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This paper proposes a cluster partitioning technique to calculate improved upper bounds to the
optimal solution of maximal covering location problems. Given a covering distance, a graph is
built considering as vertices the potential facility locations, and with an edge connecting each
pair of facilities that attend a same client. Coupling constraints, corresponding to some edges of
this graph, are identified and relaxed in the Lagrangean way, resulting in disconnected subgraphs
representing smaller subproblems that are computationally easier to solve by exact methods. The
proposed technique is compared to the classical approach, using real data and instances from the
available literature.

1. Introduction

The covering class of facility location problems deals with the maximum distance between
any client and the facility designed to attend an associated demand. These problems are
known as covering problems and the maximum service distance is known as covering
distance. The Set Covering Problem [1] determines the minimal number of facilities that are
necessary to attend all clients, for a given covering distance. Due to formulation restrictions,
this model does not consider the individual demand of each client. In addition, the number
of needed facilities can be large, incurring high fixed installation costs. An alternative
formulation considers the installation of a limited number of facilities, even if this amount
is unable to attend the total demand. In this formulation, the condition that all clients must
be served is relaxed and the objective is changed to locate p facilities such that the most part of
the existing demand can be attended, for a given covering distance. This model corresponds
to the Maximal Covering Location Problem (MCLP).
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Covering models are often found in problems of public organizations for the location
of emergency services. Early techniques for solving the MCLP tried to obtain integer solutions
from the linear relaxation equivalent of the model proposed by Church and ReVelle [2].
This pioneer work formalizes the MCLP and presents a greedy heuristic based on vertices
exchange.

MCLP applications range from emergency services [3, 4], hierarchical health services
[5], air pollution control [6], to congested systems [7–9]. Solution methods for the MCLP
include the linear programming relaxation [2], greedy heuristics [10], and Lagrangean
relaxation [11]. Lorena and Pereira [12] report results obtained with a Lagrangean/surrogate
heuristic using a subgradient optimization method, in complement to the dissociated
Lagrangean and surrogate heuristics presented in [13]. Arakaki and Lorena [14] present a
constructive genetic algorithm to solve real case instances with up to 500 vertices. Surveys
can be found in [15–18].

In this paper is presented a cluster relaxation technique to solve large-scale maximal
covering location problems. The proposed approach requires the identification of a graph
related to a set of constraints. If some of these constraints are relaxed, this graph can be
partitioned into subgraphs (clusters), corresponding to smaller problems that can be solved
independently.

This paper is organized as follows. Section 2 presents a decomposition approach
to obtain improved upper bounds to the optimal solution of maximal covering location
problems. Section 3 describes computational results. Some conclusions are given in Section 4.

2. The Proposed Approach for the MCLP

The MCLP was formulated in [2] as the following 0-1 linear programming problem:

(MCLP) v(MCLP) = Max
∑

i∈N
wixi (2.1)

subject to
∑

j∈Si
yj ≥ xi, ∀i ∈N, (2.2)

∑

j∈M
yj = p, (2.3)

xi ∈ {0, 1}, ∀i ∈N, (2.4)

yj ∈ {0, 1}, ∀j ∈M, (2.5)

where

(i) M = {1, 2, . . . , m} is the set of potential facility locations;

(ii) N = {1, 2, . . . , n} is the set of clients to be covered;

(iii) D = [dij] is the Euclidean distance matrix between each pair of nodes i ∈ N and
j ∈M;

(iv) U is the covering distance;

(v) Si = {j ∈M | dij ≤ U} is the set of facilities that can attend each client i ∈N;

(vi) wi is the demand (a positive integer value) for each client i ∈N;
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Figure 1: A MCLP instance.

(vii) p is the number of facilities to be located;

(viii) xi is a decision variable, with xi = 1 if the demand of the client i is covered, and
xi = 0, otherwise;

(ix) yj is a decision variable, with yj = 1 if a facility was installed at the location j, and
yj = 0, otherwise.

The objective function maximizes the covered demand. Constraints (2.2) state that a
client will be covered if there is at least one facility located within the covering distance.
Constraint (2.3) limits to exactly p the number of located facilities and (2.4) and (2.5) express
the binary conditions.

