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We study empirically and analytically growth and fluctuation of firm size distribution. An
empirical analysis is carried out on a US data set on firm size, with emphasis on one-time
distribution as well as growth-rate probability distribution. Both Pareto’s law and Gibrat’s law
are often used to study firm size distribution. Their theoretical relationship is discussed, and it
is shown how they are complementable with a bimodal distribution of firm size. We introduce
economic mechanisms that suggest a bimodal distribution of firm size in the long run. The
mechanisms we study have been known in the economic literature since long. Yet, they have
not been studied in the context of a dynamic decision problem of the firm. Allowing for these
mechanism thus will give rise to heterogeneity of firms with respect to certain characteristics. We
then present different types of tests on US data on firm size which indicate a bimodal distribution
of firm size.

1. Introduction

Recent statistical studies of firm size distribution in different countries and time periods (see
Gibrat [1], Fujiwara et al. [2] and Mantegna and Stanley [3].) indicate that the distribution of
firm size obeys a power law for various measures of firm sizes, such as total asset and number
of employees. The nonnormal firm size distribution has been a long standing controversial
issue in industrial organization literature. An important early study on firm size distribution
has found that it follows Gibrat’s Law [1].
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Looking at the empirical data, one observes that firms grow unevenly over time. Firm
size changes or fluctuates. One quantitative way to look at this is to look at the probability
distribution function (pdf) of the growth rate, which is defined as the ratio of the second
year’s value and the first year’s value. Several studies on this aspect [4], again on the upper
tail, lead to confirmation of Gibrat’s law [1], which states that the growth rate pdf conditional
on the first year’s value is independent from the first year’s value. In other words, the growth
rate is independent from the first year’s value, when the latter is large.

The fact that these two laws, Pareto’s law and Gibrat’s law, were observed to coexist
suggested some deep relations between them. In fact, just such a relation was found when
the law of detailed balance, which states that the simultaneous pdf of the first year’s value
and the second year’s value is symmetric under the exchange of the two variables. This also
leads to a theoretical relationship of the positive-growth side of the growth-rate pdf and the
negative-growth side of the same, which were confirmed by the data.

Overall recent empirical research has found that, first, for the upper tail of the size
distribution of firms the Pareto law holds (which may also be consistent with Gibrat’s law
that above a certain minimum size the growth rate of firms is independent of size), second,
the variance of firms’ growth rates is independent of size over and above a certain minimum
size and, third, the frequency of the moving up and down in size class is also roughly the
same above certain size classes.

Yet, all three results appear to be consistent with the fact that the upper size classes
behave distinctively from lower size classes and that the middle size classes are “thinned
out.” Thus, there might be a tendency toward a twin-peak distribution with different
behavior of the upper and lower size classes. Empirical work may have to deal with the
fact that groups of firm size classes behave differently and that there is a bimodal distribution
of size classes in the long run. (Other recent literature has also discovered bimodal firm size
distribution; see Bottazzi and Secchi [5] and Bottazzi et al. [6].) We also provide an analytical
discussion of the relationship of Pareto’s law and Gibrat’s law. But since the derivation of
this relationship is rather technical, details of this study are presented in Appendix A. The
analysis of the upper and lower tail of the firm size distribution via Pareto‘s law and Gibrat‘s
law is complemented by an empirical study that addresses the issue of the “thinning out” of
the middle and the issue of a bimodal distribution of firm size.

Since the statistical study of the size distribution of firms does not provide us with
much insight into underlying mechanisms, we also focus on the dynamics of firm size
distribution to give the statistical results some theoretical underpinning. We introduce and
study economic mechanisms that may explain the dynamics of firm size and firm growth
over time. We show that there is a long tradition in economic theory and, in particular, in
the industrial organization literature of the last fifty years that has pointed out some major
mechanisms why one indeed would expect a bimodal size distribution of firms in the long
run. In Sections 2 and 3, we will demonstrate those mechanisms in the context of a dynamic
investment model of the firms. In our theoretical study, we will argue that firms may be
heterogeneous in size, because they are exposed to some of the subsequent mechanisms.

We want to exclude some arbitrary behavior of firms, and thus presume that all firms
pursue the same dynamic investment strategy by aiming at maximizing the present value of
their future pay off. Of course, there are also other influences on firm growth such as growth
of overall demand, industry demand, cost and technology shocks and elaborate financing
practices. Yet we want to focus only on some major mechanisms that have been studied in
economic theory since long and confront their implied predictions for firm size dynamics
with the results of our empirical study.
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The remainder of the paper is organized as follows. In Sections 2 and 3, we introduce
the mechanisms that may give rise to certain properties of the size distribution of firms, in
particular a twin-peak distribution of firm size. In Section 4, then our empirical results will
be shown demonstrating that there is indeed a tendency toward a twin-peak size distribution
of firms in the long run. Section 5 concludes the paper. Appendix A presents the technical
derivations of the relationship of the Pareto law and Gibrat law pertaining to the upper and
lower size classes.

