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We focus on some convex separable optimization problems, considered by the author in previous papers, for which problems,
necessary and sufficient conditions or sufficient conditions have been proved, and convergent algorithms of polynomial
computational complexity have been proposed for solving these problems.The concepts ofwell-posedness of optimization problems
in the sense of Tychonov, Hadamard, and in a generalized sense, as well as calmness in the sense of Clarke, are discussed. It is shown
that the convex separable optimization problems under consideration are calm in the sense of Clarke. The concept of stability of
the set of saddle points of the Lagrangian in the sense of Gol’shtein is also discussed, and it is shown that this set is not stable
for the “classical” Lagrangian. However, it turns out that despite this instability, due to the specificity of the approach, suggested
by the author for solving problems under consideration, it is not necessary to use modified Lagrangians but only the “classical”
Lagrangians. Also, a primal-dual analysis for problems under consideration in view of methods for solving them is presented.

1. Introduction

1.1. Statement of Problems under Consideration: Preliminary
Results. In this paper, we study well-posedness and present
primal-dual analysis of some convex separable optimization
problems, considered by the author in previous papers. For
the sake of convenience, in this subsection we recall main
results of earlier papers that are used in this study.

In paper [1], the following convex separable optimization
problem was considered:

(𝐶)

min
{

{

{

𝑐 (𝑥) = ∑
𝑗∈𝐽

𝑐𝑗 (x𝑗)
}

}

}

, (1)

subject to ∑
𝑗∈𝐽

𝑑𝑗 (𝑥𝑗) ≤ 𝛼, (2)

𝑎𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑗, 𝑗 ∈ 𝐽, (3)

where 𝑐𝑗(𝑥𝑗) are twice differentiable strictly convex functions,
and 𝑑𝑗(𝑥𝑗) are twice differentiable convex functions, defined

on the open convex sets𝑋𝑗 in R, 𝑗 ∈ 𝐽, respectively, 𝑑𝑗(𝑥𝑗) >
0 for every 𝑗 ∈ 𝐽, x = (𝑥𝑗)𝑗∈𝐽, and 𝐽 ≡ {1, . . . , 𝑛}.

Assumptions for problem (𝐶) are as follows.

(I.1) 𝑎𝑗 ≤ 𝑏𝑗 for all 𝑗 ∈ 𝐽. If 𝑎𝑘 = 𝑏𝑘 for some 𝑘 ∈ 𝐽, then the
value 𝑥𝑘 := 𝑎𝑘 = 𝑏𝑘 is determined a priori.

(II.1) ∑𝑗∈𝐽 𝑑𝑗(𝑎𝑗) ≤ 𝛼. Otherwise, the constraints (2) and
(3) are inconsistent and the feasible set 𝑋, defined by
(2)-(3), is empty. In addition to this assumption, we
suppose that 𝛼 ≤ ∑𝑗∈𝐽 𝑑𝑗(𝑏𝑗) in some cases which are
specified below.

(III.1) (Slater’s constraint qualification) There exists a point
x = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋 such that ∑𝑗∈𝐽 𝑑𝑗(𝑥𝑗) < 𝛼.

Under these assumptions, the following characterization
theorem (necessary and sufficient condition) for problem (𝐶)

was proved in [1].
Denote by ℎ≤𝑗 , ℎ

=
𝑗 , ℎ
≥
𝑗 the values of 𝑥𝑗, for which 𝑐


𝑗(𝑥𝑗) =

0 for the three problems under consideration in this paper,
respectively.

Theorem 1 (characterization of the optimal solution to prob-
lem (𝐶)). Under the above assumptions, a feasible solution
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x∗ = (𝑥∗𝑗 )𝑗∈𝐽 ∈ 𝑋 is an optimal solution to problem (𝐶) if
and only if there exists a 𝜆 ∈ R1+ such that

𝑥
∗
𝑗 = 𝑎𝑗, 𝑗 ∈ 𝐽

𝜆
𝑎

def
=
{

{

{

𝑗 ∈ 𝐽 : 𝜆 ≥ −
𝑐𝑗 (𝑎𝑗)

𝑑𝑗 (𝑎𝑗)

}

}

}

(4)

𝑥
∗
𝑗 = 𝑏𝑗, 𝑗 ∈ 𝐽

𝜆
𝑏

def
=
{

{

{

𝑗 ∈ 𝐽 : 𝜆 ≤ −
𝑐

𝑗 (𝑏𝑗)

