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1. Introduction

All the systems can undergo random failures. In some cases these may cause disastrous
consequences in human life, being the nuclear plants the most outstanding example. The
occurrence of failures in manufacturing systems devoted to the production of goods has not
so devastating effects but causes, in general, economic losses due to the downtime and the
lack of system availability.

Maintenance policies are mainly concerned with age and usage, both being responsible
of system failure. The preventive maintenance is carried out previous to failure and aims
at reducing breakdown risk. The corrective maintenance is performed after system failure
and can be classified into perfect repair or imperfect repair. The former brings the system
back to an as-good-as-new condition by any procedure or even the whole replacement of
the system by a new identical one. The latter restores the operating condition somewhere
between as-bad-as-old and as-good-as-new. Whenever the whole system is not replaced but
only some of its components, the imperfect repair constitutes a more realistic approach. In
the works due to Brown and Proschan [1] as well as Nakagawa and Yasui [2] an imperfect
maintenance is achieved with probability p or a perfect one with probability 1 − p. It is
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important to remark that different probabilistic structures emerge depending on the quality
of maintenance actions.

Moreover, many engineering systems are subject to the so-called unrevealed failures,
that is, those that are detected only by special tests or inspection. Failures of this sort
are typical in systems that are not in continuous operation such as spares or units in
stand-by mode. If the failure happens while the mechanism is in an idle period it will
remain undiscovered until the following attempt of use unless the system is monitored.
The unaffordable cost of a continuous monitoring motivates the periodic inspection of the
system which is well worth doing. Several works focus on bivariate policies based on both
periodic inspections at times kT, k = 1, 2 . . . to detect the otherwise unrevealed failures,
along with the accumulated number of failures, N. The works of Badı́a and Berrade [3–5],
Zequeira and Bérenger [6], Zhang et al. [7], Wang and Zhang [8] deal with bivariate policies
that aim at getting the optimum policy minimizing the long-run expected cost per unit of
time.

Some examples of periodically inspected systems are detectors of fire, gas, as
well as pressure and safety valves installed to prevent special risks. In fact, Vaurio [9]
indicates that unrevealed failures are quite common in safety systems of nuclear plants.
Once the failure has been discovered, the system can undergo both an imperfect repair
or a perfect one. The former is usually less expensive although after an imperfect repair
the system lifetime commonly appears to be shorter than when a perfect restoration is
carried out. Therefore, several imperfect repairs are allowed previously to the perfect repair
or the eventual replacement of the unit. Such imperfect repairs try to prolong system
lifetime as much as possible. Biswas et al. [10] analyze the availability function of a
periodically inspected system that experiences a fixed number of imperfect repairs before
being perfectly repaired. Zhang et al. [7], and Wang and Zhang [8] focus on optimum
bivariate policies where both parameters, the periodic times for preventive maintenance
and the accumulated number of failures foregoing the replacement of the system are
considered. In this work we aim at designing a bivariate policy that takes into account
the inspection times along with the allowed number of failures before the perfect repair,
studying both the system availability and maintenance optimization. Our goal is the cost
minimization over an infinite time span as well as obtaining conditions under which there
exists an optimum policy. The maintenance model along with the availability function are
presented in the second section. The cost function along with the main results concerning
the existence of an optimum policy are in the third section where the relevant conclusions
are also provided. The last section contains some examples which illustrate the theoretical
results.

2. Maintenance Model and Availability

Consider a system whose failures belong to the unrevealed type which is in operation at
t = 0 and tested at times nT, n = 1, 2, . . . to check whether a failure has taken place.
If the system fails during the time span between two consecutive inspections this failure
will remain undetected until the following inspection after which the system undergoes an
imperfect repair. When the Nth failure is detected a perfect repair is carried out. Hence, N−1
imperfect repairs are carried out before the perfect repair. In this model times of inspections
are considered negligible but times of repairs will be taken into account. In what follows the
notation below will be used.
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(i) Xj, j = 1, 2, . . . ,N: time to next failure after the j − 1 imperfect repair.

(ii) Fj, j = 1, 2, . . . ,N: reliability function corresponding to Xj .

(iii) μj = E[Xj] =
∫∞

0 Fj(x)dx, j = 1, 2, . . . ,N.

(iv) MN =
∑N

j=1μj .

(v) Kj, j = 1, 2, . . . ,N: number of inspections after the j − 1 failure is detected until the
j failure occurs. Therefore Kj = �Xj/T�, where �� denotes the integer part function.