2. Modeling the Dynamics of Firm Size Distribution

We introduce here some mechanisms that may give rise to some dynamics toward a twin-
peak size distribution of firms. The first important mechanism that we want to study is based
on locally increasing returns to scale. This idea of locally increasing returns to scale exist in
the literature since Marshall [7]. Recently, it has extensively been employed by Arthur [8–
10] who demonstrates that a variety of positive feedbacks such as learning by using, scale
economies, and increasing returns to information and skills are set in motion if one firm
enjoys, for example, by historical accident, some size advantage. Hereby, locally increasing
returns may be approximated by a convex-concave production function as proposed by Skiba
[11] and Brock and Milliaris [12].

Our second mechanism is based on the adjustment cost of capital which has been
employed in investment theory since Eisner and Stroz [13], Lucas [14], and Gould (1968).
We will explore quadratic as well as more general adjustment cost of capital and study to
what extent it will generate a size-dependent dynamics. We are in particular interested in
size effects on adjustment costs that will be advantages for larger firms. (A further discussion
and survey of the adjustment cost literature is given in Kato et al. [15].)

A third mechanism can be seen to originate in cost and ease (or tightness) of credit.
Important contribution to this line of research can be found in Townsend [16], Bernanke et al.
[17], and Grüne et al. [18]. This literature assumes asymmetric information and agency costs
in borrowing and lending relationships. This may, as Gertler and Gilchrist [19] have shown,
in particular hold true for small firms. We here draw on the insight of the literature on costly
state verification (This literature originates in the seminal work by Townsend [16].) in which
lenders must pay a cost in order to observe the borrower’s realized returns. This motivates
the use of collateralized credit. Uncollateralized borrowing is assumed to pay a larger risk
premium than collateralized borrowing or self-financing. The risk premium arises from the
threat of bankruptcy namely from the cost constituted by auditing, accounting, legal cost, as
well as loss of assets arising from asset liquidation. So, one would expect for different types
of firms different risk premiums and thus a credit spread across firms as already Merton [20]
has demonstrated.

It is presumed that the risk premium drives a wedge between the expected return
of the borrower and the risk-free interest rate and becomes zero, in the limit, when debt
approaches zero. A suitable function for this premium, will be introduced below. Yet, even if
the credit cost spread is endogenized, there might be borrowing constraints for the firm that
finances investment externally.

We may specify a general model of a firm i which is potentially exposed to the above
mechanisms. Let us define the dynamic decision problem that firm i faces. Leaving aside the
index i, the decision problem is proposed to be as follows:
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V (k) = Max
j

∫∞

0
e−θtf

(
k(t), j(t)

)
dt, (2.1)

k̇(t) = j(t) − σk(t), k(0) = k, (2.2)

Ḃ(t) = H(k(t), B(t)) − (
f
(
k(t), j(t)

) − c(t)
)
, B(0) = B0. (2.3)

The decision problem of the firm is to maximize its present value V (k), of (2.1), using
the investment j as choice variable. (Subsequently, we leave aside the time index.) The term
under the integral of (2.1) is the discounted payoff, f(k, j), the net income of the firm,
discounted at a discount rate θ. Equation (2.2) represents the law of motion of the capital
stock, k, with σ a coefficient representing the depreciation of the capital stock. Equation (2.3)
denotes the evolution of the firm’s debt, B. Note that we allow for negative investment rates
j < 0 that is reversible investment for simplicity. (Themodel can also be interpreted as written
in efficiency labor; therefore, σ can represent the sum of the capital depreciation rate, and rate
of exogenous technical change.) In (2.3), the termH(k, B) represents credit cost depending on
net worth of the firm, and c can be viewed as dividend payment (or consumption stream of
the asset holders), which is treated here as exogenous. (How it can be endogenized is further
specified in Grüne et al. [18].)

Allowing for adjustment cost, jβk−γ , the firm’s net income is determined by

f
(
k, j

)
= y(k) − j − jβk−γ , (2.4)

whereby the income of the firm y(k) is generated from capital stock, through a production
function, to be defined below. So, overall, investment, j, is undertaken so as to maximize
the present value of net income of (2.4) given the adjustment cost of capital jβk−γ in (2.4).
Note that σ > 0, α > 0, β > 1, and γ > 0 are constants. For β = γ = z, the adjustment cost is
quadratic.

As to the production function, y(k), we may take a convex-concave production
function as proposed in Skiba [11] and specified below giving us the incorporation of the
first mechanism into our model. We also could use a Cobb-Douglas production function
y(k) = akα and stress adjustment cost of capital with size effects. This will deliver us a second
variant of our model.

Since net income in (2.4), less the dividend stream c, can be negative, the temporary
budget constraint requires further borrowing from credit markets, and if there is positive net
income, less dividend, debt can be retired.

Note that in the above general case of adjustment cost jβk−γ in (2.4), if we take β = 2
and γ = 0, we have the standard model with quadratic adjustment cost of investment. When
we employ the locally increasing returns production function, a convex-concave production
function, we will drop the adjustment cost term jβk−γ , as also done in Brock and Milliaris
[12].