𝑑𝑗 (𝑏𝑗)

}

}

}

(5)

𝑥
∗
𝑗 : 𝜆𝑑


𝑗 (𝑥
∗
𝑗 ) = −𝑐


𝑗 (𝑥
∗
𝑗 ) ,

𝑗 ∈ 𝐽
𝜆 def
=
{

{

{

𝑗 ∈ 𝐽 : −
𝑐

𝑗 (𝑏𝑗)

𝑑𝑗 (𝑏𝑗)
< 𝜆 < −

𝑐𝑗 (𝑎𝑗)

𝑑𝑗 (𝑎𝑗)

}

}

}

.

(6)

The following polynomial algorithm for solving problem
(𝐶)with strictly convex differentiable functions 𝑐𝑗(𝑥𝑗), 𝑗 ∈ 𝐽,
was suggested in [1].

Algorithm 2.

(0) Initialization: 𝐽 := {1, . . . , 𝑛}, 𝑘 := 0, 𝛼(0) := 𝛼, 𝑛(0) :=
𝑛, 𝐽(0) := 𝐽, 𝐽𝜆𝑎 := 0, 𝐽

𝜆
𝑏 := 0, initialize ℎ

≤
𝑗 , 𝑗 ∈ 𝐽.

If ∑𝑗∈𝐽 𝑑𝑗(𝑎𝑗) ≤ 𝛼 go to Step (1), else go to Step (9).

(1) Construct the sets 𝐽0𝑎 , 𝐽
0
𝑏 , 𝐽
0 by using (4), (5), (6) with

𝜆 = 0.
Calculate

𝛿 (0) := ∑

𝑗∈𝐽0
𝑎

𝑑𝑗 (𝑎𝑗) + ∑

𝑗∈𝐽0
𝑏

𝑑𝑗 (𝑏𝑗)

+ ∑

𝑗∈𝐽0

𝑑𝑗 (ℎ
≤
𝑗 ) − 𝛼.

(7)

If 𝛿(0) ≤ 0 then 𝜆 := 0, go to Step (8)
else if 𝛿(0) > 0, then

if 𝛼 ≤ ∑𝑗∈𝐽 𝑑𝑗(𝑏𝑗) go to Step (2)
else if 𝛼 > ∑𝑗∈𝐽 𝑑𝑗(𝑏𝑗) go to Step (9)
(there does not exist 𝜆∗ > 0 such that 𝛿(𝜆∗) =
0).

(2) 𝐽𝜆(𝑘) := 𝐽
(𝑘). Calculate 𝜆

(𝑘) by using the explicit
expression of 𝜆, calculated from the equality ∑𝑗∈𝐽𝜆(𝑘)
𝑑𝑗(𝑥𝑗) = 𝛼

(𝑘), where 𝑥𝑗, 𝑗 ∈ 𝐽
𝜆(𝑘), are given by (6). Go

to Step (3).
(3) Construct the sets 𝐽𝜆(𝑘)𝑎 , 𝐽𝜆(𝑘)

𝑏
, 𝐽𝜆(𝑘) through (4), (5),

(6) (with 𝑗 ∈ 𝐽(𝑘) instead of 𝑗 ∈ 𝐽) and find their
cardinal numbers |𝐽𝜆(𝑘)𝑎 |, |𝐽𝜆(𝑘)

𝑏
|, |𝐽𝜆(𝑘)|, respectively.

Go to Step (4).
(4) Calculate

𝛿 (𝜆
(𝑘)
) := ∑

𝑗∈𝐽
𝜆(𝑘)

𝑎

𝑑𝑗 (𝑎𝑗) + ∑

𝑗∈𝐽
𝜆(𝑘)

𝑏

𝑑𝑗 (𝑏𝑗)

+ ∑

𝑗∈𝐽𝜆(𝑘)

𝑑𝑗 (𝑥
∗
𝑗 ) − 𝛼

(𝑘)
,

(8)

where 𝑥∗𝑗 , 𝑗 ∈ 𝐽𝜆(𝑘), are calculated from (6) with 𝜆 =

𝜆(𝑘). Go to Step (5).
(5) If 𝛿(𝜆(𝑘)) = 0 or 𝐽𝜆(𝑘) = 0 then 𝜆 := 𝜆(𝑘), 𝐽𝜆𝑎 := 𝐽𝜆𝑎 ∪

𝐽𝜆(𝑘)𝑎 , 𝐽𝜆𝑏 :=𝐽
𝜆
𝑏 ∪ 𝐽
𝜆(𝑘)

𝑏
, 𝐽𝜆 := 𝐽𝜆(𝑘), go to Step (8)

else if 𝛿(𝜆(𝑘)) > 0 go to Step (6)
else if 𝛿(𝜆(𝑘)) < 0 go to Step (7).

