , then x0 ∈ G1,

otherwise x0 ∈ G2.

(3.24)

3.1.2. The Piecewise-Quadratic Separation MSD Model (QSMSD)

minimize
2∑

r=1

nr∑

i=1

dri (3.25)

subject to

k∑

j=1

xijaljL +
k∑

j=1

x2
ijaljQ +

∑

h/=m

xihximalhm − eli ≤ −cl − ε i ∈ G1, l = 1, . . . , s, (3.25a)

k∑

j=1

xijaljL +
k∑

j=1

x2
ijaljQ +

∑

h/=m

xihximalhm + fli ≥ cl + ε i ∈ G2, l = 1, . . . , s, (3.25b)

k∑

j=1

aljL +
k∑

j=1

aljQ +
∑

h/=m

alhm = 1 l = 1, . . . , s, (3.25c)
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Figure 4: One particular type of QSS tree for D = 2.

d2i − fli ≥ 0 i ∈ G2, l = 1, . . . , s, (3.25d)

eli − epi +Uδli ≤ U i ∈ G1, l = 1, . . . , s, p = 1, . . . , s
(
p /= l
)
, (3.25e)

d1i − eli +Uδli ≥ −U i ∈ G1, l = 1, . . . , s, (3.25f)

s∑

l=1

δli = 1 i ∈ G1, (3.25g)

where c is free, a+
lj
, a−

lj
≥ 0 (l = 1, . . . , s, j = 1, . . . , k), dri = 0, 1 (r = 1, 2, i = 1, . . . , nr), eli ≥

0 (δli = 0, 1 l = 1, . . . , s, i = 1, . . . , n1), and fli ≥ 0 (l = 1, . . . , s, i = 1, . . . , n2).
The interpretation of this model is the same as that of piecewise-linear MSD model. The
classification rule is the same as that of QSMCA model.

The construction of piecewise QSMSD and QSMCA models, using the case in which
group 1 is in the convex region and the group 2 in the nonconvex region, is also valuable.
However, despite the complexity of these models (especially when the datasets are very
large), the advantage of piecewise QSMSD and QSMCA models is accelerating the reach
of an optimal solution using a reduced number of arcs than segments. But, the disadvantage
of the models remains the necessity to resolve twice these models: the case in which group1
is convex and the case in which group 2 is convex. The following quadratic specific structure
models could be a way of solving these problems, accelerating the reach of possible solutions
to the different models and finding answers to problems of large size.

3.2. The Quadratic Specific Structure Models (QSS)

The quadratic specific structure models are based on the use of nonlinear separation. The
following figure illustrates a particular case of the QSS models.

In Figure 4, the points are separated using two curves ϕ1and ϕ2. The circle are well
classified by ϕ1 or by ϕ2 and the triangles are well classified by ϕ1 and ϕ2. As for SPS and
GSPS, many tree-specific structures are possible for QSS models. Based on this idea, the
quadratic SPS and the quadratic GSPS models are proposed.

3.2.1. The Quadratic SPS Model (QSPS)

Similar to the piecewise QSMSD and QSMCA models, the first constraints of SPS model are
replaced by the linear constraints which are nonlinear in terms of the attributes. The QSPS
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model is the following:

D = 3,

minimize
n∑

i=1

δ∗i
(3.26)

subject to

k∑

j=1

xijadjL +
k∑

j=1

x2
ijadjQ +

∑

h/=m

xihximadhm −Mδdi ≤ cd − ε i ∈ G1, d = 1, 2, 3, (3.26a)

k∑

j=1

xijaljL +
k∑

j=1

x2
ijaljQ +

∑

h/=m

xihximadhm +Mδdi ≥ cd + ε i ∈ G2, d = 1, 2, 3, (3.26b)

M(sl1 + sl2) + δ∗i ≥ δ1i + δ2i + δ3i − 2 i ∈ G1, (3.26c)

M(sl1 + sl2) +Mδ∗i ≥ δ1i + δ2i + δ3i i ∈ G2, (3.26d)

M(2 − sl1 − sl2) +Mδ∗i ≥ δ1i + δ2i + δ3i i ∈ G1, (3.26e)

M(2 − sl1 − sl2) + δ∗i ≥ δ1i + δ2i + δ3i − 2 i ∈ G1, (3.26f)

M(1 + sl1 − sl2) + δ∗i ≥ δ1i −Mμi i ∈ G1, (3.26g)

M(1 + sl1 − sl2) +Mδ∗i ≥ δ2i + δ3i −M
[
1 − μi

]
i ∈ G1, (3.26h)

M(1 + sl1 − sl2) + δ∗i ≥ δ1i i ∈ G2, (3.26i)

M(1 + sl1 − sl2) + δ∗i ≥ δ2i + δ3i − 1 i ∈ G2, (3.26j)

M(1 − sl1 + sl2) + δ∗i ≥ δ1i i ∈ G1, (3.26k)

M(1 − sl1 + sl2) + δ∗i ≥ δ2i + δ3i − 1 i ∈ G1, (3.26l)

M(1 − sl1 + sl2) + δ∗i ≥ δ1i −Mμi i ∈ G2, (3.26m)

