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1. Introduction

Multimodal transport is the combination of two or more means of transport to move
passengers or goods from one source to a destination [1]. The traveller can use either public
(e.g., bus, taxi, metro, railway, and ship) or private vehicles (e.g., car, motorbike, bicycle,
and walking). Multimodal journeys are becoming a real necessity in our society in order to
guarantee a high level of mobility both inside cities and at the regional level [2].

From the last decades, many research projects were devoted to develop multimodal
transport systems that recommend travellers a combination of transport means for door-to-
door journeys [1, 3–5]. These systems must cope with different transport information sources,
which are normally distributed in real scenarios, that is, transport data are usually provided
by different public and private companies and can be stored in different locations. Another
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challenge for these systems is to integrate real-time traffic information (e.g., traffic jams,
delays, roadworks) in order to adapt proposed routes to real conditions.

Different abstractions have been proposed to represent the time-dependent mul-
timodal transport problem. Three main categories of approaches can be identified: the
multigraph-based approach [2, 6, 7], the constraint satisfaction problem approach [8], and
the grid-based approach [9]. In order to adapt multimodal transport abstraction to the
distributed nature of real-world information, the following constrains should be fulfilled:
(i) the underlying multimodal network is assumed to be flat and to contain no hierarchical
structure, like regional hierarchy; (ii) the involved unimodal networks may be distributed,
that is, unimodal networks are stored and accessed separately; (iii) if there are multiple
network information sources within a single mode, they may be distributed. The above-
mentioned approaches relax any of these constraints when modeling and solving the
problem.

An alternative representation of the time-dependent multimodal transport problem
was partially described in [10]. Here we present a formal description of this abstraction as
well as the transfer graph approach, which calculates the best paths in this structure. This
approach was tested and also validated in the real context of Carlink Platform (Carlink,
Wireless Platform for Linking Cars, is a project of the Celtic Cluster Programme Call, which
aims to develop an intelligent wireless traffic service platform between cars) [11]. Transfer
graph approach provides a solution for the time-dependent multimodal transport problem
which fulfills the three defined constraints and adapts to the distributed nature of real
transport information providers.

The outline of this article is the following. Section 2 describes the transfer graph
approach for the time-dependent multimodal transport problem. In Section 3 this approach
is computationally tested. Section 4 describes Carlink, the real scenario where the approach is
validated, mainly the service platform as well as the obtained results. In Section 5 the results
are compared with other related works. Finally, this paper ends with some conclusions in
Section 6.

2. Transfer Graph Approach for Multimodal Transport Problems

In real scenarios, transport information sources are normally distributed, that is, transport
schedules are usually provided by different public and private companies. Besides, this
information is frequently modified due to daily unexpected perturbations such as traffic
jams, delays, and roadworks. These restrictions complicate the management of transport
information and the updates of transport networks.

This section presents the transfer graph approach for solving the Shortest Path
Problem (SPP) in discrete time-dependent multimodal network. It is able to compute
multimodal routes even if all involved networks are kept structurally separated and
distributed. Instead of building a solution limited to the unified view of multimodal transport
system, our strategy consists in finding a fundamental network representation which covers
multimodal networks and then solves the SPP on this abstraction.

The transfer graph approach adapts to the distributed nature of real world transport
information sources and allows updates on each transport network independently without
requiring any further modification. Our approach is mainly divided into two steps. In the
first step, relevant paths are computed within each unimodal network. In the second step,
the graph is reduced to a simple time-dependent unimodal network, where the classical SPP
can be solved.
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The next subsections first introduce the basic concepts of graphs and a definition of
SPP in time-dependent multimodal networks. Then, the transfer graph abstraction is formally
described, followed by the presentation of the relevant graph, a simplified structure calculated
from transfer graph. Finally, the transfer graph approach to calculate SPP in transfer graph is
discussed.