(6) 𝑥∗𝑗 := 𝑎𝑗 for 𝑗 ∈ 𝐽𝜆(𝑘)𝑎 , 𝛼(𝑘+1) := 𝛼(𝑘) − ∑
𝑗∈𝐽
𝜆(𝑘)

𝑎

𝑑𝑗(𝑎𝑗), 𝐽
(𝑘+1) := 𝐽(𝑘) \ 𝐽𝜆(𝑘)𝑎 ,

𝑛(𝑘+1) := 𝑛(𝑘) − |𝐽𝜆(𝑘)𝑎 |, 𝐽𝜆𝑎 := 𝐽𝜆𝑎 ∪ 𝐽
𝜆(𝑘)
𝑎 , 𝑘 := 𝑘 + 1. Go

to Step (2).
(7) 𝑥∗𝑗 := 𝑏𝑗 for 𝑗 ∈ 𝐽

𝜆(𝑘)

𝑏
, 𝛼(𝑘+1) := 𝛼

(𝑘)
− ∑
𝑗∈𝐽
𝜆(𝑘)

𝑏

𝑑𝑗(𝑏𝑗), 𝐽
(𝑘+1) := 𝐽(𝑘) \ 𝐽

𝜆(𝑘)

𝑏
,

𝑛(𝑘+1) := 𝑛(𝑘) − |𝐽
𝜆(𝑘)

𝑏
|, 𝐽𝜆𝑏 := 𝐽𝜆𝑏 ∪ 𝐽

𝜆(𝑘)

𝑏
, 𝑘 := 𝑘 + 1. Go

to Step (2).
(8) 𝑥∗𝑗 := 𝑎𝑗 for 𝑗 ∈ 𝐽

𝜆
𝑎 ; 𝑥
∗
𝑗 := 𝑏𝑗 for 𝑗 ∈ 𝐽

𝜆
𝑏 ; assign 𝑥

∗
𝑗 the

value calculated from (6) for 𝑗 ∈ 𝐽𝜆. Go to Step (10).
(9) Problem (𝐶) has no optimal solution because 𝑋 = 0

or there does not exist 𝜆 > 0 satisfyingTheorem 1.
(10) End.

It is proved in [1] that this algorithm is convergent.

Theorem 3 (convergence of Algorithm 2). Let {𝜆(𝑘)} be the
sequence generated by Algorithm 2. Then,

(i) if 𝛿(𝜆(𝑘)) > 0, then 𝜆(𝑘) ≤ 𝜆(𝑘+1),
(ii) if 𝛿(𝜆(𝑘)) < 0, then 𝜆(𝑘) ≥ 𝜆(𝑘+1).

In paper [2], the following two convex separable opti-
mization problems were considered:

(𝐶
=)

min
{

{

{

𝑐 (x) = ∑
𝑗∈𝐽

𝑐𝑗 (𝑥𝑗)
}

}

}

(9)

subject to ∑
𝑗∈𝐽

𝑑𝑗𝑥𝑗 = 𝛼, (10)

𝑎𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑗, 𝑗 ∈ 𝐽, (11)

and
(𝐶≥)

min
{

{

{

𝑐 (x) = ∑
𝑗∈𝐽

𝑐𝑗 (𝑥𝑗)
}

}

}

(12)

subject to ∑
𝑗∈𝐽

𝑑𝑗𝑥𝑗 ≥ 𝛼 (13)

𝑎𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑗, 𝑗 ∈ 𝐽, (14)

where for both problems, 𝑐𝑗(𝑥𝑗) are twice differentiable
convex functions, defined on the open convex sets 𝑋𝑗 in R,



Advances in Operations Research 3

𝑗 ∈ 𝐽, respectively, 𝑑𝑗 > 0, for every 𝑗 ∈ 𝐽, x = (𝑥𝑗)𝑗∈𝐽, and
𝐽 = {1, . . . , 𝑛}.