The traditional Lagrangean relaxation approach [11] relaxes the set of constraints (2.2)
with a vector μ of multipliers μi ≥ 0, i ∈N, obtaining

(
LRμ

)
v
(
LRμ

)
= Max

∑

i∈N

(
wi − μi

)
xi +

∑

i∈N

∑

j∈Si
μiyj (2.6)

subject to (2.3), (2.4), and (2.5).
It is easy to see by the integrality property that v(LRμ) ≥ v(MCLP) and the Lagrangean

bound cannot be better than the linear relaxation of (MCLP).
In this paper, a decomposition approach based on the Lagrangean relaxation with

clusters (LagClus) of Ribeiro and Lorena [19–22] is presented. LagClus is a stronger
relaxation that can be useful for several theoretical and practical large-scale problems. The
first application of the LagClus was performed on point-feature instances. Later, Ribeiro and
Lorena applied this relaxation on pallet loading instances obtaining good results. Besides,
the authors proposed a column generation for that problem using this cluster relaxation idea.
Another interesting application was performed on wood pulp stowage context. This problem
consists of arranging items into holds of dedicated maritime international ships. Recently,
[23] applied the LagClus to uncapacitated facility location instances providing better bounds
than the ones presented in the literature for a set of difficult instances.

Consider the MCLP instance represented in Figure 1, where the dots correspond to
the clients to be covered (N = {1, . . . , 12}) and the small squares correspond to the potential
facility locations (M = {1, . . . , 7}). In this figure, the values in parenthesis are the demand
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values wi, for all i ∈N. For the chosen covering distance, the sets Si, for all i ∈N, are defined
as follows:

S1 = {1}, S4 = {4},
S2 = {1}, S5 = {3, 4},
S3 = {1, 2}, S6 = {1, 2, 3, 5},

S7 = {2, 6}, S10 = {4},
S8 = {2, 5, 6}, S11 = {5, 7},
S9 = {3, 4, 7}, S12 = {7}.

(2.7)

Assuming the number of facilities to be installed as p = 3, this instance can be formulated as

v(MCLP) = Max 3x1 + x2 + 2x3 + 4x4 + 5x5 + 2x6 + 3x7 + 7x8 + x9 + x10 + 2x11 + 2x12 (2.8)

subject to y1 ≥ x1 (2.9)

y1 ≥ x2, (2.10)

y1 + y2 ≥ x3, (2.11)

y4 ≥ x4, (2.12)

y3 + y4 ≥ x5, (2.13)

y1 + y2 + y3 + y5 ≥ x6, (2.14)

y2 + y6 ≥ x7, (2.15)

y2 + y5 + y6 ≥ x8, (2.16)

y3 + y4 + y7 ≥ x9, (2.17)

y4 ≥ x10, (2.18)

y5 + y7 ≥ x11, (2.19)

y7 ≥ x12, (2.20)

y1 + y2 + y3 + y4 + y5 + y6 + y7 = 3, (2.21)

xi ∈ {0, 1}, ∀i ∈N, (2.22)

yj ∈ {0, 1}, ∀j ∈M. (2.23)

The proposed approach considers the MCLP as a covering graph, which is defined as follows.
Let G(M,A) be a graph where M is the set of vertices corresponding to the potential

facility locations and A = {(p, q) : p and q ∈ Si, i = 1, . . . ,N} is the set of edges. So, in a
covering graph there exists an edge (p, q) connecting two potential facility locations, if p and
q share, at least, one covered client. Figure 2 shows the covering graph associated with the
above MCLP instance.

It is easy to note that the edges in a covering graph are related to the set of constraints
(2.2) in the MCLP formulation. For example, the edges shown in Figure 2 correspond to the
constraints (2.11), (2.13)–(2.17), and (2.19).
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Figure 2: A covering graph.
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Figure 3: Partitioning a covering graph.

Now, consider that a covering graph is partitioned in some way. Figure 3(a) shows a
possible partition. If the edges (1, 3), (2, 3), (3, 5), and (5, 7) are removed from the graph, two
subgraphs are obtained, as shown in Figure 3(b).