2.1. SPP in Discrete Time-Dependent Multimodal Networks

Let G = (N,M,A) denote a directed graph or network, in which N = {n1, . . . , nj} is a set
of nodes, M = {m1, m2, . . . , mk} is a set of transport modes (e.g., train, bus, and car), and
A = {a1, . . . , al} ⊆ N ×N ×M is a set of arcs. An arc ai ∈ A can be identified by (ni, ni′ , mi)
or (ni, ni′)i, where ni, ni′ ∈N ∧mi ∈M. The ai means the possibility of going from node ni to
ni′ by using transport mode mi. A value cai is associated to each arc ai, indicating the cost of
including the arc in the solution (e.g., distance, time).

Definition 2.1. A graphG = (N,M,A) is said to be multimodal if there is at least two transport
modes mi,mj ∈M where (ni, ni′ , mi), (nj, nj ′ , mj) ∈ A, mi /=mj , and ni, ni′ , nj , nj ′ ∈ N. If there
is only one transport mode in the graph, the graph is said to be unimodal.

In a graph G = (N,M,A) a path or route p is a sequence of arcs between a pair of
nodes n1 and nk+1, ((n1, n2, m1), (n2, n3, m2), . . . , (nk, nk+1, mk)), nj ∈ N for all j = 1, . . . , k + 1,
and (ni, ni+1, mi) ∈ A, mi ∈M for all i = 1, . . . , k.

Definition 2.2. Given a graphG = (N,M,A), a path p = (a1, a2, . . . , al) is said to be multimodal
if ∃ai, aj ∈ A, ai = (ni, ni′ , mi), aj = (nj, nj ′ , mj), mi /=mj, i /= j, and i, j ≤ l. If there is only one
mode involved in the path, then the path is said to be unimodal.

Let P be the set of paths in a graph G and f : P → R a function which represents the
cost of a path. An SPP is considered to be multiobjective if f maps to a vector of dimension
k ≥ 2, f : P → Rk. Each component fi ∈ f , for all (1 ≤ i ≤ k), follows the definition of single
objective path cost function.

Let t denote time in a discrete set {t1, t2, . . . , tl}. Unlike nontime-dependent networks
where arc costs are fixed, in time-dependent networks the cost of an arc ai = (ni, ni′ , mi) varies
according to cost function cai(tk) for all tk ∈ {t1, . . . , tl}.

Definition 2.3. Given a graph G = (N,M,A) and a discrete time set {t1, . . . , tl}, a travel for the
arc ai = (ni, n′i, mi) ∈ A is defined as tuple (t, t′) ∈ Tr, t, t′ ∈ {t1, . . . , tl}, where t is the departure
time from node ni, and t′ is the arrival time at node n′i. Tr denotes the set of travels in G.

Definition 2.4. Given a graph G = (N,M,A,Tr) and a discrete time set {t1, . . . , tl}, G is said to
be a time-dependent network if for all ai ∈ A, Tai = {(t1, t′1), . . . , (tk, t′k)} ⊆ Tr where |Tai | ≥ 1
and for all j = 1, . . . , k, tj , t′j ∈ {t1, . . . , tl} and tj ≤ t′j .

We conclude this subsection by formulating the SPP in time-dependent multimodal
graphs. The reader can find a wider description of the SPP in [12].

Definition 2.5. Given a time-dependent multimodal graphG = (N,M,A,Tr), two nodes s, d ∈
N, and time t ∈ {t1, t2, . . . , tl}, the SPP is defined as follows: calculate a path p from node s to
d that departures from s at time t and f(p) is minimal.
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Figure 1: Transfer graph illustrative case.

2.2. Transfer Graph

In this subsection, we present the transfer graph, a graphical structure that abstracts the time-
dependent multimodal transport network.