For representing our third mechanism, we assume that the credit cost H(k, B) in (2.3)
may be state dependent, depending on the capital stock, k, and the level of debt BwithHk < 0
and HB > 0. Note, however, that if we assume that the credit spread depends inversely on
net worth and the net worth is equal to the value of the capital stock, we get a special case
of our model when only the risk-free interest rate determines the credit cost. We then have a
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credit cost that is only depending on an exogenous interest rate and a state equation for the
evolution of debt such as

Ḃ(t) = θB(t) − f(k(t), B(t)), B(0) = B0. (2.5)

In this case, we only would have to consider the transversality condition limt→∞e−θtB(t) = 0,
as the nonexplosiveness condition for debt, to close the model (2.1)–(2.3).

In general, we define the limit of B(t) equal to V (k)which represents the present value
borrowing constraint which is here defined as curve and not as a point. The present value
V (k) represents the debt capacity of the firm. In all of the above cases, the problem to be
solved is then how to compute the optimal investment strategy and the present value, V (k),
of the firm.

If the interest rate θ = H(k, B)/B is constant (as aforementioned in computing the
present value of the future net income, we do not have to assume a particular fixed interest
rate, but the present value, V (k), will, for the optimal investment decision, enter as argument
in the credit cost functionH(k(t), V (k(t))) as in (2.5), then as is easy to see, V (k) is in fact the
present value of k

V (k) = Max
j

∫∞

0
e−θtf

(
k(t), j(t)

)
dt, (2.6)

s.t. k̇(t) = j(t) − σk(t), k(0) = k0, (2.7)

Ḃ(t) = θB(t) − (
f(k(t), B(t)) − c(t)

)
, B(0) = B0, (2.8)

with k(0) and B(0) the initial value of k and B.
The case, however, when the credit cost is endogenous, thus, when we have H(k, B),

then the present value itself becomes difficult to treat. Pontryagin’s maximum principle is not
suitable to solve the problem with endogenous credit cost, and we thus need to use dynamic
programming to solve for the present value and investment strategy of the firm. One step
toward using dynamic programming is to formulate our models of (2.1)–(2.3) and (2.6)–(2.8)
as Hamilton-Jacobi-Bellman (HJB) equation. An example of how this can be done is shown
in Appendix B.

In the context of the model that explores the role of risk premiums and credit spread
as a cause for unequal firm size, we can also study the impact of “ceilings” in debt contracts
and their impact on firm size. Indeed, credit restrictions may affect the investment decisions.
(Suppose the “ceiling” is of the form B(t) < C, with C a constant, for all t. The ceiling has
clearly an effect on the investment dynamics. Either C > V (k), then the ceiling is too high,
because the debtor might be tempted to move close to the ceiling and then goes bankrupt if
B > V (k). If C < V (k), then the firm may not be able to develop its full growth potentials
through optimal investment decisions.)

In all three cases—locally increasing returns to scale, nonlinearity in adjustment costs
of capital, and credit spread and credit constraints (the latter two arising from credit risk)—
the optimal investment strategy and the growth of the firm depend on the initial size of the
firm. We permit firms to be heterogeneous with respect to the way how they are exposed to
the above three mechanisms.

We will show that there can be thresholds that separate the solution paths for V (k)
to different domains of attraction. For firms with lower capital stock—and being exposed to
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one of the above mechanisms—but below some threshold it will be optimal for the firms to
contract, whereas large firms above some threshold may choose an investment strategy to
expand. Moreover, we can admit in our study various paths for dividend payment, c, and
their impact on the investment strategy and the present value curve V (k) for our different
model variants. (The latter aspect is studied in Grüne et al. [18].)

3. Numerical Study on the Dynamics of Firm Size Distribution

Next, we present numerical results obtained for our different specification of a production
function, adjustment costs of capital, and imperfect capital markets. Throughout this section,
we specify the parameter σ = 0.15 and γ = 0.3. The other parameters will be model specific
and specified below. (Note that we, of course, could choose another source of heterogeneity of
firms, namely, by assuming different technology parameters for firms. This might be another
line of research which we will not pursue here.) Unless otherwise noted, we use for the
dividend stream c(t) ≡ 0 in our experiments which are relaxed in Grüne et al. [18].

As for the numerical procedure, we use two algorithms. The first is a dynamic
programming algorithm as presented in Grüne et al. [18] and applied in Grüne and Semmler
[21]. The examples below were computed for different k′s in the compact interval [0, 2]
with control range j ∈ [0, 0.25]. (In all our experiments, larger control ranges did not yield
different results.) To solve the problem (2.6)–(2.8), a dynamic algorithm has been used with
the numerical time step h = 0.05 and an initial grid with 39 nodes. The final adapted grid
consisted of 130 nodes. The range of control values was discretized using 101 equidistributed
values.