This partition corresponds to relax in the Lagrangean way the constraints (2.14) and
(2.19) of the MCLP formulation, using Lagrangean multipliers λ6 and λ11, respectively. If
constraint (2.3) is also relaxed with Lagrangean multiplier μ, the relaxed problem will be

v(MCLPR) = Max 3x1 + x2 + 2x3 + 4x4 + 5x5 + 2x6 + 3x7 + 7x8 + x9 + x10 + 2x11 + 2x12

+ λ6
(
y1 + y2 + y3 + y5 − x6

)
+ λ11

(
y5 + y7 − x11

)

+ μ
(
y1 + y2 + y3 + y4 + y5 + y6 + y7 − 3

)
(2.24)

subject to (2.9)–(2.13), (2.15)–(2.18), (2.20), (2.22), (2.23), and

λ6, λ11 ≥ 0,

μ ∈ R.
(2.25)
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The objective function can now be rewritten as

v(MCLPR) = Max 3x1 + x2 + 2x3 + 4x4 + 5x5 + (2 − λ6)x6 + 3x7 + 7x8 + x9 + x10

+ (2 − λ11)x11 + 2x12 +
(
λ6 + μ

)
y1 +

(
λ6 + μ

)
y2 +

(
λ6 + μ

)
y3

+ μy4 +
(
λ6 + λ11 + μ

)
y5 + μy6 +

(
λ11 + μ

)
y7 − 3μ.

(2.26)

Then, the problem can be decomposed in two subproblems:

v(MCLPR) = v(SP1) + v(SP2) + (2 − λ6)x6 + (2 − λ11)x11 − 3μ, (2.27)

where

v(SP1) = Max 3x1 + x2 + 2x3 + 3x7 + 7x8

+
(
λ6 + μ

)
y1 +

(
λ6 + μ

)
y2 +

(
λ6 + λ11 + μ

)
y5 + μy6

(2.28)

subject to (2.9)–(2.11), (2.15), (2.16), (2.22), (2.23), and

λ6, λ11 ≥ 0,

μ ∈ R,
(2.29)

and

v(SP2) = Max 4x4 + 5x5 + x9 + x10 + 2x12 +
(
λ6 + μ

)
y3 + μy4 +

(
λ11 + μ

)
y7 (2.30)

subject to (2.12), (2.13), (2.17), (2.18), (2.20), (2.22), (2.23), and

λ6, λ11 ≥ 0,

μ ∈ R.
(2.31)

Note that these subproblems correspond to the following clusters (which are associated with
the subgraphs of the covering graph):

(i) Cluster 1: M1 = {1, 2, 3, 7, 8} and N1 = {1, 2, 5, 6};

(ii) Cluster 2: M2 = {4, 5, 6, 9, 10, 11, 12} and N2 = {3, 4, 7}.

The resulting Lagrangean relaxation does not have the integrality property, being
stronger than (LRμ) of Galvão and ReVelle [11]. As the clusters are smaller than the original
covering graph, exact methods can be employed to solve each corresponding subproblem,
obtaining better quality bounds in shorter computational times.

For the above example, one can apply a subgradient optimization method in order to
determine the values of the dual variables λ6, λ11, and μ. At each iteration of this method,
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the values of the dual variables are used to update the coefficients of the objective function of
each subproblem, which can be solved by exact methods.

It is interesting to observe that, due to the relaxation of constraints (2.14) and (2.19),
the variables x6 and x11 disappeared from the formulations of the subproblems. According to
the objective function (2.27) their values will be set as 0 or 1, depending on their respective
coefficient at each iteration:

xi =

{
1, if wi − λi > 0,
0, otherwise

(2.32)

for all i ∈ I = {i ∈N | constraint (2.2) containing variable xi is relaxed}.
Therefore, the proposed decomposition approach can be established in the following

steps.

(a) Build a covering graph G(M,A) corresponding to the MCLP.

(b) Apply a graph partitioning heuristic to divide the covering graph G into k clusters.
The MCLP can be written through the objective function defined in (2.1) subject to
(2.2)–(2.5) where the constraints (2.2) are now divided into two groups: one with
constraints corresponding to intracluster edges and other formed by constraints
that correspond to edges connecting the clusters.