(vi) E[Kj] =
∑∞

n=1Fj(nT) = Sj(T), j = 1, 2, . . . ,N.

(vii) HN(T) =
∑N

j=1Sj(T).

(viii) Rj, j = 1, 2, . . . ,N: time of the j repair.

(ix) rj = E[Rj], j = 1, 2, . . . ,N.

(x) dN =
∑N

j=1rj .

We assume that the mean times of repair, rj constitutes an increasing sequence in j. In
addition, the perfect repair restores the system to an as-good-as-new condition. Nevertheless
system deterioration cannot be removed by imperfect repairs and it is assumed that the
system lifetimes after them show a decreasing pattern. Therefore the following stochastic
order relations hold:

X1
st≥ X2

st≥ · · · st≥ XN, (2.1)

where st means the usual stochastic order, that is,

F1(u) ≥ F2(u) ≥ · · · ≥ FN−1(u) ≥ FN(u). (2.2)

A cycle denoted by τ represents the time span between two consecutive renewals of the
system (see Ross [11]). In this case a cycle is completed whenever a perfect repair is carried
out. Therefore, its length is given as follows:

τ =
N∑

j=1

[(
Kj + 1

)
T + Rj

]
, (2.3)

and its expected length

E[τ] = T(HN(T) +N) + dN. (2.4)

The availability function at t denoted by A(t), provides the probability that the system is
ready to function whether there is an attempt of use at time t. In many practical situations the
limiting average availability is used instead:

A(T,N) = lim
t→∞

1
t

∫ t

0
A(u)du =

E[U]
E[U] + E[D]

, (2.5)
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where E[U] and E[D] represent, respectively, the expected uptime and downtime during a
cycle. Moreover

E[U] + E[D] = E[τ]. (2.6)

In this case the foregoing expression turns out to be

A(T,N) =
MN

T(HN(T) +N) + dN
. (2.7)

We should refer the reader to the following properties of the Sj(T) shown in Badı́a et al. [12]:

Sj(T) is a decreasing function,

lim
T→ 0

Sj(T) = ∞,

lim
T→∞

Sj(T) = lim
T→∞

TSj(T) = 0,

lim
T→ 0

TSj(T) = μj.

(2.8)

Therefore, the next conditions also hold

lim
T→ 0

A(T,N) =
MN

MN + dN
, lim

T→∞
A(T,N) = 0. (2.9)

The limit on the right implies that systems of this sort under no inspection tend to be
unavailable.

Furthermore, A(T,N) is a decreasing function with T if and only if T(HN(T)+N)+dN
is an increasing one. The derivative of the latter is expressed as

l(T,N) =
d(T(HN(T) +N) + dN)

dT
= T

dHN(T)
dT

+HN(T) +N. (2.10)

The exponential case

Now, let us assume that the sequence of times between failures, Xi, i = 1, 2, . . . ,N are
exponentially distributed with mean value 1/λi, i = 1, 2, . . . ,N and λ1 ≤ λ2 ≤ · · · ≤ λN .
Then

Sj(T) =
1

eλjT − 1
,

HN(T) =
N∑

j=1

1
eλjT − 1

,

(2.11)
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hence

l(T,N) =
N∑

j=1

eλjT
(
eλjT − 1 − λjT

)

(eλjT − 1)2
≥ 0. (2.12)

Therefore, the system shows a decreasing availability. Thus, the less frequent the inspection,
the more likely the system to be unavailable when required for use.

3. Cost Function and Optimum Maintenance Policy

In this section we focus on maintenance optimization. The model includes the following
costs.

(i) c1: unitary cost of inspection.

(ii) crj : unitary cost caused by the imperfect repair of the jth failure, j = 1, 2, . . . ,N − 1,
crj is assumed to be an increasing sequence in j.

(iii) crp: cost of the perfect repair.

(iv) cN : total cost incurred in a cycle due to repairs, cN =
∑N−1

j=1 crj + crp.

(v) cd: cost rate due to downtime.

The cost per unit of time over an infinite time span, denoted by Q(T,N), is assumed to
be the cost function of this model. Q(T,N) depends on the time interval between periodic
inspections, T , as well as on the number of failures previous to the perfect repair, N.