For a second algorithm that computes domains of attraction of the problem (2.1)–(2.3),
we used the time step h = 0.5, and in order to generate the discrete time model, we used a
highly accurate extrapolation method. For this algorithm, the range of control values was
discretized using 51 equidistributed values. The domain covered by the grid was chosen to
be [0, 2] × [0, 3], where the upper value B = 3 coincides with the value c∗ = 3 used in order
to implement the restriction supt≥0B(t) < ∞. The initial grid was chosen with 1024 cells,
while the final adapted grids consisted of about 100000 up to 500000 cells depending on the
example. For this algorithm, the figures below always show the set EΓ which approximates
the present value curve V (k). Recall that the width of this set gives an estimate for the spatial
discretization error.

We start our numerical examples first with the common case of quadratic adjustment
costs of investment and constant returns to scale. This gives us the usual case of a unique
(positive) steady state and about which firm size is predicted to be normally distributed. In
the next examples, we have built in the above stated three mechanisms giving rise to multiple
domains of attraction and thus multimodal distribution of firm size.

3.1. Constant Returns to Scale with Quadratic Adjustment Costs

For the common case usually found in the literature, and as represented in (2.6)–(2.8), we
assume a concave production function y(k) = akα, with 0 < α < 1 and quadratic adjustment
cost. As model parameters, we specify α = 0.5, β = 2, b = 0.5, a = 0.29, and θ = 0.1. This
specifies the most simplest variant of a dynamic decision problem with adjustment costs
which has often been employed in economics and which can be shown to exhibit solely one
positive steady state equilibrium k∗ and a normally distributed firm size. The present value
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Figure 1: Quadratic adjustment cost of capital.

of the representative firm is here simply given by the present value of the net income stream
of the firm, since we here assume a constant credit cost as shown in (2.8).

To compute the optimal investment strategy and firm value, we can use our first
procedure, our dynamic programming (DP) algorithm. The firm value is given by the optimal
value function in Figure 1 and the solution path of the dynamic decision problem, (As, for
example, presented in Grüene and Semmler [21].) the investment decision, and thus the
optimal growth of (or contraction) of the firm is given by the optimal control in Figure 1.
The (unique) positive steady state is about k∗ = 0.95 for the capital stock, below which the
firm would grow and above which it would be optimal for the firm to shrink its capital stock.
Allowing for shocks to the size of the firms, a normal distribution of firm size would be
expected.

3.2. Increasing Returns to Scale and Adjustment Costs with Size Effects

Next, we numerically solve for the case of increasing returns to scale and adjustment costs
with size effects. Although, as shown in Grüne et al. [18], these are two separate causes
for generating multiple domains of attraction, we demonstrate both mechanisms in a single
numerical exercise. We assume that (2.1)–(2.3) hold, but we still presume that the firm faces
constant credit cost H(k, B) = θB as in (2.8). We again can use the DP algorithm in order to
solve the discounted infinite horizon problem (2.1)–(2.3). Figure 2 shows the corresponding
optimal value function representing the present value of the prototypical firm, V (k), (upper
graph) and the related optimal control, the investment decision, in feedback form (lower
graph); see Figure 2.

For our parameters, the model does not necessarily have an unique positive steady
state equilibrium. There can be multiple domains of attraction for firms that are exposed to
either increasing returns and/or adjustment costs with size effects. The fate of a particular
firm, when it is exposed to increasing returns to scale and/or to adjustment costs with size
effects, thenwill depend on the initial capital stock size, k. There is a threshold, s, at k+ = 0.267



8 Advances in Operations Research

0 21.61.20.80.4
−0.1

0.425

0.949

1.474

1.998

2.523

B
j

k∗ = 0

Value
function

Investment

k∗∗ = 0.996s

Threshold

k

Figure 2: Optimal value function and optimal investment.

which is clearly visible in the optimal investment strategy, which is discontinuous at this
point.

Thus, the dynamic decision problem of the firm faces a discontinuity. For firms with
initial values of the capital stock k(0) < k+, it is optimal to shrink the capital stock to k∗ = 0,
for initial values of the capital stock k(0) > k+ the optimal investment will lead to the domain
of attraction k∗∗ = 0.996. In sum, investment for a firm to the left of k+ is lower than σk and
makes the capital stock shrink, whereas investment for a firm to the right of k+ is larger than
σk and lets the capital stock increase. At k+, investment for the firm then jumps. In this case,
then multiple domains of attraction exist and a bimodal distribution of firms with different
growth rates of different size classes would be expected. (The upper tail of the distribution
may then exhibit the Pareto distribution (Power law), whereas the lower part may just show
a (log-)normal distribution.)

3.3. Capital Markets and Credit Spread

A similar result can be obtained if there is a distinct credit spread, and firms have to pay
idiosyncratic risk premiums, or there may be credit constraints on firms’ investment. This
may also result in multiple domains of attraction. Let us presume that credit cost H(k, B) is
endogenous depending on net worth.