A transfer graph is described by a set of unimodal networks and a set of arcs connecting
them, and it is defined by T = (N,A,C,Tr). Let s, d ∈N be an origin-destination pair and C =
{C1, C2, . . . , Cm} a set of unimodal networks called components, where each Cg = (Ng,Ag),
Ng ⊆ N and Ag ⊆ A. C itself is such that N =

⋃
∀g Ng and A =

⋃
∀g Ag , for all g = 1, . . . , m,

Cg = (Ng,Ag) ∧ Cg ∈ C. Unlike partitioned graph, given two distinct components Cg and
Cg ′ , having Ng

⋂
Ng ′ = ∅ is not mandatory; however Ag

⋂
Ag ′ = ∅ must always hold. Again,

let us define two distinct components Cg,Cg ′ ∈ C; a node n is said to be a transfer point
when n ∈ Ng

⋂
Ng ′ , that is, any node which belongs to more than one component. Finally, a

transfer is any arc which connects two components of the transfer graph: (ni, nj), ni ∈Ng∧nj ∈
Ng ′ ∧ ni = nj ∧ g /= g ′.

Figure 1 illustrates an example of this abstraction, where C1, C2, and C3 are
components connected by three transfers, and nodes a, b, and c are transfer points. One can
observe that source node s and target node d may belong to more than one component; this is
because they can be transfer points. Actually, time-dependence and multiobjectivity are not
considered in this example, although the approach is able to work with these restrictions.

Transfer graph abstraction separates all transport modes in unimodal networks. So,
when a perturbation (e.g., traffic jam, roadworks) is detected for a transport mode, it does
not affect globally to the representation, but locally. In those cases, it is only necessary to
update those components related to the incident. According to this characteristic we can state
Lemma 2.6.

Lemma 2.6. Transfer graph abstraction is more robust against modification of transport network data
than classical multimodal network representation.

2.3. Relevant Graph

In the previous subsection we have formally defined the transfer graph. We present now
a simplified structure derived from this abstraction, called relevant graph, from which the
Shortest Path Problem can be easier computed.
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Table 1: Best intracomponent paths calculated for the transfer graph in Figure 1.

Comp. C1 Cost Comp. C2 Cost Comp. C3 Cost

P
∗g
s·d {(s, a)1, (a, b)1, (b, d)1} 4 — — {(s, c)3, (c, e)3, (e, d)3} 9

P
∗g
s·−

{(s, a)1, (a, b)1} 2 — — {(s, a)3} 5
{(s, a)1} 1 — — {(s, c)3} 1

P
∗g
+·− {(a, b)1} 1 {(b, c)2} 2 — —

P
∗g
+·d

{(a, b)1, (b, d)1} 3 {(b, c)2, (c, d)2} 3 {(a, e)3, (e, d)3} 9
{(b, d)1} 2 {(c, d)2} 1 {(c, e)3, (e, d)3} 8

At a high level, paths in a transfer graph can be divided into two groups: intracomponents
paths and intercomponent paths. An intercomponent path within a transfer graph T is considered
as any sequence of arcs which connects two nodes ni, nj ∈N where at least there are two arcs
belonging to two distinct components. On the other hand, an intracomponent path within Cg

is any sequence of arcs which connects two nodes ni, nj ∈ Ng whose arcs belong only to one
component. Intra component paths can be divided into the following categories:

(i) full paths (P ∗g
s·d): the smallest route which starts at source node s and ends at target

node d within the component Cg ;

(ii) relevant head paths (P ∗gs·−): the smallest routes which start at source s and end at a
transfer point within the component Cg ;

(iii) relevant intermediate paths (P ∗g+·−): the smallest routes which start and end at any
transfer point within the component Cg ;

(iv) relevant tail paths (P ∗g+·d): the smallest routes which start at any transfer point and end
at target d within the component Cg .

Given a transfer graph T = (N,A,C,Tr) and an origin-destination pair s, d ∈N, assume
that for all components Cg ∈ C we have computed the best relevant path sets: P ∗g

s·d, P ∗gs·−,
P
∗g
+·−, and P

∗g
+·d (see Table 1). Having these relevant path sets in hand, it is possible to derive a

reduced graph from which all possible best inter component paths from s to d can be computed.
We call this graph the relevant graph and use R to denote it. The nodes of R are s, d and a
subset of all transfer points in the transfer graph. The arc set of R is the best relevant intra
component paths viewed as edges, that is, paths that are represented only by the initial and
final nodes. In fact,R is a multigraph, but in general, its scale should be much smaller than the
equivalent multigraph of the underlying transfer graph. This is because any node appearing
in R is a transfer point, except the origin and destination nodes. So, the number of nodes in R
depends directly on the number of transfer points in the whole transfer graph. Figure 2 shows
the relevant graph computed out of Figure 1.

