
Hindawi Publishing Corporation
Advances in Operations Research
Volume 2009, Article ID 909753, 22 pages
doi:10.1155/2009/909753

Research Article
A Trust-Region-Based BFGS Method
with Line Search Technique for Symmetric
Nonlinear Equations

Gonglin Yuan,1 Shide Meng,2 and Zengxin Wei1

1 College of Mathematics and Information Science, Guangxi University, Nanning,
Guangxi 530004, China

2 Department of Mathematics and Computer Science, Yulin Teacher’s College, Yulin,
Guangxi 537000, China

Correspondence should be addressed to Shide Meng, glyuan@yahoo.cn

Received 29 April 2009; Revised 19 August 2009; Accepted 28 October 2009

Recommended by Khosrow Moshirvaziri

A trust-region-based BFGS method is proposed for solving symmetric nonlinear equations. In this
given algorithm, if the trial step is unsuccessful, the linesearch technique will be used instead of
repeatedly solving the subproblem of the normal trust-region method. We establish the global and
superlinear convergence of the method under suitable conditions. Numerical results show that the
given method is competitive to the normal trust region method.

Copyright q 2009 Gonglin Yuan et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Consider the following system of nonlinear equations:

g(x) = 0, x ∈ Rn, (1.1)

where g : Rn → Rn is continuously differentiable, and the Jacobian ∇g(x) of g is symmetric
for all x ∈ Rn. Let ϑ be the norm function defined by ϑ(x) = 1/2‖g(x)‖2. Then the nonlinear
equations (1.1) is equivalent to the following global optimization problem:

minϑ(x), x ∈ Rn. (1.2)

There are two ways for nonlinear equations by numerical methods. One is the line
search method and the other is the trust region method. For the line search method, the

2 Advances in Operations Research

following iterative formula is often used to solve (1.1):

xk+1 = xk + αkdk, (1.3)

where xk is the kth iteration point, αk is a steplength, and dk is search direction. To begin, we
briefly review somemethods for (1.1) by line search technique. First, we give some techniques
for αk. Brown and Saad [1] proposed the following line search method to obtain the stepsize
αk :

ϑ(xk + αkdk) − ϑ(xk) ≤ σαk∇ϑ(xk)Tdk, (1.4)

where σ ∈ (0, 1). Based on this technique, Zhu [2] gave the nonmonotone line search
technique:

ϑ(xk + αkdk) − ϑ
(
xl(k)
) ≤ σαk∇ϑ(xk)Tdk, (1.5)

‖ϑ(xl(k))‖ = max0≤j≤m(k){‖ϑ(xk−j)‖}, m(0) = 0 andm(k) = min{m(k−1)+1,M}, k ≥ 1, andM
is a nonnegative integer. From these two techniques (1.4) and (1.5), it is easy to see that the
Jacobian matrix ∇gk must be computed at every iteration, which will increase the workload
especially for large-scale problems or this matrix is expensive to calculate. Considering these
points, we [3] presented a new backtracking inexact technique to obtain the stepsize αk:

∥∥g(xk + αkdk)
∥∥2 ≤ ∥∥g(xk)

∥∥2 + δα2
kg

T
k dk, (1.6)

where δ ∈ (0, 1), gk = g(xk), and dk is a solution of the system of linear (1.15). We established
the global convergence and the superlinear convergence of this method. The numerical
results showed that the new line search technique is more effective than the normal methods.
Li and Fukashima [4] proposed an approximate monotone line search technique to obtain the
step-size αk satisfying

ϑ(xk + αkdk) − ϑ(xk) ≤ −δ1‖αkdk‖2 − δ2
∥∥αkgk

∥∥2 + εk
∥∥g(xk)

∥∥2, (1.7)

where δ1 > 0 and δ2 > 0 are positive constants, αk = rik , r ∈ (0, 1), ik is the smallest
nonnegative integer i such that (1.7), and εk satisfies

∞∑

k=0

εk < ∞. (1.8)

Combining the line search (1.7) with one special BFGS update formula, they got some better
results (see [4]). Inspired by their idea,Wei [5] and Yuan [6–8] presented several approximate
methods. Further work can be found in [9].

Second, we present some techniques for dk. One of the most effective methods is
Newton method. It normally requires a fewest number of function evaluations, and it is very
good at handling ill-conditioning. However, its efficiency largely depends on the possibility

Advances in Operations Research 3

of solving a linear system efficiently which arises when computing the search dk in each
iteration:

∇g(xk)dk = −g(xk). (1.9)

Moreover, the exact solution of the system (1.9) could be too burdensome, or it is not
necessary when xk is far from a solution [10]. Inexact Newtonmethods [2, 3, 10] represent the
basic approach underlying most of the Newton-type large-scale algorithms. At each iteration,
the current estimate of the solution is updated by approximately solving the linear system
(1.9) using an iterative algorithm. The inner iteration is typically “truncated” before the
solution to the linear system is obtained. Griewank [11] firstly proposed the Broyden’s rank
one method for nonlinear equations and obtained the global convergence. At present, a lot
of algorithms have been proposed for solving these two problems (1.1) and (1.2)(see [12–22]
etc.).

Trust region method is a kind of important and efficient methods in the area of
nonlinear optimization. This method can be traced back to the works of Levenberg [17] and
Marquardt [18] on nonlinear least-squares problems and the work of Goldfeld et al. [23]
for unconstrained optimization. Powell [24] was the first to establish the convergence result
of trust region method for unconstrained optimization. Fletcher [25, 26] firstly proposed
trust region algorithms for linearly constrained optimization problems and nonsmooth
optimization problems, respectively. This method has been studied by many authors [15, 27–
31] and has been applied to equality constrained problems [32–34]. Byrd et al. [35], Fan
[36], Powell and Yuan [37], Vardi [38], Yuan [39, 40], Yuan et al. [41], and Zhang and Zhu
[42] proposed various trust region algorithms for constrained optimization problems and
established the convergence. Fan [36], Yuan [39], and Zhang [43] presented the trust region
algorithms for nonlinear equations and got some results.

The normal trust-region subproblem for nonlinear equations is to find the trial step dk

such that

min q∗k(d) = dT∇g(xk)g(xk) +
1
2
dT∇g(xk)T∇g(xk)d

s.t. ‖d‖ ≤ Δk,

(1.10)

where Δk > 0 is a scalar called the trust region radium. Define the predicted descent of the
objective function g(x) at kth iteration by

Pred∗
k = q∗k(0) − q∗k(dk), (1.11)

the actual descent of g(x) by

Ared∗
k = ϑ(xk) − ϑ(xk + dk), (1.12)

and the ratio of actual descent to predicted descent:

r∗k =
Ared∗

k

Pred∗
k

. (1.13)

4 Advances in Operations Research

For the normal trust region algorithm, if r∗k ≥ ρ (ρ ∈ (0, 1), this case is called a successful
iteration), the next iteration is xk+1 = xk + dk, and go to the next step; otherwise reduce the
trust region radium Δk and solve this subproblem (1.10) repeatedly. Sometimes, we must
do this work many times and compute the Jacobian matrix ∇g(xk) and ∇g(xk)

T∇g(xk) at
every time, which obviously increases the work time and workload, especially for large-scale
problems. Even more detrimental, the trust region subproblem is not very easy (see [36, 39]
etc.) to be solved for most of the practical problems.