The key theorem of the renewal-reward theory (see Ross [11]) ensures that, as time
tends to infinity,Q(T,N) converges to the ratio of the expected cost of a cycle and its expected
length:

Q(T,N) =
E[C(τ)]
E[τ]

. (3.1)

The cost of a cycle is given as follows:

C(τ) = c1

N∑

j=1

(
Kj + 1

)
+ cN + cd

⎧
⎨

⎩

N∑

j=1

(
Kj + 1

)
T + Rj −Xj

⎫
⎬

⎭
. (3.2)

The three terms in the previous expression correspond to the cost incurred due to inspections,
repairs and the downtime cost, respectively.

The expected cost of a cycle is

E[C(τ)] = cd[T(HN(T) +N) + dN] + VN + c1HN(T), (3.3)

where

VN =Nc1 + cN − cdMN. (3.4)
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Figure 1: Cost function. Q(T,N).

The cost function turns out to be

Q(T,N) = cd +
VN + c1HN(T)

T(HN(T) +N) + dN
. (3.5)

Figure 1 shows Q(T,N) under the following costs: c1 = 1, crj = 2j, (j = 1, . . .), crp = 50, cd =
2, rj = 0.25j (j = 1, . . .). The time between consecutive failures is assumed to follow an
exponential distribution with parameter λ = 0.01.

The following result aim at providing conditions for the existence of an optimum
inspection interval when the number of imperfect inspections previous to the perfect one
is fixed. The key of the proof rests on the fact that, whenever the condition VN < 0 holds, the
cost function is U-shaped, that is, first decreases, reversing this condition as time goes by.

Theorem 3.1. GivenN, there exists T�, 0 < T� <∞, minimizing Q(T,N), if and only if VN < 0.

Proof. The same properties concerning Sj(T) that appear in Section 2 are used to prove that
Q(T,N) verifies the limiting conditions below:

lim
T→ 0

Q(T,N) = ∞, lim
T→∞

Q(T,N) = cd. (3.6)

VN + c1HN(T) is a continuous and nonincreasing function. The same conditions of Section 2
along VN < 0 imply that there exists T0 ∈ (0,∞) with T0 being the unique solution of the
following equation:

VN + c1HN(T) = 0. (3.7)
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In addition

Q(T,N) < cd, for all T > T0. (3.8)

The existence of a minimum, T�, is deduced from the continuity of Q(T,N) along with
limT→∞Q(T,N) = cd.

Moreover T� is one of the roots of the next equation:

dHN(T)
dT

(c1TN + c1dN − VNT) − (VN + c1HN(T))(HN(T) +N) = 0. (3.9)

In case that VN ≥ 0, then

Q(T,N) ≥ cd = lim
T→∞

Q(T,N), (3.10)

therefore, T� = ∞.
The critical condition VN < 0 is equivalent to MN > (Nc1 + cN)/cd, that is, it is worth

carrying out a maintenance policy as long as the mean time previous to the perfect restoration
is long enough. Otherwise, the maintenance costs do not compensate the benefits derived
from them.

3.1. Optimum N

The maintenance policy consists of imperfect repairs following the N − 1 first failures
along with a perfect repair after the Nth failure. The purpose of this section is to seek the
accumulated number of failures, N, minimizing Q(T,N).

We denote by N� the optimal N. The following conditions assure the existence of a
local minimum:

Q(T,N� + 1) ≥ Q(T,N�), Q(T,N� − 1) > Q(T,N�). (3.11)

Q(T,N) is also expressed as follows:

Q(T,N) = cd +
a(T,N)
b(T,N)

, (3.12)

where

a(T,N) = VN + c1HN(T),

b(T,N) = T(HN(T) +N) + dN.
(3.13)
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Moreover

a(T,N + 1) = a(T,N) + BN + c1SN+1(T),

b(T,N + 1) = b(T,N) + T(SN+1(T) + 1) + rN+1,
(3.14)

with

BN = c1 + crN − cdμN+1. (3.15)

Q(T,N + 1) ≤ Q(T,N) is equivalent to the following inequality:

cd +
BN + c1SN+1(T)

T(SN+1(T) + 1) + rN+1
≤ cd + VN + c1HN(T)

T(HN(T) +N) + dN
= Q(T,N). (3.16)

From the stochastic order defined in (2.2) by the magnitude of tail probabilities, it follows
that

S1(T) ≥ S2(T) ≥ · · · ≥ SN−1(T) ≥ SN(T). (3.17)

Hence HN(T) ≥ NSN+1(T). In addition Q(T,N) is an increasing function with HN(T) if and
only if VN < 0, therefore

Q(T,N) ≥ cd + VN/N + c1SN+1(T)
T(SN+1(T) + 1) + dN/N

. (3.18)

Consider now identical repair times, that is,

r1 = r2 = · · · = rN = rN+1 = · · · , (3.19)

then dN/N = rN+1. Hence, the inequality in (3.16) is satisfied provided that BN ≤ VN/N
holds.