(c) Using distinct nonnegative multipliers, relax in the Lagrangean way the constraints
corresponding to the edges connecting the clusters (defining the set I) and also
relax constraint (2.3).

(d) The resulting Lagrangean relaxation is decomposed into k subproblems.

(e) Apply the standard subgradient method in order to optimize the dual variables λ
and μ.

The subgradient method used in the step (e) can be written as follows.

Set, initially,

λi =

{
wi, if i ∈ I,
0, otherwise,

μ = 0,

θ = 2,

LB = −∞,

UB = +∞,

(2.33)

While (the stop conditions are not satisfied) do the following

Solve subproblems SPk for x and y, using the current values of λ and μ.

Calculate

v(MCLPR) =
∑

k

v(SPk) +
∑

i∈I
max{0, (wi − λi)} − pμ. (2.34)

Update UB = min{UB, v(MCLPR)}.
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If
∑

j∈N yj = p (a feasible solution for MCLP is found), then do the following.

Calculate v(MCLP) using the obtained values for x and y.

Update LB = max{LB, v(MCLP)}.

Calculate

gλi = xi −
∑

j∈Si
yj , i ∈ I,

gμ = p −
∑

j∈N
yj.

(2.35)

Update the step size θ.

Update

λi = min
{

0, λi + θgλi
}
, i ∈ I,

μ = μ + θgμ.
(2.36)

End-While.

The step size θ used in this algorithm is the one proposed in [24], beginning with θ = 2 and
halving it whenever the upper bound does not decrease for a certain number of successive
iterations. The stopping tests used are the following:

(a) θ ≤ 0.005, or

(b) UB − LB < 1, or

(c) the subgradient vector g = [gλi ,gμ] = 0.

3. Computational Results

The LagClus algorithm was coded in C and the tests were conducted on a notebook with
Intel Core 2 Duo 2.0 GHz processor and 2.0 GB RAM, running Windows XP (Service Pack 3),
and ILOG CPLEX 10.1.1 [25]. The data were obtained from TSPLIB PCB3038 [26] and real
case instances for facility location problems in São José dos Campos city, Brazil (available for
download at http://www.lac.inpe.br/∼lorena/instancias.html).

For the graph partitioning task was used the well-known METIS heuristic for graph
partitioning problems [27], with default values. Given a covering graph G and a predefined
number k of clusters, METIS divides the graph in k clusters minimizing the number of edges
with terminations in different clusters.

The results obtained are shown in Tables 1 to 3. These tables use the following legend
in the columns

(i) k: number of clusters;

(ii) n: number of potential facilities locations and clients to be covered;

(iii) p: number of facilities to be installed;

(iv) Optimal: optimal solution of the corresponding MCLP obtained by CPLEX;

(v) GapLP: linear relaxation gap provided by CPLEX (in percentage);
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Table 1: Computation times for SJC instances, U = 150.

k = 10 k = 50
n p Optimal GapLP CPU Cuts Gap CPUSeq CPUPar Cuts Gap CPUSeq CPUPar

324

20 7302 0.000 0.015

296

0.000 2.543 2.537

1449

0.000 9.875 9.739
30 9127 0.027 0.047 0.027 24.650 24.635 0.027 44.596 41.101
40 10443 0.156 0.188 0.108 25.985 25.969 0.157 45.122 42.353
50 11397 0.180 0.391 0.138 24.452 24.422 0.195 43.748 43.459
60 11991 0.184 0.235 0.024 44.514 44.421 0.221 48.049 47.909
80 12152 0.000 0.031 0.000 8.876 8.816 0.003 109.129 108.115
108 12152 0.000 0.016 0.000 1.595 1.595 2.977 26.533 26.487