M(1 − sl1 + sl2) +Mδ∗i ≥ δ2i + δ3i −M
[
1 − μi

]
i ∈ G2, (3.26n)

k∑

j=1

adjL +
k∑

j=1

adjQ +
∑

h/=m

adhm = 1 d = 1, . . . , D, (3.26o)

where δ∗i ∈ {0, 1} (i ∈ G1 ∪ G2), δdi ∈ {0, 1} (i ∈ G1 ∪ G2, d = 1, 2, 3), μi ∈ {0, 1} (i ∈ G1 ∪
G2), slt ∈ {0, 1} (t = 1, 2), and adjL, adjQ, adhm, cd are free (j = 1, . . . , k).
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3.2.2. The Quadratic GSPS (QGSPS)

Replacing the first constraints of GSPS model by the linear constraints which are nonlinear in
terms of the attributes like those of the QSPS model, we obtain the following QGSPS model:

minimize
n∑

i=1

δi[D] (3.27)

subject to

k∑

j=1

xijaljL +
k∑

j=1

x2
ijaljQ +

∑

h/=m

xihximadhm −M
(

d−1∑

h=1

vih + δid

)

≤ cd − ε i ∈ G1, d = 1, . . . , D,

(3.27a)

k∑

j=1

xijaljL +
k∑

j=1

x2
ijaljQ +

∑

h/=m

xihximadhm +M

(
d−1∑

h=1

vih + δid

)

≥ cd + ε i ∈ G2, d = 1, . . . , D,

(3.27b)

μd ≥ δid i ∈ G1, d = 1, . . . , D − 1, (3.27c)

1 − μd ≥ δid i ∈ G2, d = 1, . . . , D − 1, (3.27d)

vid ≤ μd i ∈ G1, d = 1, . . . , D − 1, (3.27e)

vid ≤ 1 − μd i ∈ G2, d = 1, . . . , D − 1, (3.27f)

vid ≤ 1 − δid i ∈ G1 ∪G2, d = 1, . . . , D − 1, (3.27g)

k∑

j=1

adjL +
k∑

j=1

adjQ +
∑

h/=m

adhm = 1 d = 1, . . . , D, (3.27h)

where δdi ∈ {0, 1} (i ∈ G1 ∪ G2, d = 1, . . . , D), μd ∈ {0, 1} (i ∈ G1 ∪ G2, d = 1, . . . , D − 1), 0 ≤
vid ≤ 1 (d = 1, . . . , D − 1), and adjL, adjQ, adhm, cd are free (j = 1, . . . , k, d = 1, . . . , D).

As mentioned above, the cross-products terms can be excluded from the quadratic
models if the attributes are uncorrelated and other types of nonlinear functions are possible.

4. A Comparative Study

4.1. The Datasets

In this study we choose four datasets.

(i) The first dataset (D1) is data presented by Johnson and Wichern [24] used by Glen
[11] who were trying to apply new approaches to the problem of variable selections
using an LP model. This dataset consists of 46 firms (21 bankrupt firms and 25 non-
bankrupt firms). The four variables measured were the following financial ratios:
cash flow to total debt, net income to total assets, current assets to current liabilities,
and current assets to net sales.
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Table 1: Normality test and equality of the variance-covariance matrices.

Dataset Normality Equality of the variance-covariance matrices (
∑

1 =
∑

2)
D1 Unverified Verified
D2 Unverified Unverified
D3 Unverified Verified
D4 Unverified Unverified

(ii) The second dataset (D2) is a Tunisian dataset. The data concerns 62 tumors of breast.
Five variables characterize these tumors: four proteins expression scores (EGFR,
Her2, Her3, and estrogens) and the size of these tumors in cm. The tumors are
divided into two groups according to the SBR grad (grads II and III) which reflects
the advancement state of the cancer (source: Centre of Biotechnology of Sfax).

(iii) The third dataset is a Japanese dataset (D3). This data contains 100 Japanese banks
divided into two groups of 50. Seven financial ratios (return on total assets, equity
to total assets, operating costs to profits, return on domestic assets, bad loan ratio,
loss ratio on bad loans, and return on equity) characterize this data [25].

(iv) The fourth dataset is the Wisconsin Breast Cancer data (D4). This data consist of
683 patients screened for breast cancer divided into two groups: 444 representing a
benign case and 139 representing a malignant tumor. Nine attributes characterize
this data (clump thickness, uniformity of cell size, uniformity of cell shape,
Marginal Adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal
nucleoli, mitoses) (ftp://ftp.ics.uci.edu/pub/machine-learning-databases/breast-
cancer-wisconsin/).

The objective is to discriminate between the groups of each dataset using the various
methods cited above.

4.2. The Results

Different studies have shown that the reliability of the LDF method depends on the
verification of certain hypotheses such as the normality of the data and the equality of
the variance-covariance matrices. The results obtained from testing these hypotheses in our
datasets are shown in Table 1.