In order to alleviate the above bad situation that traditional algorithms have to
compute Jacobian matrix ∇g(xk) and ∇g(xk)

T∇g(xk) at each and every iteration while
repeatedly resolving the trust region subproblem, in this paper, we would like to rewrite
the following trust-region subproblem as

min qk(d) = g(xk)
Td +

1
2
dTBkd

s.t. ‖d‖ ≤ Δk,

(1.14)

where matrix Bk is the approximation to the Jacobian matrix of g(x) at xk. Due to the
boundness of the region {d | ‖d‖ ≤ Δk}, (1.14) has a solution regardless of B′

ks definiteness
(see [43]). This implies that it is valid to adopt a BFGS update formula to generate Bk for trust
region methods and the BFGS update is presented as follows:

Bk+1 = Bk +
yky

T
k

sT
k
yk

− Bksks
T
kBk

sT
k
Bksk

, (1.15)

where yk = gk+1 − gk, sk = xk+1 − xk. Define the predicted descent of the objective function
g(x) at kth iteration by

Predk = qk(0) − qk(dk), (1.16)

the actual descent of g(x) by

Aredk =
∥∥g(xk)

∥∥2 − ∥∥g(xk + dk)
∥∥2, (1.17)

and the ratio of actual descent to predicted descent:

rk =

∥∥g(xk)
∥∥2 − ∥∥g(xk + dk)

∥∥2

qk(0) − qk(dk)
. (1.18)

If rk ≥ ρ (ρ ∈ (0, 1), called a successful iteration), the next iteration is xk+1 = xk+dk.Otherwise,
we use a search technique to obtain the steplength λk and let the next iteration be xk+1 = xk +
λkdk. Motivated by the idea of the paper [4], we propose the following linesearch technique
to obtain λk:

∥∥g(xk + λkdk)
∥∥2 − ∥∥gk

∥∥2 ≤ −σ1
∥∥λkgk

∥∥2 − σ2‖λkdk‖2 + σ3λkd
T
kgk, (1.19)

Advances in Operations Research 5

where σ1, σ2, and σ3 are some positive constants. In Section 3, we will show (1.19) is well-
defined. Here and throughout this paper, ‖ · ‖ denotes the Euclidian norm of vectors or its
induced matrix norm. g(xk) is replaced by gk.

In the next section, the proposed algorithm for solving (1.1) is given. The global and
superlinear convergence of the presented algorithm are stated in Section 3 and Section 4,
respectively. The numerical results of the method are reported in Section 5.

2. Algorithms

Algorithm 2.1.

Initial: choose ρ, r ∈ (0, 1), 0 < τ1 < τ2 < 1 < τ3, σ1, σ2, σ3 > 0,Δmin > 0, x0 ∈ Rn.
Let k := 0;

Step 1: Let Δk = Δmin;

Step 2: If ‖gk‖ = 0, stop. Otherwise go to Step 3;

Step 3: Solve the subproblem (1.14)with Δ = Δk to get dk;

Step 4: If

rk �
∥∥g(xk)

∥∥2 − ∥∥g(xk + dk)
∥∥2

qk(0) − qk(dk)
< ρ, (2.1)

Go to Step 5; Otherwise Let xk+1 = xk + dk,Δk+1 ∈ [‖dk‖, τ3‖dk‖], and go to Step 6;

Step 5: Let k be the smallest nonnegative integer i such that (1.19) holds for λ = ri.
Let λk = rik and xk+1 = xk + λkdk, Δk+1 ∈ [τ1‖dk‖, τ2‖dk‖];
Step 6: Update Bk to get Bk+1 by (1.15). Let k := k + 1. Go to Step 2.

Here we also give a normal trust-region method for (1.1) and call it Algorithm 2.2.

Algorithm 2.2 (the normal Trust-Region Algorithm [44]).

Initial: Given a starting point x0 ∈ Rn, Δ0 > 0 is the initial trust region radium, an
upper bound of trust region radius Δ′, 0 < Δ0 ≤ Δ′. Set 0 < μ < 1, 0 < η1 < η2 < 1 <
η3, k := 0.

Step 1: If ‖gk‖ = 0, stop. Otherwise, go to Step 2.

Step 2: Solve the trust-region subproblem (1.10) to obtain dk.

Step 3: Let

rk =
ϑ(xk) − ϑ(xk + dk)

q∗k(0) − q∗k(dk)
, (2.2)

if rk < η1, set Δk+1 = η1Δk; If rk > η2 and ‖dk‖ = Δk, let Δk+1 = min{η3Δk,Δ′};
Otherwise, let Δk+1 = Δk.

Step 4: If rk > μ, let xk+1 = xk + dk and go to Step 5; otherwise, let xk+1 = xk, go to
Step 2.

Step 5: Set k := k + 1. Go to Step 1.

6 Advances in Operations Research

Remark 2.3. By yk = gk+1 − gk,we have the following approximate relations:

yk = gk+1 − gk ≈ ∇gk+1sk. (2.3)

Since Bk+1 satisfies the secant equation Bk+1sk = yk and ∇gk+1 is symmetric, we have
approximately

Bk+1sk ≈ ∇gk+1sk = ∇gT
k+1sk. (2.4)

This means that Bk+1 approximates ∇gk+1 along direction sk.

3. The Global Convergence

In this section, we will establish the global convergence of Algorithm 2.1. Let Ω be the level
set defined by

Ω =
{
x | ∥∥g(x)∥∥ ≤ ∥∥g(x0)

∥∥}, (3.1)

which is bounded.

Assumption 1. (A) g is continuously differentiable on an open convex set Ω1 containing Ω.
(B) The Jaconbian of g is symmetric and bounded on Ω1 and there exists a positive

constant M such that

∥∥∇g(x)
∥∥ ≤ M ∀x ∈ Ω1. (3.2)

(C) ∇g is positive definite on Ω1; that is, there is a constant m > 0 such that

m‖d‖2 ≤ dT∇g(x)d ∀x ∈ Ω1, d ∈ Rn. (3.3)

(D) ϑ(x) is differentiable and its gradient satisfies

∥∥∇ϑ(x) − ∇ϑ
(
y
)∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ Ω1, (3.4)

where L is the Lipschitz constant. By Assumptions 1(A) and 1(B), it is not difficult to get the
following inequality:

∥∥yk

∥∥ ≤ M‖sk‖. (3.5)

According to Assumptions 1(A) and 1(C), we have

sTkyk = sTk∇g(ξ)sk ≥ m‖sk‖2, (3.6)

Advances in Operations Research 7

where ξ = xk + ϑ0(xk+1 − xk), ϑ0 ∈ (0, 1), which means that the update matrix Bk is always
positive definite. By (3.5) and (3.6), we have

sTkyk

‖sk‖2
≥ m,

∥
∥yk

∥
∥2

sTkyk

≤ M2

m
. (3.7)

Lemma 3.1 ([see Theorem2.1 in [45]]). Suppose that Assumption 1 holds. Let Bk be updated by
BFGS formula (1.15) and let B0 be symmetric and positive definite. For any k ≥ 0, sk and yk satisfy
(3.7). Then there exist positive constants β1, β2, and β3 such that, for any positive integer k̃

β1‖dk‖2 ≤ dT
kBkdk ≤ β2‖dk‖2, β1‖dk‖ ≤ ‖Bkdk‖ ≤ β3‖dk‖ (3.8)

hold for at least k̃/2� value of k ∈ {1, 2, . . . , k̃}.

Considering the subproblem (1.14), we give the following assumption similar to
(1.14). Similar to [2], the following assumption is needed.