Before, we had postulated that a risk premium is positively related to the default cost
and inversely related to the borrowers net worth. Net worth is defined as the firm’s collateral
value of the (illiquid) capital stock less the agent’s outstanding obligations. Following
Bernanke et al. [17], we measure the inverse relationship between the risk premium and net
worth in a function such as

H(k(t), B(t)) =
α1

(α2 +N(t)/k(t))μ
θB(t), (3.1)
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with H(k(t), B(t)) the credit cost depending on net worth, N(t) = k(t) − B(t), with k(t) as
capital stock and B(t) as debt. The parameters are α1, α2, μ > 0, and θ is the risk-free interest
rate. In the analytical and numerical study of the model below, we presume that the risk
premium will be zero for N(t) = k(t), and thus, in the limit, for B(t) = 0, the borrowing rate
is the risk-free rate. Although this could occur for small scale firms, a borrowing rate closer to
the risk-free rate is more likely to hold for large-scale firms. (See Gertler and Gilchrist [19].)

In general, it is not possible to transform the above problem into a standard infinite
horizon optimal control problem for our prototype of firm; hence, we will use our second
procedure, the algorithm for the computation of domains of attractions from Grüne et al.
[18], and undertake experiments for different shapes of the credit cost function.

For the endogenous credit cost function (3.1), we specify μ = 2. Taking into account
that we want θ to be the risk-free interest rate, we obtain the condition α1/(α2 + 1)2 = 1, and
thus α1 = (α2 +1)

2. Note that for α2 → ∞ and 0 ≤ B ≤ k, one obtainsH(k, B) = θB, that is, the
model from the previous section. In order to compare these two model variants we use the
formula H(k, B) = (α1/α

2
2)θB for B > k. (For small values of α2, it turns out that the present

value curve satisfies V (k) < k; hence, this change of the formula has no effect on V (k).)
Figure 3 shows the respective present value curves V (k) under the condition

supt≥0B(t) < ∞ for α2 = 100, 10, 1 (from top to bottom) and the corresponding α1 = (α2 + 1)2.
For α2 = 100, the trajectories on the curve V (k) show almost the same behavior as

the optimal trajectories in the previous section: there exists a threshold (now at k+ = 0.32)
and two stable domains of attraction at k∗ = 0 and k∗∗ = 0.99. Our numerical solutions have
revealed that for decreasing values of α2 ≤ 100, the threshold value k+ first increases (i.e.,
moves to the right) and the stable domain of attraction k∗∗ decreases (i.e., moves to the left)
until they meet at about α2 = 31. For all smaller values of α2, there exists just one equilibrium
at k∗ = 0 for all capital stock sizes which is stable.

The latter is illustrated for a discrete value of α2 ≤ 10, where there is no threshold
observable, and there exists only one domain of attraction at k∗ = 0which is stable. The reason
for this behavior lies in the fact that for such a small α2, credit becomesmore expensive; hence,



10 Advances in Operations Research

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2

B

k

s1 = 0.32 s2 = 1.54k∗∗ = 0.99

Threshold

Threshold

V (k∗∗)

B/k = c = 1.2

B/k = c = 0.6

k∗ = 0

Figure 4: Present value curve V (k) for debt ceilings,H(k, B) from (3.1).

for this small α2, it is no longer optimal for the firm—with any size of the capital stock—to
borrow large amounts and to increase the capital stock for a given initial size of the firm;
instead, it is optimal to shrink the capital stock to zero. Thus, with small α2, and thus large
borrowing cost, it is for any firm size, that is for any initial capital stock, optimal to shrink the
capital stock, and the firm will exhibit negative growth rates.

3.4. Capital Market and Credit Constraints

On the other hand, often one has to impose for the investment decision of the firm a debt
ceiling, defined as a fraction of the capital stock. This is the case when a firm’s borrowing is
constrained. For a particular H(k, B) from (3.1), we can test what impact a debt ceiling has
on firm growth and firm value. We impose the restriction B(t)/k(t) ≤ c for some constant
c. Again, we use the algorithm for computing domains of attraction to solve this problem
numerically. Figure 4 shows the respective present value curves for α = 100. With only a low
risk premium but a credit constraint, a firm with c = 0.6 would not grow sufficiently.

The potentially high-value curve can be reached with no credit constraint with B/K =
1.2. Yet, for c = 0.6 the present value curve V (k) coincides with the “restriction curve” B(k) =
ck. In this case, the curve (k, V (k)) is no longer invariant for the dynamics; that is, each
trajectory B(t) with B(t) ≤ V (k(t)) leaves the curve (k, V (k)) and eventually B(t) tends to 0.
Debt is controllable, but firm value moves down, and growth is limited for c = 0.6; that is,
the corresponding trajectories leave the curve V (k) and eventually B(t) tends to zero. (The
simulations are halted at zero, but wewould like to report if continued theB(t) curve becomes
negative.)

This means credit constrained firms are not able to undertake sufficiently high
investments and will thus grow at a lower rate. They will not be able to realize their growth
potentials, and thus their potential present value that they would be able to obtain without
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credit constraint. We can observe that with borrowing constraints, even for an optimal invest-
ment strategy, firms of different size classes would be expected if there are strict borrowing
limits on firms.

4. Dynamics of Firm Size Distribution in the Long Run

The above mechanisms predict that one might expect in the long-run movements of growth
rates and a size distribution of firms characterized by a clustering of firms in the upper
region of size classes as well as at the lower end of size classes. Moreover, one would expect
that the middle size classes are “thinned out,” possibly giving rise to a long-run twin-peak
distribution of firm size.