The computer program AMOS 4 is used to verify the normality. To verify the
equality of the variance-covariance matrices and to determine the classification rates, the
SPSS program is used. According to Table 1, the normality hypothesis is not verified for
all datasets, but the equality of variance-covariance matrices is verified for D1 and D3
datasets and not verified for the second and the fourth datasets. The results of the statistical
approaches are obtained using SPSS program. The SVM-based approach is solved by the
WinSVM package. The experiments are conducted by an Intel (R) Celeron (R) M, processor
1500 MHz in C/C + + environment. Various MPs were solved by CPLEX 10.0 package. For
the experiment, we have chosen M = 1000 and ε = Δ = 0.005. Microsoft Excel is used to
determine the apparent hit rates (proportion of observations classified correctly), the Leave-
One-Out (LOO) hit rates, and the holdout sample hit rates which represents the performance
measures to be compared between the models. In fact, in order to evaluate the performance
of the different approaches, a Leave-One-Out (LOO) procedure is used for the first three
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datasets. The advantage of this procedure is to overcome the problem of the apparent hit rates
bias. The LOO hit rate is calculated by omitting each observation in turn from the training
sample and using the remaining observations to generate a discriminant function which is
then used to classify the omitted observations. Although the computational efficiency of
this procedure can be improved in statistical discriminant analysis, it is not practical in MP
analysis unless only a relatively number of observations are included. For this reason, the
LOO hit rate was not used for the fourth dataset. The performance of the different MP
methods using this dataset (D4) is, then, addressed by considering the “split-half” technique.
In fact, the important number of observations available in this dataset permits to adopt this
latter approach by partitioning the complete observations (386) into training and holdout
samples. The training sample of dataset (D4) consisted of a random sample of 73% of
the observations in each group, with 340 observations in group1 and 160 in group 2 (500
observations in total). The remaining 27% of the observations (104 group1 observations and
79 group 2 observations) formed the holdout sample. To evaluate the performance of the
various approaches, the training sample was used to generate classification models using the
different methods and these classification models were then used to determine the holdout
sample hit rates. The performance of LDF using this dataset (D4) was also evaluated in the
same way.

Furthermore, the “split-half” technique is also employed for the first three datasets
in order to evaluate the performance of the SVM-based approach. Similar to the dataset D4,
the three datasets D1, D2, and D3 are partitioned into training and holdout samples. The
training sample size of the first dataset is equal to 24 observations (11 observations in group
1 and 13 observations in group 2) and its holdout sample size is equal to 22 observations
(10 observations in group 1 and 12 observations in group 2). For the second dataset, the
training sample contains 45 observations (15 observations in group 1 and 30 observations in
group 2). The remaining 17 observations (7 observations in group 1 and 10 observations in
group 2) formed the holdout sample. The third dataset is partitioned into 70 observations (35
observations for each group) forming the training sample and 30 observations formed the
holdout sample.

In this study, the complete set of observations of each dataset was first used as the
training sample giving the apparent hit rate in order to demonstrate the computational
feasibility of the different approaches. The use of the “split-half” and LOO procedures
permits to allow the performance of classification models generated by the different methods.

4.2.1. The Results of the Linear Programing Model

The results of the correct classification rates (apparent rates) using MCA and MSD methods
with various normalization constraints are presented in Table 2.

According to this table, the MCA model performs better than the MSD model for the
different normalization constraints used. However, the best classification rates for the MSD
model are given by using the constraints (N3) and (N4), except in the case of D1 and D3,
where the difference between the three normalization constraints (N2), (N3), and (N4) is
not significant. The classification rates of dataset D2 using these constraints are different.
This is may be due to the nature of the data, to the fact that the group size is different, or
to the fact that the model with (N2) normalization will generate a discriminant function
in which the constant term is properly zero, but it will also exclude solutions in which the
variable coefficients sum to zero, and rather should be solved with positive and negative
normalization constants [4, 11]. However, the performance of the MCA model remains
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Table 2: The correct classification rates of the MCA and MSD models (in percentage).

D1 D2 D3 D4
n1 = 21, n1 = 22, n1 = 50, n1 = 444,
n2 = 25, n2 = 40, n2 = 50, n2 = 238,
n = 46, n = 62, n = 100, n = 683,

MCA MSD MCA MSD MCA MSD MCA MSD

(N1)
∑k

j=1 aj + c = 1 91,3 84,78 83,87 64,52 96 86 97,2 94,7

(4) (7) (10) (22) (4) (14) (19) (36)

(N2)
∑k

j=1 aj = 1 91,3 89,1 83,87 66,13 96 91 97,2 96,6

(4) (5) (10) (21) (4) (9) (19) (23)

(N3) c ± 1 91,3 89,1 83,87 72,6 96 91 97,2 96,6
(4) (5) (10) (17) (4) (9) (19) (23)

(N4) invariance
under origin shift

91,3 86,95 83,87 75,8 96 91 97,2 96,6

(4) (6) (10) (15) (4) (9) (19) (23)
The values between parentheses are the numbers of misclassified observations.

Table 3: LOO hit rates and the holdout hit rates for MCA and MSD models.

D1 D2 D3 D4
LOO LOO LOO Holdout hit rate

MSD 89,1 (5) 66,13 (21) 84 (16) 95,6 (8)
MCA 89,1 (5) 70,97 (18) 84 (16) 98,36 (3)

unchanged using the different normalization constraints. For each of the two methods using
the normalization constraint (N4), the LOO hit rates for the three datasets D1, D2, and D3
and the holdout sample hit rates for the dataset D4 are presented in Table 3.

From Table 3, we can conclude that the difference between MSD and MCA models is
not significant for the first and the third datasets. However, the MCA model performs better
than the MSD model for the second and the fourth datasets. Furthermore, the computational
time of the MCA models is less than the computational time of the MSD model especially
for the fourth dataset. In fact, by using the complete set of observations, the MSD model was
solved in less than 7 seconds while the MCA model required less than 4 seconds to obtain
the estimated coefficients of the discriminant function. However, for the other datasets, the
difference of the solution time between the two models is not significant (less than 2 seconds).