Assumption 2. Bk is a good approximation to ∇gk, that is,

∥∥(∇gk − Bk

)
dk

∥∥ ≤ ε0
∥∥gk
∥∥, (3.9)

and dk satisfies

∥∥gk + Bkdk

∥∥ ≤ ε1
∥∥gk
∥∥, (3.10)

where ε0 ∈ (0, 1) is a small quantity, and ε1 > 0, ε0 + ε1 ∈ (0, 1).

Lemma 3.2. Let Assumption 2 hold. Then dk is descent direction for ϑ(x) at xk, that is,

∇ϑ(xk)Tdk < 0. (3.11)

Proof. Let rk be the residual associated with dk so that gk + Bkdk = rk:

∇ϑ(xk)Tdk = g(xk)T∇g(xk)dk

= g(xk)T
[(∇g(xk) − Bk

)
dk +

(
rk − g(xk)

)]

= g(xk)T
(∇g(xk) − Bk

)
dk + g(xk)T rk − g(xk)Tg(xk).

(3.12)

So we have

∇ϑ(xk)Tdk +
∥∥g(xk)

∥∥2 = g(xk)T
(∇g(xk) − Bk

)
dk + g(xk)T rk. (3.13)

8 Advances in Operations Research

Therefore, taking the norm in the right-hand side of the above equality, we have that from
Assumption 2

∇ϑ(xk)Tdk ≤ ∥∥g(xk)
∥
∥
∥
∥(∇g(xk) − Bk

)
dk

∥
∥ +
∥
∥g(xk)

∥
∥‖rk‖ −

∥
∥g(xk)

∥
∥2

≤ −(1 − ε0 − ε1)
∥
∥g(xk)

∥
∥2.

(3.14)

Hence, for ε0 + ε1 ∈ (0, 1), the lemma is satisfied.

According to the above lemma, it is easy to deduce that the norm function ϑ(x) is
descent, which means that ‖gk+1‖ ≤ ‖gk‖ is true.

Lemma 3.3. Let {xk} be generated by Algorithm 2.1 and suppose that Assumption 2 holds. Then
{xk} ⊂ Ω. Moreover, {‖gk‖} converges.

Proof. By Lemma 3.2, we have ‖gk+1‖ ≤ ‖gk‖. Then we conclude from Lemma 3.3 in [46] that
{‖gk‖} converges. Moreover, we have for all k

∥∥gk+1
∥∥ ≤ ∥∥gk

∥∥ ≤ ∥∥gk−1
∥∥ ≤ · · · ≤ ∥∥g(x0)

∥∥. (3.15)

This implies that {xk} ⊂ Ω.

Lemma 3.4. Let Assumption 1 hold. Then the following inequalities

gT
k dk ≤ −β1‖dk‖2,

∥∥gk
∥∥2 ≥ β21‖dk‖2 (3.16)

− 1
β1

∥∥gk
∥∥2 ≤ gT

k dk (3.17)

hold.

Proof. Since the update matrix Bk is positive definite. Then, problem (1.14) has a unique
solution dk, which together with some multiplier αk ≥ 0 satisfies the following equations:

Bkdk + αkdk = −gk,
αk(‖dk‖ −Δk) = 0.

(3.18)

From (3.18), we can obtain

dT
kBkdk + gT

k dk = −αk‖dk‖2 ≤ 0, (3.19)

αk =
−gT

k
dk − dT

k
Bkdk

‖dk‖2
. (3.20)

By (3.19) and (3.8), we get (3.16), which also imply that the inequality (3.17) holds.

Advances in Operations Research 9

The next lemma will show that (1.19) is reasonable, and then Algorithm 2.1 is well
defined.

Lemma 3.5. Let Assumptions 1(D) and 2 hold. Then there exists a step-size λk such that (1.19) in a
finite number of backtracking steps.

Proof. From Lemma3.8 in [1] we have that in a finite number of backtracking steps, λk must
satisfy

∥
∥g(xk + αkdk)

∥
∥2 − ∥∥g(xk)

∥
∥2 ≤ δλkg(xk)T∇g(xk)dk, δ ∈ (0, 1). (3.21)

By (3.12) and (3.14), let β0 = (1 − ε0 − ε1), and we have

g(xk)T∇g(xk)dk ≤ −β0
∥
∥gk
∥
∥2 = −β0

3
∥
∥gk
∥
∥2 − β0

3
∥
∥gk
∥
∥2 − β0

3
∥
∥gk
∥
∥2

≤ −β0
3
∥∥gk
∥∥2 − β0

3
β21‖dk‖2 +

β0
3
β1g

T
k dk,

(3.22)

where the last inequality follows (3.16) and (3.17). By λk ≤ 1, let σ1 ∈ (0, (β0/3)δ), σ2 ∈
(0, (β0/3)β21δ), σ3 ∈ (0, (β0/3)β1δ), then we obtain (1.19). The proof is complete.

Lemma 3.6. Let {xk} be generated by the Algorithm 2.1. Suppose that Assumptions 1 and 2 hold.
Then one has

∞∑

k=0

(
−gT

k dk

)
< ∞,

∞∑

k=0

dT
kBkdk < ∞. (3.23)

In particular, one has

lim
k→∞

(
−gT

k dk

)
= 0, lim

k→∞
dT
kBkdk = 0. (3.24)

Proof. By (3.8) and (3.19), we have

qk(dk) = gT
k dk +

1
2
dT
kBkdk ≤ 1

2
gT
k dk ≤ −1

2
dT
kBkdk. (3.25)

From Step 4 of Algorithm 2.1, if rk ≥ ρ is true, we get

∥∥g(xk+1)
∥∥2 − ∥∥g(xk)

∥∥2 ≤ qk(dk) ≤ 1
2
gT
k dk ≤ −1

2
dT
kBkdk, (3.26)

otherwise, if rk < ρ is true, by Step 5 of Algorithm 2.1, (3.8), and (3.26), we can obtain

∥∥g(xk+1)
∥∥2 − ∥∥g(xk)

∥∥2 ≤ −σ1
∥∥λkgk

∥∥2 − σ2‖λkdk‖2 + σ3λkd
T
kgk

≤ σ3λkd
T
kgk ≤ −σ3λkd

T
kBkdk.

(3.27)

10 Advances in Operations Research

By Lemma 3.5, we know that (1.19) can be satisfied in a finite number of backtracking steps,
which means that there exists a constant λ∗ ∈ (0, 1) satisfying λ∗ ≤ λk for all k. By (3.26) and
(3.27), we have

∥
∥g(xk+1)

∥
∥2 − ∥∥g(xk)

∥
∥2 ≤ ρ1g

T
k dk ≤ −ρ1dT

kBkdk ≤ −ρ1β1‖dk‖2 < 0, (3.28)

where ρ1 = min{1/2, σ3λ
∗}. According to (3.28), we get

∞∑

k=0

dT
kBkdk ≤

∞∑

k=0

(
−gT

k dk

)
≤ 1

ρ1

∞∑

k=0

(∥
∥g(xk)

∥
∥2 − ∥∥g(xk+1)

∥
∥2
)

=
1
ρ1

lim
N→∞

N∑

k=0

(∥
∥g(xk)

∥
∥2 − ∥∥g(xk+1)

∥
∥2
)

=
1
ρ1

lim
N→∞

(∥∥g(x0)
∥∥2 − ∥∥g(xN+1)

∥∥2
)
,

(3.29)

and by Lemma 3.3, we know that {‖gk‖} is convergent. Therefore, we deduce that (3.23)
holds. According to (3.23), it is easy to deduce (3.24). The proof is complete.