We want to present some empirical evidence that may confirm some dynamics
toward a long-run twin-peak distribution of firm size which is implied by the above model
variants. To address this issue empirically, we concentrate on firm size distribution in the US
manufacturing industry.

The data of the following empirical study are taken from the pstar dataset used in
B. W. Hall and R. E. Hall [22]. The data set contains 23 variables which quantify certain
characteristics such as investment, stock price, or assets’ value of US firms in the manufac-
turing industry for the time period 1960 to 1991. We use the variable netcap which is defined
as book value of assets, adjusted for the effects of inflation to represent capital stock. In the
following net capital which is normalized by the average net capital of all firms will be used
as a measure of size.

The pstar data set gives us a set of observed data points or capital stocks, respectively,
which can be interpreted as a sample of an unknown probability density function for
several years. To analyze certain characteristics of this density, one has to determine the
unknown density. If, for example, the density function has changed from being unimodal
to a bimodal one, it can be regarded as a hint that the middle size classes have been thinned
out, supporting the above stated theoretical ideas. The graphs in Figure 5 indeed seem to
support the hypothesis that over time, there is a heavy tail in the upper size classes arising
and that the middle size classes get thinned out.

In order to discuss this in a more quantitative manner, we first fit the probability
density function (pdf) with a log-normal distribution.

Figure 6 gives some of the rank-size plot with the corresponding fits with log-normal
distribution (to be more exact, the cumulative distribution P>(x) defined in (A.1) obtained
by log-normal P(x)). The overall agreement is good although there are small but distinct
differences. This difference is plotted for the same years in Figure 7, where it is apparent that
they share a common feature.

This means that they are not random fluctuations around the log-normal. Most notable
feature is that that they dip between −1 and 0, which means that since the derivative of
cumulative probability is the negative of pdf, the actual pdf is given by log-normal pdf plus
a twin peak pdf with its first peak at around −1 and second peak at a little less than 1. The
strength of the twin-peak can be measured by fitting these differences with a function such
as aex sin(kx +m) (with x being the horizontal coordinate) and measuring the “amplitude”
a. We have chosen to do this in the range x ∈ [−1.5, 0.3] in order to avoid large fluctuation for
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Figure 5: PDF of the (normalized) netcap from year 1960 to 1991. Normalization is done so that average
netcap is one for each year. Data for different years are plotted in different hue and dashing as in the
legend.

large x and the resulting curves are plotted in solid black curves. We find that the agreement
with the actual difference is in a reasonable range.

The resulting amplitude a is plotted in Figure 8 together with a linear fit. The
systematic tendency for a to increase confirms that in fact the middle thins out. This follows
from the estimated change of the Sinus curves for the years 1970, 1975, 1980, 1985, and 1990
represented in Figure 8 where it is visible that the amplitude is rising over time indicating
that the distribution of firms becomes concentrated at the lower and upper end. (Another
way to estimate a bimodal distribution of firms size data is to use Kernel estimation and the
Markow chain approach; see Kato et al. [15].)

5. Conclusions

In this paper, we have first studied the two scaling laws, Pareto’s law and Gibrat’s law.
Both seem to hold for large firms. Their relations under the law of detailed balance was also
studied. This discussion is done purely kinematically, that is, independent from any models
one might put forward. Yet, this kind of study helps one to isolate dynamical features, which
remains to be explained. This is the strength and the power of this kind of analysis. As a
result, we now have a specific shape of the growth-rate pdf in the framework of Gibrat’s
law, which should be the target of the modern analysis of firm size dynamics. The analysis
of the upper and lower tail of the firm size distribution via Pareto’s law and Gibrat‘law is
empirically complemented by a statistical study of what happens in the middle. Our study
empirically addresses the issue of the “thinning out” of the middle and the issue of a bimodal
distribution of firm size.

In order to theoretical motivate such an enlarged study, namely, a study of the bimodal
size distribution of firm classes in the long run, we have introduced a dynamic model of firm
behavior, where firms might be exposed to locally increasing returns, nonlinear adjustment
costs of capital, credit spread, determined by risk premiums, and credit constraints. Using
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Figure 6: Rank-size plots with the log-normal fits for the years 1970, 1975, 1980, 1985, and 1990 in log-log
scale. In all the cases the over-all fit is good, except for the small systematic differences, which is a sign of
the thinning out.

dynamic programming, we compute the dynamics of firm size and their long run size
distribution. A bimodal distribution is predicted. Empirically, this means that over time,
there is a “thinning out” of firm size classes in the middle. Our statistical analysis then has
supported the theoretical model’s predictions.