On the other hand, to solve the RS models, two cases are proposed: first c1 and c2

take, respectively, the value 0 and 1 (Case 1), and second, the cutoff values c1 and c2 are
considered decision variables (Case 2). The RS model, for the complete set of observations
of the dataset D4, was solved in 3 seconds. The computational time of this model using the
other datasets is less than 2 seconds. The apparent and the LOO hit rates for the disriminant
function generated by the RS models are shown in Table 4.

The difference between the apparent and LOO hit rates of the RS model in the two
cases is well improved particularly for the second and the fourth datasets. For D1 and D2, the
difference between the numbers of misclassified observations in the two cases is marginally
significant; only one or two misclassified observations are found. However, for D2 and D4,
there is a difference. So, when normality and/or equality of the variance-covariance matrices
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Table 4: The apparent, the LOO, and the holdout hit rates (in percentage) of the RS model.

D1 D2 D3 D4

Apparent LOO Apparent LOO Apparent LOO Apparent Holdout
hit rate hit rate hit rate hit rate hit rate

c1 = 0 and
c2 = 1 89,1 (5) 86,9 (6) 71 (18) 62,9 (23) 94 (6) 83 (17) 96,2 (26) 96,7 (6)

c1 and c2
decision
variables

91,3 (4) 89, 1 (5) 79 (13) 70,97 (18) 96 (4) 85 (15) 97,36 (18) 98,9 (2)

The values in parentheses are the numbers of misclassified observations.

Table 5: The apparent and LOO hit rates (in percentage) of MC1 and MC2 models.

D1 D2 D3
n1 = 21, n2 = 25 n1 = 22, n2 = 40 n1 = 50, n2 = 50

n = 46 n = 62 n = 100
MC1 MC2 MC1 MC2 MC1 MC2

Apparent LOO Apparent LOO Apparent LOO Apparent LOO Apparent LOO Apparent LOO

2nd step

Weighting 86,9 84,78 86,9 84,78 64,5 62,9 62,9 59,68 93 83 94 85

MSD (6) (7) (6) (7) (22) (23) (23) (25) (7) (17) (6) (15)
Weighting 91,3 89,1 91,3 89,1 72,5 66,13 69,35 64,5 94 84 94 85
RS (4) (5) (4) (5) (17) (21) (19) (22) (6) (16) (6) (15)

are not verified, it would be most appropriate to consider the cutoff values decision variables.
The results of the three combined models are given in Table 5.

The MSD weighting model (W-MSD) and the RS weighting model (W-RS) are used
in the second stage to solve the MC1 and MC2 models. The results show that the choice of
model used in the second stage affects the correctly classified rates. These rates are higher
when one uses a W-RS model in the second stage. The difference between the models is
not very significant for the first and the third datasets when equality of variance-covariance
matrices is verified. However, for dataset D2, the MC1 model which combines the LDF,
LPM, and RS models performs better than the MC2 model which combines the LDF, RS,
and MSD models. In fact, LPM model used in MC1 model has the advantage to force the
observations classification scores to cluster around the mean scores of their own groups.
The application of the MC1 and MC2 models required a computational effort. In fact, to
determine the classification rate, the combined method required to solve each model used
in this approach separately. Then, the computational time important is more than 10 seconds
for dataset D4, for example. For this reason, the use of such method can not be benefit if the
dataset is sufficiently large.

The results of the various models for the four datasets are presented in Table 6.
Table 6 shows that the correctly classified rates (apparent hit rates) obtained by MCA,

RS, and MIPEDE-DA are superior to those obtained by the other models especially when
the normality and equality of variance-covariance matrices hypotheses are violated. The two
combined methods, MC1 and MC2, give similar results for the first dataset. While for the
other datasets, the MC1 performs better than MC2. It must be noted that the performance of
the combined method can be affected by the choice of the procedures used in this method.
Furthermore, the difference between these models is significant especially for dataset D2. In
terms of the computational time, we can remark that the resolution of the statistical methods
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Table 6: The apparent, the LOO, and the holdout sample hit rates (in percentage) of the different models.

D1 D2 D3 D4

Nonnormal Nonnormal Nonnormal Nonnormal
∑

1 =
∑

2
∑

1 /=
∑

2
∑

1 =
∑

2
∑

1 /=
∑

2

n1 = 21, n2 = 25 n1 = 22, n2 = 40 n1 = 50, n2 = 50 n1 = 444, n2 = 238

n = 46 n = 62 n = 100 n = 683

Apparent LOO Apparent LOO Apparent LOO Apparent Holdout

hit rate hit rate hit rate hit rate hit rate

(n = 683) (n = 183)

LDF 89,1 (5) 89,1 (5) 74,2 (16) 66,12 (21) 91 (9) 88 (12) 96,3 (25) 99,45 (1)

LG 91,3 (4) 89,1 (5) 74,2 (16) 66,12 (21) 93 (7) 88 (12) 96,9 (21) 98,9 (2)

MSD 89,1 (5) 89,1 (5) 75,8 (15) 66,12 (21) 91 (9) 84 (16) 96,6 (23) 95,6 (8)