Lemma 3.7. Suppose that Assumptions 1 and 2 hold. There are positive constants b1 ≤ b2, and b3
such that for any k, if ‖dk‖/=Δmin, then the following inequalities hold:

b1
∥∥gk
∥∥ ≤ ‖dk‖ ≤ b2

∥∥gk
∥∥, αk ≤ b3. (3.30)

Proof. We will prove this lemma in the following two cases.

Case 1 (‖dk‖ < Δk). By (3.18), we have αk = 0 and Bkdk = −gk. Together with (3.8) and (3.19),
we get

β1‖dk‖2 ≤ dT
kBkdk = −dT

kgk ≤ ‖dk‖
∥
∥gk
∥∥,

∥∥−gk
∥∥ =
∥∥gk
∥∥ = ‖Bkdk‖ ≤ β3‖dk‖.

(3.31)

Then (3.30) holds with b1 = 1/β3 ≤ b2 = 1/β1 and b3 = 0.

Case 2 (‖dk‖ = Δk). From (3.19) and (3.8), we have

β1‖dk‖2 ≤ dT
kBkdk ≤ −gT

k dk ≤ ∥∥gk
∥∥‖dk‖. (3.32)

Then, we get ‖dk‖ ≤ 1/β1 ‖gk‖. By (3.10) and (3.8), it is easy to deduce that

(1 − ε1)
∥∥gk
∥∥ ≤ ‖Bkdk‖ ≤ β3‖dk‖. (3.33)

Advances in Operations Research 11

So we obtain ‖dk‖ ≥ (1 − ε1)/β3 ‖gk‖. Using (3.20), we have

αk =
−gT

k
dk − dT

k
Bkdk

‖dk‖2
≤
∥
∥gk
∥
∥

‖dk‖ ≤ β3
1 − ε1

. (3.34)

Therefore, (3.30) holds. The proof is complete.

In the next theorem, we establish the global convergence of Algorithm 2.1.

Theorem 3.8. Let {xk} be generated by Algorithm 2.1 and the conditions in Assumptions 1 and 2
hold. Then one has

lim
k→∞

∥
∥gk
∥
∥ = 0. (3.35)

Proof. By Lemma 3.6, we have

lim
k→∞

− gT
k dk = lim

k→∞
dT
kBkdk = 0. (3.36)

Combining (3.8) and (3.36), we get

lim
k→∞

‖dk‖ = 0. (3.37)

Together with (3.30), we obtain (3.35). The proof is complete.

4. The Superlinear Convergence Analysis

In this section, we will present the superlinear convergence of Algorithm 2.1.

Assumption 3. ∇g is Hölder continuous at x∗; that is, for every x in a neighborhood of x∗,
there are positive constants M1 and γ such that

∥∥∇g(x) − ∇g(x∗)
∥∥ ≤ M1‖x − x∗‖γ , (4.1)

where x∗ stands for the unique solution of (1.1) in Ω1.

Lemma 4.1. Let {xk} be generated by Algorithm 2.1 and the conditions in Assumptions 1 and 2 hold.
Then, for any fixed γ > 0, one has

∞∑

k=0

‖xk − x∗‖γ < ∞. (4.2)

12 Advances in Operations Research

Moreover, one has

∞∑

k=0

χk

(
γ
)
< ∞, (4.3)

where χk(γ) = max{‖xk − x∗‖γ , ‖xk+1 − x∗‖γ}.

Proof. Using Assumption 1, we can have the following inequality:

m‖x − x∗‖ ≤ ∥∥g(x)∥∥ =
∥
∥g(x) − g(x∗)

∥
∥ ≤ M‖x − x∗‖, x ∈ Ω1. (4.4)

By (3.8) and (3.30), we have

−β2‖dk‖2 ≤ −dT
kBkdk ≤ −β1‖dk‖2,

−b22
∥∥gk
∥∥2 ≤ −‖dk‖2 ≤ −b21

∥∥gk
∥∥2.

(4.5)

Together with (3.28), we get

∥∥gk+1
∥∥2 − ∥∥gk

∥∥2 ≤ ρ1g
T
k dk ≤ −ρ1dT

kBkdk

≤ −ρ1β1‖dk‖2

≤ −ρ1β1b21
∥∥gk
∥∥2,

(4.6)

and let ρ0 = min{ρ1β1b21, ρ} ∈ (0, 1). Suppose that there exists a positive integer k0, as k ≥ k0,
(3.8) holds. Then we obtain

∥∥gk+1
∥∥2 ≤ ∥∥gk

∥∥2 − ρ0
∥∥gk
∥∥2 =

(
1 − ρ0

)∥∥gk
∥∥2 ≤ · · · ≤ (1 − ρ0

)k−k0+1∥∥gk0
∥∥2 = c0c

k
1 , (4.7)

where c0 = (1 − ρ0)
1−k0‖g0‖2, c1 = (1 − ρ0) ∈ (0, 1). This together with (4.4) shows that

‖xk+1 − x∗‖2 ≤ m−2c0ck1 holds for all k large enough. Therefore, for any γ,we have (4.2). Notice
that χk(γ) ≤ ‖xk − x∗‖γ + ‖xk+1 − x∗‖γ ; from (4.2), we can get (4.3).

Lemma 4.2. Let Assumptions 1, 2, and 3 hold. Then, for all k sufficiently large, there exists a positive
constant M2 such that

∥∥yk − ∇g(x∗)sk
∥∥ ≤ M2χk‖sk‖, (4.8)

where χk = max{‖xk − x∗‖γ , ‖xk+1 − x∗‖γ}.

Advances in Operations Research 13

Proof. From Theorem 3.8 and (4.4), it is not difficult to get xk → x∗. Then (4.1) holds for all k
large enough. Using the mean value theorem, for all k sufficiently large, we have

∥
∥yk − ∇g(x∗)sk

∥
∥ =
∥
∥∇g(xk + t0(xk+1 − xk))sk − ∇g(x∗)sk

∥
∥

≤ ∥∥∇g(xk + t0(xk+1 − xk)) − ∇g(x∗)
∥
∥‖sk‖

≤ M1‖xk + t0(xk+1 − xk) − x∗‖γ‖sk‖
≤ M2χk‖sk‖,

(4.9)

where M2 = M1(2t0 + 1), t0 ∈ (0, 1). Therefore, the inequality of (4.8) holds.

Lemma 4.3. Let Assumptions 1, 2, and 3 hold and let xk be generated by Algorithm 2.1. Denote
Q = ∇g(x∗)−1/2, Hk = B−1

k
. Then, for all large k, there are positive constants ei, i = 1, 2, 3, 4, and

η ∈ (0, 1) such that

∥∥Bk+1 − ∇g(x∗)
∥∥
Q,F ≤ (1 + e1χk

)∥∥Bk − ∇g(x∗)
∥∥
Q,F + e2χk, (4.10)

∥∥∥Hk+1 − ∇g(x∗)−1
∥∥∥
Q−1,F

≤
(√

1 − η�2
k + e3χk

)∥∥∥Hk − ∇g(x∗)−1
∥∥∥
Q−1,F

+ e4χk, (4.11)

where ‖A‖Q,F = ‖QTAQ‖F , ‖ · ‖F is the Frobenius norm of a matrix and�k is defined as follows:

�k =

∥∥∥Q−1
(
Hk − ∇g(x∗)−1

)
yk

∥∥∥
∥∥∥Hk − ∇g(x∗)−1

∥∥∥
Q−1,F

∥∥Qyk

∥∥
. (4.12)

In particular, {‖Bk‖}F and {‖Hk‖}F are bounded.