Finally, we want to note that, of course, the evolution of firm size distribution in
industries is presumably more complex than characterized by our above statistical and
analytical studies. Numerous empirical studies on the dynamics of the firm size distribution
over the life cycle of an industry have documented the complexity of the forces affecting
the size distribution of firms such as growth of overall demand, industry demand, cost
and technology shocks, financing practices, and industry regulation. (For a survey of
the variety of forces of growth in certain stages of the life cycle of the industry, see
Mazzucato and Semmler [23].) Yet, we would like to stress that our paper might give a
theoretical rationale and some empirical evidence that may help to highlight some major
mechanisms possibly leading to bimodal distribution and fluctuation of firm size in the long
run.
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Figure 7: Difference between the rank size and the log-normal fits for the same years as in Figure 6. The
black curves are the fits for the range x ∈ [−1.5, 0.3], where x is the the horizontal coordinate (log (netcap)),
with aex sin(kx +m) with a, k, and m as free parameters.

Appendices

A. Scaling Laws

We, here, give an analysis of Pareto’s law and the Gibrat’s law, which are often observed in
the data. We present a theoretical discussion of the relationship between these two laws. They
are also called scaling laws.

Pareto’s Law and Gibrat’s Law (For more details of the following and an empirical
verification using a large EU dataset, see Fujiwara et al. [4].)

The cumulative probability distribution function P>(x) can be defined as follows in terms of
the pdf P(x):

P>(x) =
∫∞

x

P
(
x′)dx′. (A.1)
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Figure 8: Plot of the “amplitude” a for the years 1970–1991. The dashed line gives the best fit a = 0.0013x−
0.050. The steady increase of a, which is a sign of thinning out, is apparent.

The distribution P>(x) and thus P(x) obey a power law for large x if

P(x) ∝ x−μ−1, (A.2)

which is the famous Pareto-Zipf’s law (“Pareto’s law” hereafter). (See Pareto [24].) Further,
the Pareto index μ usually fluctuates around 1 for firm sizes and varies around 2 for personal
income [4]. A curious fact is that in addition to the difference between the central values 1
and 2, the range of variation for the latter is often wider than that of the former.

The growth rate R is defined as R = x2/x1, where x1 is the first year’s log firm size and
x2 the next year’s. We can observe that the pdf for different bin (n) of x1 often overlap with
each other, which is Gibrat’s law. This law is expressed in terms of the conditional probability
Q(R | x1) of the growth rate for fixed x1 as

Q(R | x1) = Q(R). (A.3)

In the following, we discuss the relationship between these two laws.

Relations between the Two Laws

All the data mentioned above satisfy the law of detailed balance to a certain degree. In terms
of the simultaneous pdf P12(x1, x2), this law is written as follows:

P12(x1, x2) = P12(x2, x1). (A.4)

The accuracy of (A.4) can be checked with the two-dimensional Kolmogorov-Smirnov test.
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The following can be proven under the law of detailed balance [2].

(1) If Gibrat’s law holds, Pareto’s law is satisfied.

(2) Under the same condition as the above, the “Reflection law,”

Q(R) = R−μ−2Q
(
R−1

)
, (A.5)

is satisfied.

The proof goes as follows: we denote the joint pdf of x1 and the growth rate R = x2/x1

is denoted by P1R(x1, R). Since P12(x1, x2)dx1dx2 = P1R(x1, R)dx1dR under the change of
variables from (x1, x2) to (x1, R), these two pdf’s are related to each other as follows:

P1R

(
x1,

x2

x1

)
= x1P12(x1, x2). (A.6)

We define conditional probability Q(R | x1) as follows:

P1R(x1, R) = P1(x1)Q(R | x1) (A.7)

= PR(R)S(x1 | R), (A.8)

Both P1(x1) and PR(R) are marginal

P1(x1) =
∫∞

0
P1R(x1, R)dR

(
=
∫∞

0
P12(x1, x2)dx2

)
, (A.9)

PR(R) =
∫∞

0
P1R(x1, R)dx1, (A.10)

The empirical facts corresponding to this are observed in Fujiwara et al. [4]. They can
be described in terms of these pdf’s as follows.

(A) Detailed Balance

The joint pdf P12(x1, x2) is a symmetric function

P12(x1, x2) = P12(x2, x1). (A.11)

(B) Pareto’s Law

The pdf P1(x) obeys power law for large x

P1(x) ∝ x−μ−1, (A.12)

for x → ∞with μ > 0.
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(C) Gibrat’s Law

The conditional probability Q(R | x) is independent of x

Q(R | x) = Q(R). (A.13)

Let us first rewrite the detailed balance condition (A) in terms of P1R(x1, R)

P1R(x1, R) = x1P12(x1, x2)

= x1P12(x2, x1)

=
x1

x2
x2P12(x2, x1)

= R−1P1R

(
x2, R

−1
)
,

(A.14)

where (A.11)was used in the second line and (A.6)was used in the first and the third line. The
above relation may be rewritten as follows by the use of the conditional probabilityQ(R | x1)
in (A.7):

Q
(
R−1 | x2

)
Q(R | x1)

= R
P1(x1)
P1(x2)

. (A.15)

In passing, it should be noted that (A.14) leads to the following:

PR(R) =
∫∞

0
P1R(x1, R)dx1

=
∫∞

0
R−1P1R

(
x2, R

−1
)
dx1

=
∫∞

0
R−2P1R

(
x2, R

−1
)
dx2

= R−2PR

(
R−1

)
,

(A.16)

where (A.14) was used in the second line and the third line is merely a change of integration
variable. This relation between the marginal growth-rate pdf PR(R) for positive growth (R >
1) and negative growth (R < 1) leads to the following relation, as it should:

∫∞

1
PR(R)dR =

∫1

0
PR(R)dR. (A.17)
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Let us prove that the properties (A) and (C) lead to (B). By substituting Gibrat’s law
(A.13) in (A.15), we find the following:

P1(x1)
P1(x2)

=
1
R

Q
(
R−1)

Q(R)
. (A.18)

This relation can be satisfied only by a power-law function (A.12).