RS 91,3 (4) 89,1 (5) 79(13) 70,97 (18) 96(4) 85 (15) 97,36(18) 98,9 (2)

MCA 91,3 (4) 89,1 (5) 83,87 (10) 70,97 (18) 96(4) 84 (16) 97,2(19) 98,36 (3)

MIPEDEADA 91,3 (4) 89,1 (5) 85,4(9) 75,8(15) 96(4) 91 (9) 97,2(19) 98,9 (2)

LPM 89,1 (5) 89,1 (5) 74,2 (16) 66,12 (21) 93 (7) 84 (16) 96,6 (23) 96,7 (6)

MC1 (LDF, LPM, RS) 91,3 (4) 89,1 (5) 72,5 (17) 66,13 (21) 94 (6) 85 (15) 96,6 (23) 97,27 (5)

MC2 (LDF, MSD, RS) 91,3 (4) 89,1 (5) 69,35 (19) 64,5 (22) 94 (6) 84 (16) 96,3 (25) 96,7 (6)
The values in parentheses are the numbers of misclassified observations.

LDF and LG using the complete dataset is less than one second which is faster than the
resolution of the other MP models.

On the other hand, it is important to note that the correct classification rate of the RS
model may be changed by selecting the most appropriate cutoff value for c. This cutoff value
can be obtained by solving an LP problem in the second stage using a variety of objective
functions such as MIP or MSD, instead of simply using the cutoff value equal to (c1 + c2)/2
[19]. In fact, for the third dataset D3, the apparent hit rate found by Glen [14] using the
RS model is equal to 95% which is marginally below the apparent hit rate of 96% found
in our study. Effectively, Glen [14] used the 0 and 1 cutoff value in the first stage and the
MSD in the second stage of the RS model. Then, we can conclude that RS model can be most
performing if the cutoff values are chosen as decision variables and simply using the cutoff
value equal to (c1+c2)/2 in the second stage. Consequently, we do not need to use any binary
variables like the case in which MSD or MIP models are applied in the second stage of the
RS model. This result is interesting in the sense that the resolution of such model is very easy
and does not require much computational time (in general less than 3 seconds). In fact, Glen
[14] mentioned that the computational time for the RS model using MIP model in the second
stage excluding the process for identifying the misclassified observations of G1 and G2 was
lower than the computational time for the MCA model. Indeed, this latter model involves
more binary variables than those of the first model (RS). In addition, for the datasets D1 and
D3, we remark that the RS, MCA, and MIPEDEA-DA models produce the same apparent
hit rates. However, for the second dataset, the MIPEDEA-DA followed by the MCA model
performs better than the other approaches. On the other hand, the result obtained by the LOO
procedure shows that the MIPEDEA-DA model performs better than the other models for the
second and the third datasets, while for the first dataset, the difference between the models
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Table 7: Comparison of SPS and GSPS using the N’1 and N’2, normalization constraints.

D1 D2 D3

(n1 = 21; n2 = 25) (n1 = 22; n2 = 40) (n1 = 50; n2 = 50)

D=2 D=3 D=2 D=3 D=2 D=3

SPSN’1 82,6 (8) 99 (1)

SPSN’2 100(0) 100(0)

QSPSN’1 100(0) 97 (3) 100(0)

QSPSN’2 100(0) 100(0) 100(0)

GSPSN’1 58,7 (19) 89,1 (5) 67,7 (20) 100(0) 74 (26) 100(0)

GSPSN’2 100(0) 83,87 (10) 100(0) 99 (1) 100(0)

QGSPSN’1 100(0) 96,8 (2) 100(0) 85 (15) 100(0)

QGSPSN’2 100(0) 100(0) 97 (3) 100(0)
The values in parentheses are the numbers of misclassified observations.

is not significant. In terms of the holdout sample hit rate obtained using the classification
models generated from the 73% training sample of dataset D4, the statistical method LDF
performs better than the other approaches followed by the LG, the RS, and the MIEDEA-DA
models.

4.2.2. The Result of Nonlinear MP Models

(a) Comparison of SPS and GSPS Models Using the Two Normalization Constraints N’1
and N’2

To compare between the two normalization constraints N’1 and N’2, the model SPS and GSPS
were solved using the first three datasets (D1, D2, and D3). The results are presented in
Table 7.

According to Table 7, the models using the second normalization constraint can
perform better than the one using the first normalization constraint. An important result
found concerns the SPS models which can not give any solution for the second dataset, while
the QSPS models perform very well and especially the one using the second normalization
constraint. Furthermore, the GSPSN’2 model performs better than the GSPSN’1 model
especially for the first dataset. Thus, compared to the normalization (N’1) used by Better
et al. [18], our proposed normalization (N’2) can produce better results. The comparison of
the different models developed will be discussed in the following section.

(b) Comparison of Different Models

The results of the different models are presented in Table 8. From Table 8, the nonlinear
MP models outperform the classical approaches. This result may be due to the fact that
the performance of these latter approaches requires the verification of some standard
hypotheses. In fact, the LDF and QDF have the best performance if the data distribution is
normal. However, this hypothesis is not verified for these datasets. Although the LG model
does not need the verification of such restriction, this model has not provided higher hit
rates compared to those of the other approaches especially for the second dataset. On the
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Table 8: The apparent classification rates of the different models (in percentage).