In order to formally describe R, let V g denote the set of relevant nodes for component
Cg , and let Eg be the set of relevant paths computed for Cg . From all V g and Eg we can,
respectively, build V = (

⋃
∀g V

g)
⋃{s, d} for all Cg ∈ C the set of relevant nodes for all

component, and E =
⋃
∀g E

g for all Cg ∈ C the set of relevant paths for all component Cg ∈ C.
The relevant graph is formally described by the pair R = (V, E). If we consider time-dependent
networks with different discrete time ti = {t1, t2, . . . , tl}, then in order to build the relevant
graph, it is necessary to calculate the best relevant paths at any departure time ti, that is,
P
∗g
s·d(ti), P

∗g
s·+(ti), P

∗g
−·d(ti), P

∗g
−·+(ti), for all Cg ∈ C and for all ti = {t1, t2, . . . , tl}.
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Figure 2: Relevant graph calculated for the transfer graph in Figure 1.

When a relevant graph is built from a transfer graph for nodes s and d and time t, we
have a time-dependent unimodal multigraph with a reduced number of nodes where all
the shortest paths between transfer points, s and d, are calculated. The computation of the
shortest path from s to d in R is basically the classical origin-destination SPP on a reduced
time-dependent unimodal network. This allows us to establish the following lemma.

Lemma 2.7. Let T = (N,A,C,Tr) be a transfer graph and R = (V, E) its associated relevant graph,
then R is a less complex structure than T in terms of the shortest path computational time.

2.4. Transfer Graph Approach

Once the transfer graph and the relevant graph are formally defined, we present the
decomposition of the SPP in these abstractions as well as the transfer graph approach.

Every time a request is fulfilled for obtaining the shortest path from a source s and
a destination d at departure time t, we need to calculate the best relevant paths for P ∗g

s·d(t),
P
∗g
s·−(t), and P ∗g+·d(ti) for all Cg ∈ C, for all ti = {t1, . . . , tl}. However, P ∗g+·−(ti) for all ti = {t1, . . . , tl}

is calculated once, since it does not depend on s and d. Taking advantage of this feature we
can decompose the SPP in transfer graphs as follows.

(1) The best paths for P ∗g+·−(ti), for all Cg ∈ C, for all ti = {t1, . . . , tl} are calculated and
stored. This is called precalculations.

(2) When a request is fulfilled for two specific nodes s and d, and time t, then P
∗g
s·d(t),

P
∗g
s·−(t), and P

∗g
+·d(ti) for all ti = {t1, . . . , tl} can be calculated.

(3) Finally, the relevant graph R is constructed and the shortest path is computed.

This decomposition reduces time complexity of the problem considerably because
precalculations compute the most difficult set of paths in terms of computation time.
Precalculations provide an important advantage if multiple and frequent requests are fulfilled
(e.g., in a real web service). On the contrary, precalculation must be partly recomputed when
a perturbation is detected. Table 2 shows an example of recalculating the relevant graph for
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Table 2: Best intra component paths recalculated for graph in Figure 1 if the cost of arc (b, c)2 ofC2 increases
from two to four. Recalculated paths are shown in bold.