Proof. Let us rewrite (A.18) as follows:

P1(x) = G(R)P1(Rx), (A.19)

where x denotes x1, and G(R) denotes the right-hand side of (A.18); that is,

G(R) ≡ 1
R

Q
(
R−1)

Q(R)
. (A.20)

We expand this equation around R = 1 by denoting R = 1 + ε with ε � 1 as

P1(x) = G(1 + ε)P1((1 + ε)x)

=
(
1 +G′(1)ε + · · · )(P1(x) + P ′

1(x)εx + · · · )

= P1(x) + ε
(
G′(1)P1(x) + xP ′

1(x)
)
+O

(
ε2
)
,

(A.21)

where we used the fact that G(1) = 1. We also assumed that the derivatives G′(1) and P ′
1(x)

exists in the above, whose validity should be checked against the results. From the above, we
find that the following should be satisfied:

G′(1)P1(x) + xP ′
1(x) = 0, (A.22)

whose solution is given by

P1(x) = Cx−G′(1). (A.23)

This is the desired result, Pareto’s law, and is consistent with the assumption made earlier
that P ′

1(x) exists. By substituting the result (A.23) in (A.20) and (A.18), we find that

G(R) = RG′(1), (A.24)

which is consistent with the assumption that G′(1) exists.

From (A.20) and (A.24), we find the following relation:

Q(R) = R−μ−2Q
(
R−1

)
, (A.25)
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which should be in contrast to (A.16). If Gibrat’s law (A.13) holds for all x ∈ [0,∞], then
PR(R) = Q(R) from (A.10). If so, (A.25) contradicts (A.16), since μ > 0. Besides, Pareto’s law
we derived from Gibrat’s law is not normalizable if it holds for any x. Therefore, Gibrat’s law
should hold only for a limited range of x.

The result (A.25) shows that the function Q(R) is continuous at R = 1, as easily seen
by substituting R = 1 + ε with ε > 0 on both hand side and taking the limit ε → +0.

B. The HJB Equation

In the general case of (2.1)–(2.3)with endogenous credit cost and a finance premium as stated
in (3.1), we have the following HJB equation:

H(k, B∗(k)) = max
j

[
f
(
k, j

)
+
dB∗(k)
dk

(
j − σk

)]
. (B.1)

Note that in the limit case, where there is no borrowing and N = k, and thus the
constant discount rate θ holds, we obtain the HJB equation

V (k) = max
j

[
f
(
k, j

)
+
dV (k)
dk

(
j − σk

)]
. (B.2)

In this case, V (k) is the creditworthiness; in other words, the maximum amount the
firm can borrow is equal to the asset price V (k).

The HJB-equation (B.1) can be written as

B∗(k) = max
j

H−1
[
f
(
k, j

)
+
dB∗(k)
dk

(
j − σk

)]
, (B.3)

which again is a standard dynamic form of the HJB equation. Next, for the purpose of an
example, let us specify H(k, B) = θBκ where, with κ > 1, the interest payment is solely
convex in B. We then have

B∗(k) = max
j

[
f
(
k, j

)
+
dB∗

dk

(
j − σk

)]1/κ
θ−1/κ. (B.4)

The equilibria of the HJB equation (B.4), with κ > 1, are shown below. The algorithm
to study the more general problem of (B.3) or (B.4) is summarized in Grüne et al. [18]. Note
that if κ = 1, we have a standard form of the HJB equation.

If the HJB equation (B.4) holds withH(B) = θBκ, the finance premium depends on the
debt of the firm. This extension is presented in Grüne et al. [18]. For H(B) = θBκ for κ ≥ 1, it
leads to the following equation for candidates of equilibrium steady states:

1 + 2jk−γ =
αkα−1 − σ − σ2(2 − γ

)
k1−γ

θκ
(
kα − σk − σ2k2−γ)(κ−1)/κ . (B.5)
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Here, again, for κ = 1, the steady state candidates, leaving aside consumption, are
the same as for a standard HJB equation, that is, when H(k, B(k)) = θB, and thus in (B.3)
and (B.4), κ = 1 holds. For details of the solution methods for the problem of (2.1)–(2.3), see
Grüne et al. [18], and for further application of the algorithm, see Grüne and Semmler [21].
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[24] V. Pareto, Le Cours d’Économie Politique, Macmillan, London, UK, 1897.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