500

40 13340 0.000 0.047

108

0.000 3.453 3.361

804

0.000 17.186 11.499
50 14773 0.014 0.047 0.000 4.938 4.514 0.014 59.019 36.293
60 15919 0.048 0.063 0.000 8.233 7.243 0.048 57.157 34.737
70 16908 0.000 0.031 0.000 3.723 3.370 0.000 22.891 14.421
80 17749 0.000 0.015 0.000 5.406 4.766 0.000 26.686 16.697
100 18912 0.098 0.109 0.000 10.276 7.171 0.056 62.071 37.748
130 19664 0.041 0.297 0.015 30.827 24.588 0.041 69.934 43.373
167 19706 0.005 0.047 0.003 14.600 14.235 0.005 46.078 35.414

818

80 23325 0.055 0.140

166

0.003 45.564 21.880

1649

0.061 85.922 45.819
90 24455 0.123 0.266 0.041 56.388 24.747 0.143 87.797 47.001
100 25435 0.127 0.344 0.012 87.279 34.481 0.140 96.124 52.060
120 26982 0.084 0.297 0.015 69.658 31.368 0.062 105.547 54.658
140 28002 0.140 0.359 0.095 52.966 26.271 0.128 121.127 63.713
160 28699 0.128 0.391 0.107 58.453 24.904 0.126 96.017 50.828
200 29153 0.018 0.234 0.011 61.531 28.301 0.039 253.908 135.048
273 29168 0.000 0.031 0.000 3.343 2.545 0.554 46.766 37.178

(vi) CPU: computing time of the corresponding optimal solution obtained by CPLEX
(in seconds);

(vii) Cuts: number of relaxed constraints;

(viii) Gap = 100% × (UB − Optimal)/Optimal;

(ix) CPUSeq: sum of the computing times for every cluster, at each iteration (in seconds);

(x) CPUPar: the largest computing time for a cluster, at each iteration (in seconds).

The values marked with an asterisk in Table 3 denote instances where CPLEX failed
to produce an optimal solution within the time limit of 20000 seconds. The presented figures
are suboptimal values.

From these results one can observe that the smaller the number of clusters is, the better
are the upper bounds obtained (smaller are the gaps). On the other hand, as the number of
clusters increases, the computational effort for solving the subproblems is reduced.

In the results shown that for k = 10 (SJC instances) and k = 5 (TSPLIB PCB3038
instance), the gaps obtained for 92.3% of the instances (48 out of 52) are equal or smaller
(values presented in bold face) than the gaps obtained by the linear relaxation, which demon-
strates the effectiveness of the decomposition heuristic. However, improved gaps could be
obtained by reducing the number of clusters, at the cost of larger computational times.

Therefore, as shown in Tables 1, 2, and 3, the bounds obtained by the proposed
approach are better than the ones produced by the linear relaxation and, consequently,
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Table 2: Computation times for SJC instances, U = 200.

k = 10 k = 50
n p Optimal GapLP CPU Cuts Gap CPUSeq CPUPar Cuts Gap CPUSeq CPUPar

324

20 9670 0.334 0.172

980

0.243 19.293 19.293

3008

0.347 32.943 32.911
30 11737 0.087 0.484 0.060 28.943 28.943 0.094 69.959 69.959
40 12151 0.005 0.094 0.008 31.066 31.066 0.138 77.872 77.612
50 12152 0.000 0.015 0.000 9.926 9.926 0.000 61.456 61.395
60 12152 0.000 0.047 0.000 4.575 4.575 0.000 14.376 14.376
80 12152 0.000 0.016 0.000 3.670 3.670 0.000 33.936 33.936
108 12152 0.000 0.031 0.248 11.343 11.343 0.001 897.830 893.405

500

40 17077 0.453 0.203

657

0.387 24.668 20.669

2625

0.469 55.001 51.048
50 18361 0.014 0.109 0.003 39.109 32.248 0.025 67.626 62.596
60 19153 0.035 0.063 0.005 52.639 35.363 0.112 85.374 76.578
70 19551 0.110 1.078 0.069 43.946 29.817 0.170 76.671 68.721
80 19703 0.013 0.156 0.008 35.495 27.927 0.150 102.056 95.253
100 19707 0.000 0.078 0.000 16.624 16.501 0.001 89.858 86.698
130 19707 0.000 0.047 0.000 1.986 1.864 0.001 26.546 25.809
167 19707 0.000 0.016 0.016 22.379 22.225 0.859 22.314 22.133