Comp. C1 Cost Comp. C2 Cost Comp. C3 Cost

P
∗g
s·d {(s, a)1, (a, b)1, (b, d)1} 4 — — {(s, c)3, (c, e)3, (e, d)3} 9

P
∗g
s·−

{(s, a)1, (a, b)1} 2 — — {(s, a)3} 5
{(s, a)1} 1 — — {(s, c)3} 1

P
∗g
+·− {(a, b)1} 1 {(b, c)2} 4 — —

P
∗g
+·d

{(a, b)1, (b, d)1} 3 {(b, d)2} 4 {(a, e)3, (e, d)3} 9
{(b, d)1} 2 {(c, d)2} 1 {(c, e)3, (e, d)3} 8

Input: Transfer graph T with m modes and n possible departure times
for g = 1 to m do

for i = 1 to n do
P+− ← Compute(P ∗g+·−(ti), T)
StoreDataBase(P+−, DB)

end for
end for
while Request(s, d, t) do

for g = 1 to m do
Psd[g]← Compute(P ∗g

s·d(t), T)
Ps−[g]← Compute(P ∗gs·−(t), T)
for i = 1 to n do
P+d[g]← Compute(P ∗g+·d(ti), T)

end for
end for
R← RelevantGraph(Psd, Ps−, P+d,DB)
ShortestPath(R, s, d, t)

end while

Algorithm 1: Transfer graph approach.

Figure 1 if the cost of the arc between nodes b and c for component C2 increases from
two to four. As it can be seen, only few paths are necessary to be recalculated, instead of
considering all transport network. This is specially efficient for transfer graphs with multiple
components.

Finally, we present the transfer graph approach in Algorithm 1. The procedure
Compute calculates the shortest path for a specific component and departure time. This step
can be calculated independently for each component, due to the characteristics of transfer
graph and the decomposition of the SPP in this abstraction. The procedure StoreDataBase
saves in the data base DB the previous calculated set of the shortest paths. The procedure
Compute is called three times to calculate all the specific sets of shortest paths when the
user request is submitted. RelevantGraph is the procedure reducing the initial graph to
a more compact structure corresponding to a given user request. Finally, the procedure
ShortestPath gives the smallest route requested by the user. Obviously all these procedures
can be implemented in different ways and giving rise to different complexities. Here, we
show the feasibility of our approach by using a variant of Dijsktra’s algorithm. Therefore, the
transfer graph approach can be applied to scenarios with distributed transport information
sources.
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Table 3: Performance and graph reduction for different instances of the SPP with variable transport modes,
number of nodes and arcs.

Transfer graph Relevant graph CPU time

SPP Nodes Arcs Transfers Travels Precalcula. Nodes Arcs % Node Avg. Max.
Instance (N,M) time (second) reduction

SPP(50, 3) 50 200 19 2000 0.72 15 210 70 0.001 0.001

SPP(100, 3) 100 300 33 3000 1.47 25 570 75 0.012 0.108

SPP(200, 3) 200 600 62 6000 2.13 52 2170 74 0.025 0.656

SPP(500, 3) 500 1500 152 15000 6.33 126 13214 75 0.054 0.342

SPP(1000, 3) 1000 3000 376 30000 26.11 304 64376 70 0.248 1.295

SPP(2000, 3) 2000 6000 850 60000 102.23 652 243982 67 1.053 3.454

SPP(50, 4) 50 200 26 2000 0.71 16 202 68 0.016 0.176

SPP(100, 4) 100 300 50 3000 1.43 30 711 70 0.013 0.250

SPP(200, 4) 200 600 103 6000 2.62 60 3050 70 0.028 0.193

SPP(500, 4) 500 1500 264 15000 6.87 152 19449 70 0.071 0.624

SPP(1000, 4) 1000 3000 493 30000 25.87 307 70617 69 0.178 0.975

SPP(2000, 4) 2000 6000 904 60000 100.54 657 247018 67 1.141 4.129

SPP(50, 5) 50 200 35 2000 0.69 17 216 66 0.010 0.160

SPP(100, 5) 100 300 52 3000 1.26 33 824 67 0.014 0.387

SPP(200, 5) 200 600 133 6000 2.35 66 3434 67 0.019 0.278

SPP(500, 5) 500 1500 314 15000 5.80 164 19418 67 0.049 0.677

SPP(1000, 5) 1000 3000 654 30000 22.12 320 73765 68 0.149 0.774

SPP(2000, 5) 2000 6000 926 60000 99.04 662 250643 67 1.005 3.705

3. Simulation Results

So far, we have introduced the transfer graph abstraction and the transfer graph approach. In
this section we present a computational test of this approach with several instances of the
SPP in time-dependent multimodal networks.