Proof. From (1.15), we have

∥∥Bk+1 − ∇g(x∗)
∥∥
Q,F =

∥∥∥∥∥
Bk − ∇g(x∗) +

Bksks
T
kBk

sTkBksk
+
yky

T
k

sTkyk

∥∥∥∥∥
Q,F

≤ (1 + e1τk)
∥∥Bk − ∇g(x∗)

∥∥
Q,F + e2χk,

(4.13)

where the last inequality follows the inequality (49) of [47]. Hence, (4.10) holds. By (4.8), in
a way similar to that of [46], we can prove that (4.11) holds and ‖Bk‖ and ‖Hk‖ are bounded.
The proof is complete.

Lemma 4.4. Let {xk} be generated by Algorithm 2.1 and the conditions in Assumptions 1, 2 and 3
hold. Then

lim
k→∞

∥∥(Bk − ∇g(x∗)
)
sk
∥∥

‖sk‖ = 0, (4.14)

where sk = xk+1 − xk.

14 Advances in Operations Research

Proof. In a similar way to [46], it is not difficult to obtain

lim
k→∞

∥
∥
∥Q−1

(
Hk − ∇g(x∗)−1

)
yk

∥
∥
∥

∥
∥Qyk

∥
∥ = 0. (4.15)

On the other hand, we have

∥
∥
∥Q−1

(
Hk − ∇g(x∗)−1

)
yk

∥
∥
∥ =
∥
∥
∥Q−1Hk

(∇g(x∗) − Bk

)∇g(x∗)−1yk

∥
∥
∥

≥
∥
∥
∥Q−1Hk

(∇g(x∗) − Bk

)
sk
∥
∥
∥

−
∥
∥
∥Q−1Hk

(∇g(x∗) − Bk

)(
sk − ∇g(x∗)−1yk

)∥∥
∥

≥
∥∥∥Q−1Hk

(∇g(x∗) − Bk

)
sk
∥∥∥

−
∥∥∥Q−1

∥∥∥‖Hk‖
(∥∥∇g(x∗)

∥∥ + ‖Bk‖
)∥∥∥∇g(x∗)−1

(
yk − ∇g(x∗)sk

)∥∥∥

≥
∥∥∥Q−1Hk

(∇g(x∗) − Bk

)
sk
∥∥∥

−M2χk

∥∥∥Q−1
∥∥∥‖Hk‖

(∥∥∇g(x∗)
∥∥ + ‖Bk‖

)∥∥∥∇g(x∗)−1
∥∥∥‖sk‖

=
∥∥∥Q−1Hk

(∇g(x∗) − Bk

)
sk
∥∥∥ − o(‖sk‖),

(4.16)

where the last inequality follows from (4.8). We know that {‖Bk‖} and {‖Hk‖} are bounded,
and {Hk} is positive definite. By (3.5), we get

∥∥Qyk

∥∥ ≤ M‖Q‖‖sk‖. (4.17)

Combining (4.15) and (4.17), we conclude that (4.14) holds. The proof is complete.

Theorem 4.5. Let the conditions in Assumptions 1, 2 and 3 hold. If ε1 → 0 in (3.10). Then the
sequence {xk} generated by Algorithm 2.1 converges to x∗ superlinearly for λk = 1.

Proof. For all xk ∈ Ω1, we get

∥∥gk+1
∥∥

‖dk‖ =

∥∥∥gk + Bkdk +
(∇gk − Bk

)
dk +O

(
‖dk‖2

)∥∥∥

‖dk‖

≤
∥∥gk + Bkdk

∥∥
∥∥gk
∥∥

∥∥gk
∥∥

‖dk‖ +

∥∥(∇gk − Bk

)
dk

∥∥

‖dk‖ +
O
(
‖dk‖2

)

‖dk‖

≤ ε1

∥∥gk
∥∥

‖dk‖ +

∥∥(∇gk − Bk

)
dk

∥∥

‖dk‖ +O(‖dk‖),

(4.18)

Advances in Operations Research 15

where the last inequality follows (3.10). By (3.5), we have

∥
∥gk
∥
∥ ≤ ∥∥gk+1 − gk

∥
∥ +
∥
∥gk+1

∥
∥ ≤ M‖dk‖ +

∥
∥gk+1

∥
∥. (4.19)

Dividing both sides by ‖dk‖, we get

∥∥gk
∥∥

‖dk‖ ≤ M +

∥∥gk+1
∥∥

‖dk‖ . (4.20)

Substituting this into (4.18), we can obtain

∥
∥gk+1

∥
∥

‖dk‖ ≤ ε1

(

M +

∥
∥gk+1

∥
∥

‖dk‖

)

+

∥
∥(∇gk − Bk

)
dk

∥
∥

‖dk‖ +O(‖dk‖), (4.21)

which means that

∥∥gk+1
∥∥

‖dk‖ ≤
(
Mε1 +

∥∥(∇gk − Bk

)
dk

∥∥/‖dk‖ +O(‖dk‖)
)

(1 − ε1)
. (4.22)

Since ε1 → 0, and ‖dk‖ → 0 as k → ∞, by (4.14) and (3.10), we have

lim
k→∞

∥∥gk+1
∥∥

‖dk‖ = 0. (4.23)

Using (3.16), we get

lim
k→∞

∥∥gk+1
∥∥

∥∥gk
∥∥ = 0. (4.24)

Considering (4.4), we have

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0. (4.25)

Therefore, we get the result of the superlinear convergence.

5. Numerical Results

In this section, we test the proposed BFGS trust-region method on symmetric nonlinear
equations and compare it with Algorithm 2.2. The following problems with various sizes
will be solved.

16 Advances in Operations Research

Problem 1. The discretized two-point boundary value problem like the problem in [48] is

g(x) � Ax +
1

(n + 1)2
F(x) = 0, (5.1)

where A is the n × n tridiagonal matrix given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢⎢
⎣

8 −1
−1 8 −1

−1 8 −1
.

. −1
−1 8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥⎥
⎦

, (5.2)

and F(x) = (F1(x), F2(x), . . . , Fn(x))
Twith Fi(x) = sinxi − 1, i = 1, 2, . . . , n.

Problem 2. Unconstrained optimization problem is

min f(x), x ∈ Rn, (5.3)

with Engval function [49] f : Rn → R defined by

f(x) =
n∑

i=2

[(
x2
i−1 + x2

i

)2
− 4xi−1 + 3

]
. (5.4)

The related symmetric nonlinear equation is

g(x) � 1
4
∇f(x) = 0, (5.5)

where g(x) = (g1(x), g2(x), . . . , gn(x))
T with

g1(x) = x1

(
x2
1 + x2

2

)
− 1,

gi(x) = xi

(
x2
i−1 + 2x2

i + x2
i+1

)
− 1, i = 2, 3, . . . , n − 1,

gn(x) = xn

(
x2
n−1 + x2

n

)
.

(5.6)

In the experiments, the parameters in Algorithm 2.1 were chosen as τ1 = 0.5, τ2 = 0.9, τ3 =
3, r = 0.1,Δmin = ‖g0‖, B0 = I, ρ = 0.25, σ1 = σ2 = 10−5, and σ3 = 0.9. We obtain dk from
subproblem (1.14) by the well-known Doglegmethod. The parameters in Algorithm 2.2 were

Advances in Operations Research 17

Table 1: Test Results For Problem 1.