818

80 27945 0.070 0.203

840

0.069 57.835 27.423

4910

0.121 147.155 115.605
90 28519 0.138 1.141 0.071 114.145 45.536 0.177 128.574 99.585
100 28910 0.103 1.391 0.036 88.885 33.153 0.175 101.875 80.758
120 29165 0.002 1.234 0.002 55.710 31.180 0.117 141.246 115.434
140 29168 0.000 0.125 0.000 11.643 8.940 0.021 171.961 143.737
160 29168 0.000 0.062 0.000 9.738 7.598 0.878 39.343 36.244
200 29168 0.000 0.032 0.000 5.762 4.610 0.847 37.205 34.871
273 29168 0.000 0.031 0.207 24.698 18.505 2.904 25.282 23.772

Table 3: Computation times for TSPLIB PCB3038 instance, U = 400.

k = 5 k = 10
n p Optimal GapLP CPU Cuts Gap CPUSeq CPUPar Cuts Gap CPUSeq CPUPar

3038

17 125320 0.368 802.390

165579

0.205 843.838 235.541

291363

0.470 582.528 223.245
18 130004 0.517 10265.016 0.372 817.076 283.400 0.712 634.402 243.747
19 134262∗ 0.605 20000.049 0.382 1483.237 598.653 0.793 576.821 222.087
20 139028∗ 0.698 20000.156 0.500 1712.078 798.911 0.973 628.288 236.767
21 141279∗ 0.853 20000.094 0.654 3117.174 1448.730 1.128 646.765 243.302
22 143809∗ 1.196 20000.123 0.992 6656.267 3094.410 1.598 615.783 231.525

by any Lagrangean relaxation as the ones presented in [11–13]. Nevertheless, comparing
the values of the CPU times presented by this method and those presented by CPLEX,
it is clear that the proposed decomposition approach is appropriate only for large-scale
problems.

Comparing the values of CPUSeq and CPUPar for each value of k, it is also possible to
note that CPUPar values are becoming relatively smaller than CPUSeq values as the size of the
instances increases, indicating that the proposed decomposition approach can substantially
reduce the time for solving large instances of MCLP in parallel (or multicore CPU)
computers.
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4. Conclusions

This paper presents a decomposition approach based on cluster partitioning to calculate
improved upper bounds to the optimal solution of maximal covering location problems. The
partitioning is based on the covering graph of potential facility locations that attend a same
client. The corresponding coupling constraints are identified and some of them are relaxed
in the Lagrangean way, resulting in subproblems that can be solved independently. Each
subproblem represents a cluster smaller than the original problem and can be solved by exact
methods in smaller computational times. Computational tests using real data and instances
from the available literature were conducted and confirmed the effectiveness of the proposed
approach.

An important characteristic of large-scale problems addressed by the proposed
approach is the tradeoff between gap values and CPU times. Depending on the application,
one may choose to sacrifice the quality of the bounds (increasing the number of clusters)
in order to obtain shorter processing times. On the other hand, if quality is the issue, the
processing times needed to solve instances with only a few clusters may be longer.

In this study, the number of clusters was fixed a priori and then the number of
intercluster edges was minimized by the partitioning algorithm. In this way, for a chosen
k, the number of relaxed constraints is minimized and, consequently, better bounds are
obtained. The partitioning is clearly crucial and other choices could be considered, for
example, minimize the maximal size of the clusters, so as to obtain the smallest possible
subproblems. This has yet to be investigated.

The heuristic presented in this article can be used in a branch-and-bound exact
method. As, in general, the upper bounds obtained with this heuristic are better than those
obtained by the linear relaxation, one would expect many more nodes be pruned, with a
possibly significant size reduction of the search tree.

Advances in applied mathematics and computer science have resulted in high-
performance tools for mathematical programming, allowing tough optimization problems
to be solved. However, as the problem size increases, the computational time may grow
excessively, making the problem intractable even for the most efficient tools. In such a
case an approach in which a large-scale problem is divided into a number of smaller-scale
subproblems can be a nice solution possibility.
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