D1 D2 D3 D4

(n1 = 21; n2 = 25) (n1 = 22; n2 = 40) (n1 = 50; n2 = 50) (n1 = 444; n2 = 239)

Nonnormal Nonnormal Nonnormal Nonnormal

FDL 89,1 (5) 74,2 (16) 91 (9) 96,3 (25)

LG 91,3 (4) 74,2 (16) 93 (7) 96,9 (21)

FDQ 76,08 (14) 72,58 (17) 85 (15) 90,8 (63)

Second order
MSD model

93,47 (3) 75,8 (15) 85 (15) 90,8 (63)

S = 2 S = 3 S = 2 S = 3 S = 2 S = 3 S = 2 S = 3

Piecewise MCA 91,3 (4) 100(0) 72,5 (17) 98,39(1) 99 (1) 100(0) 87,55 (85)

Piecewise MSD 97,8 (1) 97,8(1) 87,1 (8) 96,8(2) 99 (1) 100(0)

Piecewise
QSMCA 100(0) 100(0) 100(0) 98,97 (7) 100 (0)

Piecewise
QSMSD 97,8 (1) 100(0) 100(0) 100(0) 100 (0)

D = 2 D = 3 D = 2 D = 3 D = 2 D = 3 D = 2 D = 3

SPSN’2 100(0) 100(0) 98,24 (12)

QSPSN’2 100(0) 100(0) 100(0) 98,82 (8)

GSPSN’2 100(0) 83,87 (10) 100(0) 99 (1) 100(0) 98,82 (8) 99,7 (2)

QGSPSN’2 100(0) 100(0) 97 (3) 100(0) 99,85 (1) 100 (0)
The values in parentheses are the numbers of misclassified observations.

other hand, the second-order MSD model, also, performs worse than the other models.
Furthermore, the performance of the piecewise QSMCA and QGSPSN’2 models is better
than the performance of the piecewise-linear models (MCA and MSD) for the first and
second datasets. In fact, the optimal solution is rapidly reached using these models rather
than the piecewise-linear approaches (the hit rates are equal 100% on using S = 2 and
D = 2). While, for the second data D2, the piecewise-quadratic models (QSMCA and
QSMSD), the multihyperplanes and the multihypersurfaces models perform better than the
other approaches. Moreover, the difference between these models and the standard piecewise
models is not significant for dataset D3 but we can remark that the piecewise QSMCA and
QSMSD can reach optimality rapidly using only S = 2. Comparing the nonlinear MP models
in terms of computational time, we can remark that the resolution of the QGSPS providing the
estimated coefficients of the discriminant function is better than the solution time obtained by
GSPS model for all datasets. Using dataset D4, for example, the solution time of the QGSPS
with D = 2 is equal to 11 seconds (for D = 3, the solution time is equal to 21 seconds) while
the resolution of the GSPS takes more than 960 seconds. For the other datasets, the solution
time of the QGSPS model is less than 3 seconds. On the other hand, employing piecewise
models using only the case where the group1 is in the convex region, the optimal solution
time is obtained in more than 7 seconds. Otherwise, the time for the resolution of these models
would have been approximately double. In fact, using dataset D4 the resolution of piecewise
QMCA in the case where G1 is in the convex region, for example, required 8 seconds using
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Table 9: Classification rates using the LOO procedure (in percentage).

Models S = 2 S = 3

Piecewise-linear MCA∗ 72,58 (17) 72,58 (17)

Piecewise QSMCA∗ 85,48 (9) 83,87 (10)

Piecewise-linear MSD∗ 72.58 (17) 82,26 (11)

Piecewise QSMSD∗ 79 (13) 87,1 (8)

D = 2 D = 3

GSPSN’2 77.4 (14) 82,26 (11)

QGSPSN’2 83.87 (10) 87,1 (8)

QSPSN’2 83,87 (10)
The values in parentheses are the numbers of misclassified observations.
∗G2 convex.

three arcs (s = 3). However, to obtain the optimal solution, the model must be solved also in
the case where G2 is in the convex region and then the computational time will double.

To judge the performance of piecewise-linear MSD and MCA, piecewise QSMSD,
QGSPSN’2, GSPSN’2, and QSPSN’2, the LOO (Leave-One-Out) procedure is first used for
the dataset D2 which is considered the dataset in which the nonlinear separation is the most
adequate. The LOO classification rate was determined by omitting each observation in turn,
solving the piecewise models in convex region for group 2. In fact, the optimal solution is
attained in this group when convex region and the associated piecewise function are then
used to classify the omitted observation. This same procedure (LOO) is applied for the
multihypersurfaces and muli-hyperplanes models but without solving twice these models.
The classification rates obtained by LOO procedure with S = 2, S = 3 and D = 2, D = 3 are
presented in Table 9.