From the foregoing calculations we derive that in case of BN ≤ VN/N then Q(T,N +
1) ≤ Q(T,N). Moreover if BN ≤ VN/N for all N, then N� = ∞.

The condition BN > VN/N is also expressed as

μN+1 <
NcrN + cdMN − cN

Ncd
. (3.20)

Hence N� ≥N0 where N0 is defined below:

N0 = min
{
N : μN+1 <

NcrN + cdMN − cN
Ncd

}
. (3.21)
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It’s important to remark that NBN − VN is an increasing function, so it can be stated that

N0 = min{N : NBN − VN > 0}. (3.22)

Condition BN > VN/N and the equivalent expression in (3.20) are concerned with the
existence of a finite N�. They indicate that the system should undergo a perfect restoration
provided that the remaining time to the next failure does not exceed the upper bound in
(3.20). That limit turns out to be a relation involving maintenance costs and past times
between failures, stating the instant when the perfect repair, that is, the change by a new
system, constitutes an optimal choice from the cost view point.

3.2. Exponential Failure Time and Minimal Repair

We assume now that the first time to failure follows an exponential distribution and the
imperfect repair consists of minimal repair that restores the system to the operating state just
previous to failure. Hence all the successive times between failures, Xj , are also exponentially
distributed with μj = 1/λ being its mean value.

In this case

Sj(T) =
1

eλT − 1
, HN(T) =

N

eλT − 1
. (3.23)

The cost function is given next:

Q(T,N) = cd +
VN/N + c1/

(
eλT − 1

)

T
(
1/

(
eλT − 1

)
+ 1

)
+ dN/N

, (3.24)

with VN =Nc1 + cN − cdN/λ.
In what follows we aim at obtaining the optimum policy denoted by (T�,N�),

satisfying that

Q(T�,N�) = min
T,N

Q(T,N) = min
N

Q
(
T�N,N

)
, (3.25)

where T�N represents the optimum T for a given N.
We can restrict the analysis to the VN < 0 case, as whenever VN ≥ 0, then T�N = ∞ and

Q(T�N,N) = cd ≥ minNQ(T�N,N).
The goal of the following analysis is to prove that

min
N

Q
(
T�N,N

)
= min

N≤N0

Q
(
T�N,N

)
, (3.26)

with N0 = min{N : NBN − VN > 0} = min{N : crN > (
∑N−1

j=1 crj + cpr)/N}.
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Given N and provided that VN < 0, the optimum in T, T�N is the only root of the
equation M(T,N) = 0 where

M(T,N) =
(
−VN
N

)
eλT −

(
−VN
N

+ c1

)
−
(
−VN
N

+ c1

)
λT − c1λ

dN
N

. (3.27)

A close inspection of M(T,N) lets us conclude that in case that N ≥N0, then T�N ≤ T�N+1.
In addition Q(T,N) ≤ Q(T,N + 1) if and only if R(T,N) ≥ 0, where R(T,N) is defined

next:

R(T,N) = BNdN − VNrN+1 + (NBN − VN)
TeλT

eλT − 1
+ c1(dN −NrN+1)

1
eλT − 1

. (3.28)

R(T,N) is an increasing function in T for N ≥N0. Moreover

R
(
T�N+1,N + 1

) − R(T�N+1,N
) ≥ 0 (3.29)

provided that VN+1 < 0. Therefore, if N ≥N0 then

R
(
T�N+1,N + 1

) ≥ R(T�N+1,N
)

≥ R(T�N,N
)

≥
(
VN
N

+ c1
1

eλT
�
N − 1

)
(dN −NrN+1) + (NBN − VN)

T�Ne
λT�N

eλT
�
N − 1

≥ 0.