We have selected eighteen instances of the SPP with three, four, and five transport
modes and increasing number of nodes from 50 to 2000, named SPP(nodes,modes). A
transfer graph is built for each instance with variable number of arcs and transfers, but keeping
high number of transfers and 10 possible random travel times per each arc, in order to
simulate real scenarios. Table 3 presents for each problem instance a description of the transfer
graph, the characteristic of the relevant graph built from the transfer graph, and the computation
time. Instances are grouped by number of nodes.

A variant of Dijkstra’s algorithm [13] is used to implement the function
ShortestPath(R, s, d, t) of the transfer graph approach (Algorithm 1), which calculates the
shortest path in terms of travel time. In these simulation tests we consider that P ∗g+·−(ti) for all
Cg ∈ C, for all ti = {t1, . . . , tl} are available, that is, the precalculations are already computed.
The computation time of precalculations is presented in Table 3.

The transfer graph approach was tested in a computer equipped with an Intel Core2
Duo T7300, 2 GHz, and 2 GB RAM. 100 tests have been done for each instance with random
nodes and departure time, calculating the average and maximum CPU time for them all (see
Table 3).
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Figure 3: Computation time for precalculation in the instance SPP(200, 3) with different numbers of travels.

When building the relevant graph from the transfer graph, the number of nodes in
all instances is reduced around 70%, although the number of arcs increases considerably
(see Table 3). Since the complexity of Dijkstra’s algorithm depends on the number of nodes
O(N2), this is an appropriate algorithm to calculate the shortest path in a relevant graph.

Transfer graph approach has been tested in eighteen instances of the problem, providing
a solution in a second approximately in average, even for instances with 2000 nodes and
60.000 travels. Precalculation time increases according to the network size and number of
travels. Nevertheless, this precalculations must be done once, and considerably reduced the
computation time for requests.

Finally, we present the computation cost of precalculations on medium-sized networks
with different levels of complexity, according to number of travels. Five transfer graphs are
built for the instance SPP(200, 3) with variable number of travels. Figure 3 shows that the
computation cost of precalculation is not considerably affected by the number of travels.

4. Experimental Validation

In previous sections the transfer graph approach has been described. In this section, we
first present the Carlink Platform (http://carlink.lcc.uma.es/) as well as its services and
constraints. Then, it is described how the transfer graph was validated in Carlink Platform
for real scenarios.

The Carlink Wireless Traffic Service Platform is designed to provide a basis for a
wide range of commercial and governmental traffic, safety, and transport services (see
Figure 4). The platform is a wireless ad hoc type communication entity with connectivity
to the backbone network via base stations. The communication platform itself is the key
element of Carlink, but the various services created to the platform have an important role.
The three most important services are the traffic local road weather service (RWS), the traffic
management service (TMS), and multimodal transport service (MTS).

The local RWS is derived from the FMI (Finnish Meteorological Institute) road
weather model [14] and provides automatic traffic safety enhancement operations by
gathering safety related information from vehicles and delivering consolidated data back,
automatically without requiring user initiation. The TMS provides the traffic status by using
static traffic information offered by the authorities and the dynamic traffic information
given by the Carlink floating car application. This application is composed of several cars
collecting information about the vehicle density in different locations of the road network
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and providing information of the traffic status. Finally, the MTS calculates multimodal
itineraries according to a travel requested and a set of constraints specified by the user.
This service is based in the transfer graph approach which has been extensively described
in Section 2.

The platform exploits information of the RWS and TMS, as well as of other services,
in order to generate accident or incident warning from traffic and weather conditions (see
Figure 4). The MTS uses this information to calculate best routes avoiding bad condition
roads and accidental areas to reduce the traveling time, or even recommending to change
the transport mode if a blocked road is detected (e.g., to park the car near a train station and
taking the train instead).