(a) (Small-scales). Test results for Algorithm 2.1.

x0 (1,. . .,1) (60,. . .,60) (600,. . .,600) (−1, . . . ,−1) (−60, . . . ,−60) (−600, . . . ,−600)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 13/24/
2.406624e-07

14/25/
2.272840e-07

17/30/
3.104130e-07

13/24/
2.449361e-07

14/25/
2.398188e-07

17/30/
4.593832e-07

n = 50 48/101/
2.189696e-07

49/102/
4.009098e-07

50/103/
2.147571e-07

48/101/
2.181267e-07

49/102/
4.008911e-07

50/103/
2.120250e-07

n = 99 82/171/
6.794811e-07

89/188/
6.345939e-07

91/190/
7.804790e-07

82/171/
8.358725e-07

89/188/
6.367964e-07

91/190/
7.801889e-07

x0 (1,0,1,0,. . .) (60,0,60,0,. . .) (600,0,600,0,. . .) (−1, 0,−1, 0, . . .) (−60, 0,−60, 0, . . .) (−600, 0,−600, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 21/42/
7.364467e-07

22/43/
3.922363e-07

22/45/
4.894966e-07

21/44/
3.463471e-08

22/43/
3.860638e-07

22/45/
4.895404e-07

n = 50 72/153/
9.350290e-07

86/181/
4.420131e-07

88/185/
7.620218e-07

70/151/
6.776281e-07

86/181/
4.420083e-07

49/83/
8.003368e-07

n = 99 73/156/
9.013346e-07

88/185/
7.631881e-07

88/191/
6.856481e-07

74/161/
9.918464e-07

88/185/
7.368909e-07

88/191/
6.856897e-07

(b) (Large-scales). Test results for Algorithm 2.1.

x0 (1,. . .,1) (60,. . .,60) (600,. . .,600) (−1, . . . ,−1) (−60, . . . ,−60) (−600, . . . ,−600)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 83/178/
9.096568e-7

106/225/
9.483206e-7

117/250/
8.796828e-7

85/180/
7.376219e-7

106/225/
9.263058e-7

117/250/
8.779599e-7

n = 500 85/180/
8.830573e-7

103/218/
9.825658e-7

115/244/
9.765194e-7

83/178/
7.659650e-7

103/218/
9.796118e-7

115/244/
9.755827e-7

n=1000 76/165/
8.611337e-7

96/207/
8.301215e-7

105/224/
9.957816e-7

76/165/
8.587066e-7

96/207/
8.291876e-7

105/224/
9.925005e-7

x0 (1,0,1,0,. . .) (60,0,60,0,. . .) (600,0,600,0,. . .) (−1, 0,−1, 0, . . .) (−60, 0,−60, 0, . . .) (−600, 0,−600, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 68/149/
8.780047e-7

91/194/
7.484521e-7

101/216/
9.790557e-7

69/150/
9.770900e-7

91/194/
7.275693e-7

101/216/
9.559911e-7

n = 500 72/155/
9.797645e-07

96/205/
9.993161e-7

106/225/
8.916405e-7

72/155/
9.886969e-7

97/206/
7.492841e-7

106/225/
8.921008e-7

n=1000 69/152/
9.919863e-7

93/200/
6.930976e-7

106/227/
8.119328e-7

69/152/
9.948500e-7

93/200/
6.946308e-7

106/227/
8.123102e-7

(c) (Small-scales). Test results for Algorithm 2.2.

x0 (1,. . .,1) (60,. . .,60) (600,. . .,600) (−1, . . . ,−1) (−60, . . . ,−60) (−600, . . . ,−600)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 54/107/
8.039519e-7

67/133/
7.624248e-7

74/147/
8.167466e-7

54/107/
8.061366e-7

67/133/
7.624560e-7

74/147/
8.167469e-7

n = 50 58/115/
9.602663e-7

72/143/
7.684310e-007

79/157/
8.876868e-7

58/115/
9.603892e-7

72/143/
7.684327e-007

79/157/
8.876870e-7

n = 99 60/119/
7.614838e-7

73/145/
8.350445e-7

80/159/
9.679851e-7

60/119/
7.615091e-7

73/145/
8.350450e-7

80/159/
9.679851e-7

x0 (1,0,1,0,. . .) (60,0,60,0,. . .) (600,0,600,0,. . .) (−1, 0,−1, 0, . . .) (−60, 0,−60, 0, . . .) (−600, 0,−600, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 52/103/
7.605486e-7

64/127/
9.929883e-7

72/143/
7.732628e-7

52/103/
7.646868e-7

64/127/
9.930747e-7

72/143/
7.732660e-7

n = 50 56/111/
8.896898e-7

69/137/
9.690007e-7

77/153/
8.223484e-7

56/111/
8.899175e-7

69/137/
9.690048e-7

77/153/
8.223488e-7

n = 99 57/113/
9.598124e-7

71/141/
7.734909e-7

78/155/
8.965851e-7

57/113/
9.598763e-7

71/141/
7.734918e-7

78/155/
8.965852e-7

18 Advances in Operations Research

(d) (Large-scales). Test results for Algorithm 2.2.

x0 (1,. . .,1) (60,. . .,60) (600,. . .,600) (−1, . . . ,−1) (−60, . . . ,−60) (−600, . . . ,−600)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 61/121/
8.110467e-7

74/147/
8.917908e-7

82/163/
7.610549e-7

61/121/
8.110534e-7

74/147/
8.917909e-7

82/163/
7.610549e-7

n = 500 62/123/
9.526492e-7

76/151/
7.712044e-7

83/165/
8.958279e-7

62/123/
9.526504e-7

76/151/
7.712044e-7

83/165/
8.958279e-7

n = 1000 63/125/
9.938699e-7

77/153/
8.049274e-7

84/167/
9.351920e-7

63/125/
9.938703e-7

77/153/
8.049274e-7

84/167/
9.351920e-7

x0 (1,0,1,0,. . .) (60,0,60,0,. . .) (600,0,600,0,. . .) (−1, 0,−1, 0, . . .) (−60, 0,−60, 0, . . .) (−600, 0,−600, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 59/117/
7.503172e-7

72/143/
8.249912e-7

79/157/
9.576414e-7

59/117/
7.503296e-7

72/143/
8.249914e-7

79/157/
9.576414e-7

n = 500 60/119/
8.811245e-7

73/145/
9.701366e-7

81/161/
8.285552e-7

60/119/
8.811269e-7

73/145/
9.701367e-7

81/161/
8.285552e-7

n = 1000 61/121/
9.191890e-7

75/149/
7.444393e-7

82/163/
8.649128e-7

61/121/
9.191896e-7

75/149/
7.444393e-7

82/163/
8.649128e-7

chosen as Δ′ = Δ0 = ‖g0‖, η1 = 0.25, η2 = 0.75, μ = 0.01, and η3 = 2. Since the matrices
∇g(xk)

T∇g(xk) will be singular, we solve (1.10) by Extreme Minimization with 2—Dimension
Subspace Method to obtain dk. The program was coded in MATLAB 6.5.1. We stopped the
iteration when the condition ‖g(x)‖ ≤ 10−6 was satisfied. If the iteration number is larger
than one thousand, we also stop this program and this method is considered to be failed. For
Algorithm 2.1, Tables 1(a) and 1(b) and Tables 2(a) and 2(b) show the performance of the
method need to solve Problem 1 and Problem 2, respectively. For Algorithm 2.2, Tables 1(c)
and 1(d) and Tables 2(c) and 2(d) show the performance of the normal trust region method
need to solve Problem 1 and Problem 2, respectively. The columns of the tables have the
following meaning:

Dim: the dimension of the problem,

NI: the total number of iterations,

NG: the number of the function evaluations,

EG: the norm of the function evaluations.

From Tables 1(a)–2(d), it is not difficult to see that the proposed method performs
better than the normal method does. Furthermore, the performance of Algorithm 2.1 hardly
changes with the dimension increasing. Overall, the given method is competitive to the
normal trust region method.