The LOO hit rate for each model is, as expected, lower than the apparent hit rate (see
Tables 6 and 8). From Table 9, the results show the performance of QGSPSN’2 and QSMSD
compared to those of the other models. In fact, the LOO hit rates are equal to 87.1% (54/62)
for piecewise QSMSD and QGSPSN’2 while these rates decrease in the other models while
using S = 3 and D = 3. However, for S = 2, the piecewise QSMCA model gives the correctly
higher classification rate and we can see that the performance of this model decreases if S is
augmented to 3 arcs. For the MCA piecewise model, the LOO hit rates are lower than those
of the other models. Furthermore, we can remark that there is no improvement in these LOO
hit rates when the number of segments increases from two to three. On the other hand, by
applying the LOO procedure for the third dataset (D3), we can deduce that the QGSPS and
piecewise QSMSD models perform better than the other models with LOO hit rates equal
to 96% for QGSPS with D = 3 (resp, to 92% for QSMSD with S = 3) and suppose that G2
is in the convex region. These LOO hit rates are higher than those obtained using the GSPS
(86%) or piecewise MSD models (84%) [17, 18]. Comparing the piecewise QSMSD and the
QGSPS models, the latter model is considered to be preferable to the first because it does not
need to be resolved twice for the case in which G1 is in the convex region and the case in
which G2 is in the convex region. However, for the first dataset (D1), the LOO procedure
gives the same classification rates (93%, 48%) for the different models (with D and S equal 3
and G1 in the convex region) except for the GSPS model which has the best classification rate
equal to 97, 8%. These results suggest that for this dataset the GSPS model may be the most
appropriate. In fact, for this dataset (D1), the use of multihyperplanes is more adequate than
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Table 10: The holdout sample hit rate (in percentage) of dataset D4.

Models S = 2 S = 3
Piecewise-linear MCA∗ 91,26 (16) 89,07 (20)
Piecewise QSMCA∗ 91,26 (16) 99,45 (1)
Piecewise QSMSD∗ 94,5 (10) 97,27 (5)

D = 2 D = 3
GSPSN’2 99,45 (1) 98,36 (3)
QGSPSN’2 95,6 (8) 93,99 (11)
QSPSN’2 100 (0)

The values in parentheses are the numbers of misclassified observations.
∗G1 convex.

the use of multihypersurfaces. Then we can conclude that there may be only limited benefits
from using nonlinear model when the data requires linear separation (dataset D1).

As mentioned above, due to the important size (683) of the fourth dataset (D4), the
procedure used to test the performance of the MP models for this dataset is the split-half
technique. The results of the holdout sample hit rate of this dataset are presented in Table 10.

These results are training/holdout specific, but although it would be desirable to
determine average holdout hit rate by repeating the calculation with other training/holdout
samples, the computational requirement would be excessive. It can be seen from Table 10 that
the best holdout hit rate is obtained by the QSPS followed by the GSPS and the piecewise
QMCA models. Comparing this holdout hit rate with those obtained by linear MP models,
we can remark that the difference is marginally significant, but in terms of computational
time, we found that the resolution of the linear MP models using the real dataset takes less
than 4 seconds while the resolution of the nonlinear MP models takes more than 8 seconds
(dataset D4). Then we can conclude that for this dataset the linear separation is the most
adequate and the use of the statistical method LDF is the more appropriate. This result can be
also confirmed by the calculation of the LOO hit rate using LDF, QSPS, and GSPS models for
dataset D4. In fact, the LDF LOO hit rate is equal to 96, 2% (26 misclassified) which is higher
than the LOO hit rate of the QSPS and GSPS which is equal to 94, 5% (37 misclassified) for
QSPS and equal to 94, 2% (39 misclassified) for GSPS. This result can be explained by the fact
that if the dataset size is sufficiently large, the normality hypothesis is approximately verified
and then the statistical method LDF can provide a better performance than that of the other
approaches except for the case of the nonlinear separable problems.

In conclusion, the nonlinear MP approaches yield greatly improved classification
results over the classical and linear MP approaches especially for the second and the third
datasets. These results are due to the fact that normality is violated and the nature of these
datasets requires the nonlinear separations.

The statistical and the MP models are also compared to the popular SVM-based
approach. In fact, the foundations of this latter approach have been developed by Vapnik
in 1995 and are gaining popularity due to many attractive features and promising empirical
performance. The result of this approach is presented in the following section.

4.2.3. The Result of SVM-Based Approach

In the experiments, the dot kernel is used to resolve the linear SVM while the most “generic”
kernel function employed for the resolution of the nonlinear SVM using the real datasets is
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Table 11: The SVM-based approach results.

D1 D2 D3 D4

CPU-time average 28 seconds 78 seconds 54 seconds 200 seconds

Apparent hit rates 91,3 (4) 75,8 (15) 92 (8) 97,2 (19)

Linear SVM Training apparent hit
rates

95,8 (1) 73,3 (12) 87,1 (9) 94,63 (17)

Holdout sample hit
rates

86,36 (3) 64,7 (6) 80 (6) 97,8 (4)

CPU-time average 29 seconds 53 seconds 51 seconds 330 seconds

radial: radial: radial: radial:

Kernel Function for the C=100 c=1000 c=1000 c=100

complete dataset e= 0,01 e=1e-006 e=1e-005 e=0,2

gamma = 10 gamma = 10 gamma = 2 Gamma = 5

Apparent hit rates 100 (0) 100 (0) 100 (0) 100 (0)

Nonlinear SVM Anova: Anova: Polynomial: Polynomial:

c=100000 c=10 c=100 c=100

Kernel Function for e= 0,01 e=0,1 e=0,2 e=0

training dataset gamma = 0,1 gamma = 0,9 degree = 2 degree = 3

degree = 2 degree = 4

Training apparent hit
rates

100 (0) 100 (0) 100 (0) 100 (0)

Holdout sample hit
rates

86,36 (3) 70,58 (5) 80 (6) 96,17 (7)

“radial basis function”. However, the kernel functions providing the best holdout hit rates
are chosen and taken in consideration in the analysis.