4.1. Experimental Environment

The Wireless Traffic Service Platform is divided in three different parts: Traffic Service Central
Unit (TSCU), Traffic Service Base Station (TSBS), and Mobile End User (MEU) with ad
hoc connectivity and (noncontinuous) backbone network connectivity. The whole platform
can be seen as data exchange architecture between TSCU and MEU, while TSBS acts as
bidirectional data transceivers. MEUs communicate between them in an ad hoc manner
when encountering and can also send critical data directly to the TSCU by using a lower-
capacity communication method (GRPS). The service cores are external systems connected
to TSCU.

TSCU achieves and processes up-to-date traffic platform information from the service
cores. The TSCU updates regularly TSBS with the more recent traffic platform information
related to their area, through the fixed network. Each TSBS disseminates the traffic platform
information to every MEU that passes close to it by using a wireless ad hoc connection.
Finally, MEUs disseminate this information when encountering (see Figure 5).

MEU and TSBS are equipped with acquisition system that collect their own
information (speed, GPS-data, airbag blast, road temperature, etc.) and transmit regularly
to TSCU. This data is processed by the TSCU, and if a critical event is detected in an area
(e.g., accident, bad road condition), a warning message is delivered in real-time directly to
MEUs known to be in the warning area by using GPRS or similar communication method.
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Figure 5: Carlink platform architecture.
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Figure 6: Validation scenario.

The advantage of this architecture is that both users (MEU) and disseminating systems
(TSBS) send regularly information of the road condition to the TSCU. This is specially
important when an accident occurs, because the TSCU is informed in real-time and can warn
drivers in the surrounding of the accident area. Besides, since cars communicate each other
when encountering, the number of TSBS necessary in roads can be considerably reduced, and
also the system cost.

4.2. Experimental Results in Real Scenario

The validation of the developed system was performed in a real scenario (see Figure 6).
The route origin is the Belgian city of Arlon, and the destination is Luxembourg city
(Luxembourg). Several thousands of commuters do daily this trip by car, train, bus, or by
a combination of these transport modes.
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Figure 7: Screenshots of the application for mobile devices. Selecting the preferences for the traveling,
confirming and showing the itinerary steps.

Table 4: Routes calculated for the validation scenario.

Itinerary steps (departure and arrival time)

Route Transport
Mode

Time
(min.)

Arlon,
34
cova
st.

Highway
E25/A4

Klein-
bettingen
parking
station

Klein-
bettingen
train
station

Luxem-
bourg
train
station

Luxem-
bourg
bus
station

Luxem-
bourg
29 JFK
ave.

1 Car 40′ 5:50 6:30

1 Car 80′ 6:01 7:21
(updated)

2

Car 9′ 6:01 6:10
Walk 5′ 6:10 6:15
Train 18′ 6:15 6:33
Walk 5′ 6:33 6:38
Bus 18′ 6:38 6:56

A transfer graph abstracting this scenario was deployed in the Carlink Platform and
made available for the MTS. The transfer graph has 73 nodes, 49 transfer points, and 226 arcs
and contains three components, associated to train, car, and bus. We consider that changing
between two transport modes is done by walking, and this cost is represented in transfers.

The transfer graph approach is implemented in the MTS of the Carlink Platform. The
user requests are sent to the MTS through a client application for mobile devices. In this
application, the user can select the travel preferences (e.g., transport modes, departure time,
origin, and destination), send the request to the MTS, and get the optimal path from the
Carlink Platform (Figure 7).

In our scenario, the selected preferences are optimizing travel time to go from Arlon
to Luxembourg by using any kind of transport mode and departing at 5:50. The first route
recommended by the MTS consists in going directly by car using the highway (Table 4).
While we are traveling by car, the TMS is reported at 6:00 with a perturbation in the
current itinerary. Since this perturbation modifies the transport data for road transports,
precalculations are recomputed for components bus and car, but not for rail. This perturbation
increases the travel time for route 1 up to 80 minutes. Automatically, the MTS recalculates
a second route taking into account this perturbation and the current GPS position of the
traveller. This information is reflected to the user by the client application. The second route
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Table 5: Comparative performances of approaches on different instances of the problem.