6. Discussion

We give a trust-region-based BFGS method and establish its convergent results in this paper.
The numerical results show that this method is promising. In fact, this problem (1.1) can
come from unconstrained optimization problem and an equality constrained optimization
problem (for details see [4]). There are some other practical problems, such as the saddle
point problem, the discretized two-point boundary value problem, and the discretized elliptic
boundary value problem, take the form of (1.1)with symmetric Jacobian (see, e.g., Chapter 1
in [50]). This presented method can also extend to solve the normal nonlinear equations.

Advances in Operations Research 19

Table 2: Test Results For Problem 2.

(a) (Small-scales). Test results for Algorithm 2.1.

x0 (0.5,. . .,0.5) (1,. . .,1) (3,. . .,3) (−0.75, . . . ,−0.75) (−2, . . . ,−2) (−3, . . . ,−3)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 25/44/
9.720971e-07

21/32/
4.889567e-07

92/103/
2.475812e-08

21/32/
8.691255e-07

46/59/
5.860956e-07

86/105/
6.348374e-08

n = 50 37/56/
9.950345e-07

39/56/
8.776379e-07

113/139/
9.587026e-07

40/63/
6.984106e-07

69/96/
9.523480e-07

103/125/
9.404211e-07

n = 99 42/59/
9.725361e-07

41/60/
7.374460e-07

113/135/
7.909796e-07

40/55/
8.380367e-07

117/489/
9.805302e-07

97/129/
7.975248e-07

x0 (0.5,0,0.5,0,. . .) (1,0,1,0,. . .) (3,0,3,0,. . .) (−0.75, 0,−0.75, 0, . . .) (−2, 0,−2, 0, . . .) (−3, 0,−3, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 24/35/
4.711749e-07

21/30/
3.147507e-07

44/65/
3.529113e-07

27/48/
4.004367e-07

39/76/
8.503415e-07

29/42/
7.623619e-07

n = 50 36/57/
8.776354e-07

36/57/
8.287552e-07

54/77/
8.491652e-07

41/64/
9.492805e-07

42/69/
9.029472e-07

58/77/
9.752703e-07

n = 99 36/61/
8.265146e-07

37/56/
9.507706e-07

60/93/
5.373087e-07

42/73/
8.247653e-07

50/79/
9.217390e-07

62/88/
8.307004e-07

(b) (Large-scales). Test results for Algorithm 2.1

x0 (0.5,. . .,0.5) (1,. . .,1) (3,. . .,3) (−0.75, . . . ,−0.75)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 40/57/
7.464372e-007

41/58/
4.921097e-007

112/130/
6.229759e-007

40/65/
7.785598e-007

n = 500 36/57/
7.887407e-007

41/60/
3.538433e-007

113/135/
8.871522e-007

38/69/
9.785814e-007

n = 1000 42/65/
7.382939e-007

40/59/
7.463210e-007

120/146/
6.044161e-007

40/69/
4.563405e-007

x0 (0.5,0,0.5,0,. . .) (1,0,1,0,. . .) (3,0,3,0,. . .) (−0.75, 0,−0.75, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 41/64/
6.671246e-007

36/61/
9.977774e-007

63/94/
8.153527e-007

39/64/
9.737674e-007

n = 500 42/67/
9.154342e-007

37/58/
8.340650e-007

49/74/
8.277585e-007

37/60/
6.328648e-007

n = 1000 43/62/
7.874632e-007

40/61/
8.997602e-007

55/76/
8.830280e-007

41/68/
8.430165e-007

(c) (Small-scales). Test results for Algorithm 2.2.

x0 (0.5,. . .,0.5) (1,. . .,1) (3,. . .,3) (−0.75, . . . ,−0.75) (−2, . . . ,−2) (−3, . . . ,−3)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000

n = 50 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000

n = 99 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000

x0 (0.5,0,0.5,0,. . .) (1,0,1,0,. . .) (3,0,3,0,. . .) (−0.75, 0,−0.75, 0, . . .) (−2, 0,−2, 0, . . .) (−3, 0,−3, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 196/391/
9.528159e-007

204/407/
9.939962e-007

213/425/
9.975163e-007 NI > 1000 NI > 1000 NI > 1000

n = 50 199/397/
9.791882e-007

208/415/
9.592104e-007

217/433/
9.634499e-007 NI > 1000 NI > 1000 NI > 1000

n = 99 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000

20 Advances in Operations Research

(d) (Large-scales). Test results for Algorithm 2.2.

x0 (0.5,. . .,0.5) (1,. . .,1) (3,. . .,3) (−0.75, . . . ,−0.75)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 NI > 1000 NI > 1000 NI > 1000 NI > 1000

n = 500 NI > 1000 NI > 1000 NI > 1000 NI > 1000

n = 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000

x0 (0.5,0,0.5,0,. . .) (1,0,1,0,. . .) (3,0,3,0,. . .) (−0.75, 0,−0.75, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 200/399/
9.537272e-007

208/415/
9.804205e-007

217/433/
9.775482e-007

NI > 1000

n = 500 201/401/
9.425775e-007

209/417/
9.430954e-007

217/433/
9.908579e-007

NI > 1000

n = 1000 202/403/
9.503816e-007

209/417/
9.824140e-007

218/435/
9.470469e-007

NI > 1000

Acknowledgments

The authrs are very grateful to anonymous referees and the editors for their valuable
suggestions and comments, which improve their paper greatly. This work is supported by
China NSF Grands 10761001 and the Scientific Research Foundation of Guangxi University
(Grant no. X081082).

References

[1] P. N. Brown and Y. Saad, “Convergence theory of nonlinear Newton-Krylov algorithms,” SIAM
Journal on Optimization, vol. 4, no. 2, pp. 297–330, 1994.

[2] D. Zhu, “Nonmonotone backtracking inexact quasi-Newton algorithms for solving smooth nonlinear
equations,” Applied Mathematics and Computation, vol. 161, no. 3, pp. 875–895, 2005.

[3] G. Yuan and X. Lu, “A new backtracking inexact BFGS method for symmetric nonlinear equations,”
Computers & Mathematics with Applications, vol. 55, no. 1, pp. 116–129, 2008.

[4] D. Li and M. Fukushima, “A globally and superlinearly convergent Gauss-Newton-based BFGS
method for symmetric nonlinear equations,” SIAM Journal on Numerical Analysis, vol. 37, no. 1, pp.
152–172, 1999.

[5] Z. Wei, G. Yuan, and Z. Lian, “An approximate Gauss-Newton-based BFGS method for solving
symmetric nonlinear equations,” Guangxi Sciences, vol. 11, no. 2, pp. 91–99, 2004.

[6] G. Yuan and X. Li, “An approximate Gauss-Newton-based BFGS method with descent directions for
solving symmetric nonlinear equations,” OR Transactions, vol. 8, no. 4, pp. 10–26, 2004.

[7] G. Yuan and X. Li, “A new nonmonotone conjugate gradient method for symmetric nonlinear
equations,” Guangxi Sciences, vol. 16, no. 2, pp. 109–112, 2009 (Chinese).

[8] G. Yuan, Z. Wei, and X. Lu, “Amodified Gauss-Newton-based BFGSmethod for symmetric nonlinear
equations,” Guangxi Sciences, vol. 13, no. 4, pp. 288–292, 2006.

[9] D. Li, L. Qi, and S. Zhou, “Descent directions of quasi-Newton methods for symmetric nonlinear
equations,” SIAM Journal on Numerical Analysis, vol. 40, no. 5, pp. 1763–1774, 2002.