The results of the SVM-based approach using the different datasets are presented in
Table 11. From Table 11 and based on the apparent hit rate, the best result is obtained by the
nonlinear SVM for all datasets. However, in terms of computational time and holdout sample
hit rates, the linear SVM-based approach performs better than the nonlinear SVM for the
first and the fourth datasets. In fact, the holdout sample hit rate for dataset D4, for example,
using linear SVM is equal to 97, 8% which is higher than the holdout hit rate obtained by the
nonlinear SVM (96, 17%). For datasets D2 and D3, the nonlinear SVM is the most performing.
In fact, the resolution of the nonlinear SVM required less time than the resolution of the linear
SVM. These results are comparable to those obtained by the MP approaches. However, the
advantage of the MP approaches over the SVM-based approach is that the computational
time of the first approache is in general lower than the computational time of the latter
approach. Furthermore, the MP approaches do not need the use of the kernel function. In fact,
despite the simplicity of the SVM- based approach, the performance of this approach depends
on the choice of the appropriate kernel function that can be employed for the resolution of
classification problem. This required a prior knowledge of the problem especially when the
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training data is nonlinearly separable. However, the preferred methods used for selecting a
kernel are the bootstrapping and cross-validation. But, this requires a computational effort.

5. Conclusion

In this paper, various linear and nonlinear MP models and three traditional methods, LDF,
QDF, and LG, are applied in order to examine the conditions under which the models taken
into consideration will give similar or different results. The advantage of this study over other
comparative studies lies in our use of different real datasets with different sizes. Different
normalization constraints are used in the MP models in order to analyze their performance.
The results of the various dataset analyses show that the correctly classification rates obtained
by the various MP models are better than those of classical models when standard hypotheses
are violated. These results confirm those found in the literature. Besides these results, we note
that the correct classification rates are also similar when the differences in size between the
groups and the sample size itself are low. Indeed, the performance of the linear MP models
improves when the deviation between the size of the groups is significant, when the size
of the real dataset is lower, and when the equality of variance-covariance matrices is not
verified. On the other hand, the best classification rates are obtained (1) when using the
normalization constraint N3 or N4 for the MSD model, (2) when selecting the cutoff values
c1 and c2 as decision variables for the RS model, (3) when normality and equality of the
matrices of variance and covariance are violated, and (4) when using the W-RS model in
the second stage for the combined model. Comparing the linear MP approaches, the results
of this study favor the RS, MCA, and MIPEDEA-DA models when the linear separation is
adequate, but the MIPEDEA-DA model gives better results than those of the MCA and RS
models when the data requires nonlinear separation. However, when standard hypotheses
are violated, we think that the use of RS or MCA models is most practical especially for the
linear separation case. In fact, these models are the most simple and do not necessitate any
restrictions as for MIPEDEA-DA (higher number of misclassified observations in the first
stage of the MIPEDEA-DA models). On the other hand, when the misclassified observation
number is important, the use of other nonlinear separation models is recommended.

In this paper, various nonlinear MP models are applied, and new MP models based
on piecewise-nonlinear functions and on hypersurfaces are proposed in order to ameliorate
the performance of different MP methods. The use of nonlinear discriminant functions gives
better performances than linear classifier. In fact, the models based on multihyperplanes
and on multihypersurfaces are supposed to be the most favorable compared to piecewise
models because they do not require the resolution of the two models (group 1 in convex
region and group 2 in convex region). The results are also effective in the sense that they
do not require many constraints, many binary variables, and special order sets. On the
other hand, the multihypersurfaces models especially QGSPSN’2 model perform better than
multihyperplanes models because we can reach the solution faster using a reduced number of
hypersurfaces rather than hyperplanes. However, the performance of piecewise QSMCA and
QSMSD models is better than the performance of piecewise-linear MSD and MCA models.
Furthermore, when normality is violated and when the number of misclassified observations
obtained by classical or linear MP models is important, the use of nonlinear MP approaches
or the SVM-based approach can be the most appropriate. However, the advantage of MP
approaches is that these approaches do not need the determination of the kernel function. In
fact, a limited number of known kernel transformations are relied by SVM-based approach
to project the original data into very high-dimensional space in order to render it linearly
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separable. From these kernel transformations, which is the best for a particular classification
problem? To respond to this question, a computational effort should be needed to choose the
best one on using the kernel selection methods such as bootstrapping and cross-validation.

For future research, other techniques for choosing the kernel function can be
developed and other types of piecewise-nonlinear models and multihypersurfaces models
can be used in order to ameliorate the performance of these approaches. For example, in
the MP methods, we can build a classification function which, in addition to the usual
linear attributes terms (xij), takes the natural logarithm (Logxij) of the original data. Other
complicated nonlinear functions can be used as well. These functions involve solving MP
models with nonlinear constraints rather than linear constraints which are nonlinear in terms
of the attributes. In addition, we can view the possibility of changing the objective function of
multihyperplanes or multihypersurfaces models by minimizing the undesirable deviations
of misclassified observations from the different hyperplanes or hypersurfaces rather than
minimizing the number of misclassified observations by the hyperplanes or hypersurfaces.
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