(3.30)

Next, we show that Q(T�N0
,N0) ≤ Q(T�N,N) for N ≥ N0. The following facts hold, namely,

R(T,N) is increasing in T and T�N > T�N0
. Then R(T�N,N0) ≥ R(T�N0

,N0) ≥ 0. Therefore,
Q(T�N,N0) ≤ Q(T�N,N0 + 1). The same arguments lead to prove that Q(T�N,N0 + 1) ≤
Q(T�N,N0 + 2) as well as Q(T�N,N0) ≤ Q(T�N,N) for N ≥ N0. Therefore Q(T�N0

,N0) ≤
Q(T�N,N0) ≤ Q(T�N,N) for N ≥N0. Hence, it follows that

min
N

Q
(
T�N,N

)
= min

N≤N0

Q
(
T�N,N

)
. (3.31)

Moreover, in case that we have identical repair times, the foregoing result along with the one
in Section 3.1 leads to

Q(T�,N�) = min
T,N

Q(T,N) = min
N

Q
(
T�N,N

)
= Q

(
T�N0

,N0

)
. (3.32)

3.3. Concluding Remarks

This model constitutes an approach to the common maintenance practice consisting of several
repairs during the useful life of a system that end with the change by a new one when
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the expected time to be usable is not long enough. By means of the stochastic order in the
successive times to failure and increasing repair times we reflect that, as time goes by, the
system condition becomes less than perfect with progressively higher maintenance costs.

A system subject to inspection to detect its failures is considered, and thus we deal
with a bivariate policy where one of the terms refers to the inspection time and the other to
the number of failures previous to the system substitution. Regarding the optimum policy
we obtain conditions ensuring when inspections and repairs of the system in use are still
advantageous.

The study is completed with some insights related to times between failures following
exponential distributions.

4. Examples

Example 4.1. Let’s consider that Xj j, j = 1, 2, . . . is a Weibull random variable whose
distribution function is given as follows:

Fj(x) = e−λjx
2
, x ≥ 0, (4.1)

with λj = jλ and λ > 0. The mean time to the jth failure after the j − 1 imperfect repair is

μj =
1
2

√
π

λj
. (4.2)

We assume the following imperfect repair cost of the jth failure

crj = min
(
jc, 10c

)
, (4.3)

with c being a positive constant. In addition the time of the imperfect jth repair is set rj = 0.1.

It’s known from results in Section 3.1, that the optimum N is greater or equal to N0 =
min{N : NBN − VN > 0}. We aim at obtaining a local optimum for both T and N by means
of the following algorithm proposed in Nakagawa [13] as well as in Zequeira and Bérenguer
[6].

Step 1. Set N� =N0.

Step 2. Calculate T�N� y T�N�+1.

Step 3. If Q(T�N�+1,N
� + 1) ≤ Q(T�N� ,N�) then set N� =N� + 1 and go to Step 2.

Table 1 contains the values of N0 along with the local optimum N� and T�N� under
different values of the costs and the parameters c and λ.

Example 4.2. Consider a system whose time to failure is assumed to be an exponential
distribution with mean equal to 1 and subject to inspections with unitary cost c1 = 1 as well
as minimal repairs with costs crj = αj, j = 1, 2 . . .N − 1. The cost due to downtime is cd = 10.
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Table 1: Local optimum N� and T�N� .

c1 c cpr cd λ N0 N� T�N� Q(T�N� ,N�)

1 2 10 2 0.001 2 3 27.9146 1.1790
1 4 50 2 0.001 3 3 28.3133 2.4766
1 5 150 3.5 0.001 5 5 24.1634 2.8601

Table 2: N�,T�,Q(T�,N�). Costs: crj = j, j = 1, 2 . . .N − 1.

cpr N0 N� T� Q(T�,N�)

8 4 4 0.8145 7.1165
12 5 5 0.9131 7.6919
15 6 5 0.9786 8.0532
20 6 6 1.12053 8.5470
25 7 7 1.2953 8.9599
30 8 8 1.5301 9.3132

Table 3: N�,T�,Q(T�,N�). Costs: cpr = 15.

α N0 N� T� Q(T�,N�)

0.5 8 7 0.8854 7.2551
0.7 7 6 0.9193 7.6140
1.2 5 4 1.0290 8.7000
1.5 5 4 1.1025 8.9000
2.5 4 3 1.5065 9.9511
3 3 3 1.8123 9.6981

The times for repair are given as rj = 0.25j, j = 1, 2 . . . . Table 2 shows the optimum policy
under different costs of the perfect repair cpr whereas Table 3 deals with distinct minimal
repair costs.

The inspection of the results in Tables 2 and 3 reveals that the higher of any of the two
costs due to the perfect repair and the minimal repair, the greater, T�, that is, the less frequent
the inspection. Moreover higher minor repair costs imply a smaller accumulated number of
failures previous to the perfect repair whereas increasing the perfect repair costs causes the
opposite effect on N�.
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