[10] S. G. Nash, “A survey of truncated-Newton methods,” Journal of Computational and Applied
Mathematics, vol. 124, no. 1-2, pp. 45–59, 2000.

[11] A. Griewank, “The ‘global’ convergence of Broyden-like methods with a suitable line search,” Journal
of the Australian Mathematical Society. Series A, vol. 28, no. 1, pp. 75–92, 1986.

[12] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, Mass, USA, 1995.
[13] W. Cheng, Y. Xiao, and Q.-J. Hu, “A family of derivative-free conjugate gradient methods for large-

scale nonlinear systems of equations,” Journal of Computational and Applied Mathematics, vol. 224, no.
1, pp. 11–19, 2009.

[14] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, MPS/SIAM Series on Optimization,
SIAM, Philadelphia, Pa, USA, 2000.

Advances in Operations Research 21

[15] J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Prentice Hall Series in Computational Mathematics, Prentice Hall, Englewood Cliffs, NJ,
USA, 1983.

[16] R. Fletcher, Practical Methods of Optimization, A Wiley-Interscience Publication, John Wiley & Sons,
New York, NY, USA, 2nd edition, 1987.

[17] K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Quarterly
of Applied Mathematics, vol. 2, pp. 164–166, 1944.

[18] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM Journal
on Applied Mathematics, vol. 11, pp. 431–441, 1963.

[19] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer,
New York, NY, USA, 1999.

[20] N. Yamashita and M. Fukushima, “On the rate of convergence of the Levenberg-Marquardt method,”
Computing, vol. 15, pp. 239–249, 2001.

[21] G. Yuan, Z. Wang, and Z. Wei, “A rank-one fitting method with descent direction for solving
symmetric nonlinear equations,” International Journal of Communications, Network and System Sciences,
no. 6, pp. 555–561, 2009.

[22] Y. Yuan and W. Sun, Optimization Theory and Algorithm, Scientific Publisher House, Beijing, China,
1997.

[23] S. M. Goldfeld, R. E. Quandt, and H. F. Trotter, “Maximization by quadratic hill-climbing,”
Econometrica, vol. 34, pp. 541–551, 1966.

[24] M. J. D. Powell, “Convergence properties of a class of minimization algorithms,” in Nonlinear
Programming, 2, O. L. Mangasarian, R. R. Meyer, and S. M. V, Eds., pp. 1–27, Academic Press, New
York, NY, USA, 1974.

[25] R. Fletcher, “An algorithm for solving linearly constrained optimization problems,” Mathematical
Programming, vol. 2, pp. 133–165, 1972.

[26] R. Fletcher, “A model algorithm for composite nondifferentiable optimization problems,”Mathemati-
cal Programming Study, no. 17, pp. 67–76, 1982.

[27] P. T. Boggs, A. J. Kearsley, and J. W. Tolle, “A practical algorithm for general large scale nonlinear
optimization problems,” SIAM Journal on Optimization, vol. 9, no. 3, pp. 755–778, 1999.

[28] J. Nocedal and Y. Yuan, “Combining trust region and line search techniques,” in Advances in Nonlinear
Programming, vol. 14, pp. 153–175, Kluwer Acadmic Publishers, Dordrecht, The Netherlands, 1998.

[29] T. Steihaug, “The conjugate gradient method and trust regions in large scale optimization,” SIAM
Journal on Numerical Analysis, vol. 20, no. 3, pp. 626–637, 1983.

[30] Y. Yuan, “A review of trust region algorithms for optimization,” in Proceedings of the 4th International
Congress on Industrial & Applied Mathematics (ICIAM ’99), pp. 271–282, Oxford University Press,
Oxford, UK, 2000.

[31] Y. Yuan, “On the truncated conjugate gradient method,”Mathematical Programming, vol. 87, no. 3, pp.
561–573, 2000.

[32] M. R. Celis, J. E. Dennis, and R. A. Tapia, “A trust region strategy for nonlinear equality constrained
optimization,” in Numerical Optimization, 1984, P. R. Boggs, R. H. Byrd, and R. B. Schnabel, Eds., pp.
71–82, SIAM, Philadelphia, Pa, USA, 1985.

[33] X. Liu and Y. Yuan, “A global convergent, locally superlinearly convergent algorithm for equality
constrained optimization,” Research Report ICM-97–84, Inst. Comp. Math. Sci/Eng. Computing,
Chinese Academy of Sciences, Beijing, China.

[34] A. Vardi, “A trust region algorithm for equality constrained minimization: convergence properties
and implementation,” SIAM Journal on Numerical Analysis, vol. 22, no. 3, pp. 575–579, 1985.

[35] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, “A trust region algorithm for nonlinearly constrained
optimization,” SIAM Journal on Numerical Analysis, vol. 24, no. 5, pp. 1152–1170, 1987.

[36] J.-Y. Fan, “A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations,”
Journal of Computational Mathematics, vol. 21, no. 5, pp. 625–636, 2003.

[37] M. J. D. Powell and Y. Yuan, “A trust region algorithm for equality constrained optimization,”
Mathematical Programming, vol. 49, no. 2, pp. 189–211, 1990.

[38] A. Vardi, “A trust region algorithm for equality constrained minimization: convergence properties
and implementation,” SIAM Journal on Numerical Analysis, vol. 22, no. 3, pp. 575–591, 1985.

[39] Y. Yuan, “Trust region algorithm for nonlinear equations,” Information, vol. 1, pp. 7–21, 1998.
[40] Y. Yuan, “On a subproblem of trust region algorithms for constrained optimization,” Mathematical

Programming, vol. 47, no. 1, pp. 53–63, 1990.

22 Advances in Operations Research

[41] G. Yuan, X. Lu, and Z. Wei, “BFGS trust-region method for symmetric nonlinear equations,” Journal
of Computational and Applied Mathematics, vol. 230, no. 1, pp. 44–58, 2009.

[42] J. Z. Zhang and D. T. Zhu, “Projected quasi-Newton algorithm with trust region for constrained
optimization,” Journal of Optimization Theory and Applications, vol. 67, no. 2, pp. 369–393, 1990.

[43] J. Zhang and Y. Wang, “A new trust region method for nonlinear equations,”Mathematical Methods of
Operations Research, vol. 58, no. 2, pp. 283–298, 2003.

[44] Y. J. Wang and N. H. Xiu, Theory and Algorithms for Nonlinear Programming, Shanxi Science and
Technology Press, Xian, China, 2004.

[45] R. H. Byrd and J. Nocedal, “A tool for the analysis of quasi-Newton methods with application to
unconstrained minimization,” SIAM Journal on Numerical Analysis, vol. 26, no. 3, pp. 727–739, 1989.

[46] J. E. Dennis Jr. and J. J. Moré, “A characterization of superlinear convergence and its application to
quasi-Newton methods,”Mathematics of Computation, vol. 28, pp. 549–560, 1974.

[47] A. Griewank and Ph. L. Toint, “Local convergence analysis for partitioned quasi-Newton updates,”
Numerische Mathematik, vol. 39, no. 3, pp. 429–448, 1982.

[48] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, “Testing unconstrained optimization software,” ACM
Transactions on Mathematical Software, vol. 7, no. 1, pp. 17–41, 1981.

[49] E. Yamakawa and M. Fukushima, “Testing parallel variable transformation,” Computational Optimiza-
tion and Applications, vol. 13, no. 1–3, pp. 253–274, 1999.

[50] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables,
Academic Press, New York, NY, USA, 1970.