Number Number Average CPU time (second) Normalized average CPU time (second)
Nodes Arcs Appr. 1 [2] Appr. 2 [5] Transfer. G Appr. 1 [2] Appr. 2 [5] Transfer. G
50 200 0.33 0.54 0.001 0.33 0.71 0.01
100 300 0.53 0.81 0.012 0.53 1.07 0.16
200 600 1.27 — 0.025 1.27 — 0.33
500 1500 4.31 6.19 0.054 4.31 8.17 0.72
1000 3000 6.55 13.59 0.248 6.55 17.94 3.30

is expected to arrive 25 minutes before the first route and its itinerary steps are the following:
park near the next train station in Kleinbettingen, take the next train to Luxembourg, and
finally the bus to the final destination, as indicated in Table 4.

5. Related Work

The multimodal transport problem under the time-dependence constraint is not often studied
in literature. As far as we know there are two works related to time-dependent multimodal
transport problem which present the performance of their approach on different instances of
the problem [2, 5].

Authors in [5] abstract the problem with nonhierarchical multimodal graph and
propose several data structures and tables, previously precalculated, in order to optimize the
computation. The problem is simplified as well as the space search by considering that the
optimum paths between two nodes at any departure time are almost always topologically the
same. Nevertheless, this constraint cannot be considered in realistic multimodal networks,
because perturbations modify the conditions of the networks at different times of the day.
Bielli et al. [2] consider the problem of multimodal transport between towns. The problem
is geographically divided and abstracted with hierarchical graph: towns are represented by
subgraphs, which are interconnected by direct links. The shortest paths inside subgraphs
are previously precomputed, reducing the search space. The main goal of this work is the
proposed abstraction of the problem, which can be partially parallelized. The proposed
approach is tested in networks composed on many small-sized subgraphs.

Table 5 presents a comparison between these works and transfer graph approach on
the same instances of the problem. Since different machines are used in the experiments
(Pentium II, UltraSPARC III, and T7300), computation time has been normalized by two
benchmarks [15, 16]. According to these benchmarks, T7300 and UltraSPARC III are 13.3 and
1.32 times faster than Pentium II, respectively. These ratios are applied to computation time
and included in Table 5. After these corrections, our results are still faster and advantageous,
even if they were performed in an old Pentium II. The overall results show that transfer graph
approach performs better with respect to the normalized computation time. The possible
reason of this performance is due to precalculations, and the decomposition of the SPP in
transfer graph simplified the problem.

6. Conclusion and Future Work

The main contribution of this research is an approach for the multimodal transport problem
which deals with distributed nature of real transport information providers.
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The transfer graph can abstract scenarios with distributed transport information
sources, since it separates and keeps all transport modes in different unimodal networks.
Besides, each unimodal network can be easily updated when unexpected perturbations are
detected. This characteristic is very important because the RWS and TMS provide in real-time
information about weather and traffic condition, and if an incident or delay is detected, only
those unimodal networks related to the warning area must be recalculated, instead of the
total network.

The decomposition of the SPP in transfer graphs provides an adequate solution for
systems which receive multiple and frequent requests. Nevertheless, precalculations limited
the scalability of the transfer graph abstraction in terms of space memory.

The transfer graph approach has been tested with several instances of the SPP,
calculating the solution in less than one second in average. This approach provides better
performance in terms of computation time than other related works.

The transfer graph approach has been developed as a multimodal transport service
for the Carlink Platform and validated in real conditions using several transport means.
This service will be deployed and made active and will provide an important solution for
thousand of daily travellers in Luxembourg.

Our future work is to take advantage of the inherent parallel and distributed structure
exhibited by transfer graph. For this purpose, relevant paths will be computed by using
multiobjective Evolutionary Algorithm within each component separately and concurrently
and will be also experimented and tested in large real multimodal network spanning many
countries and involving several transportation service providers.
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