Assumptions for problem (𝐶
=) are as follows.

(I.2) 𝑎𝑗 ≤ 𝑏𝑗 for each 𝑗 ∈ 𝐽.

(II.2) ∑𝑗∈𝐽 𝑑𝑗𝑎𝑗 ≤ 𝛼 ≤ ∑𝑗∈𝐽 𝑑𝑗𝑏𝑗. Otherwise the
constraints (10), (11) are inconsistent and 𝑋𝐿 = 0,
where𝑋𝐿 is defined by (10)-(11).

Under these assumptions, the following characterization
theorem (necessary and sufficient condition) for problem
(𝐶
=) is proved in [2].

Theorem 4 (characterization of the optimal solution to
problem (𝐶=)). A feasible solution x∗ = (𝑥∗𝑗 )𝑗∈𝐽 ∈ 𝑋𝐿 is an
optimal solution to problem (𝐶=) if and only if there exists a
𝜆 ∈ R1 such that

𝑥
∗
𝑗 = 𝑎𝑗, 𝑗 ∈ 𝐽

𝜆
𝑎

def
=
{

{

{

𝑗 ∈ 𝐽 : 𝜆 ≥ −
𝑐

𝑗 (𝑎𝑗)

𝑑𝑗

}

}

}

, (15)

𝑥
∗
𝑗 = 𝑏𝑗, 𝑗 ∈ 𝐽

𝜆
𝑏

def
=
{

{

{

𝑗 ∈ 𝐽 : 𝜆 ≤ −
𝑐

𝑗 (𝑏𝑗)

𝑑𝑗

}

}

}

, (16)

𝑥
∗
𝑗 : 𝜆𝑑𝑗 = −𝑐


𝑗 (𝑥
∗
𝑗 ) ,

𝑗 ∈ 𝐽
𝜆 def
=
{

{

{

𝑗 ∈ 𝐽 : −
𝑐

𝑗 (𝑏𝑗)

𝑑𝑗
< 𝜆 < −

𝑐𝑗 (𝑎𝑗)

𝑑𝑗

}

}

}

.

(17)

Assumptions for problem (𝐶
≥) are as follows.

(I.3) 𝑎𝑗 ≤ 𝑏𝑗 for all 𝑗 ∈ 𝐽.

(II.3) 𝛼 ≤ ∑𝑗∈𝐽 𝑑𝑗𝑏𝑗. Otherwise the constraints (13), (14)
are inconsistent and 𝑋≥ = 0, where 𝑋≥ is defined by
(13)-(14).

Under these assumptions, the following theorem (suffi-
cient condition) for problem (𝐶

≥) is proved in [2].

Theorem 5 (sufficient condition for optimal solution to
problem (𝐶≥)). Let 𝑥∗𝑗 , 𝑗 ∈ 𝐽 be components of the optimal
solution to problem 𝐶=. Then:

(i) If 𝜆 = −𝑐𝑗(𝑥
∗
𝑗 )/𝑑𝑗 ≤ 0, then 𝑥∗𝑗 , 𝑗 ∈ 𝐽, solve problem

(𝐶
≥
) as well.

(ii) If 𝜆 = −𝑐𝑗(𝑥
∗
𝑗 )/𝑑𝑗 > 0, then 𝑥≥𝑗 , 𝑗 ∈ 𝐽 defined as

follows:

𝑥≥𝑗 = 𝑏𝑗, 𝑗 ∈ 𝐽
𝜆
𝑏 ,

𝑥≥𝑗 = min{𝑏𝑗, ℎ
≥
𝑗 }, 𝑗 ∈ 𝐽

𝜆,

𝑥≥𝑗 = min{𝑏𝑗, ℎ
≥
𝑗 } for all 𝑗 ∈ 𝐽𝜆𝑎 such that 𝑐


𝑗(𝑎𝑗) < 0,

𝑥≥𝑗 = 𝑎𝑗 for all 𝑗 ∈ 𝐽
𝜆
𝑎 , such that 𝑐


𝑗(𝑎𝑗) ≥ 0

solve problem (𝐶≥).

The following polynomial algorithm for solving problem
(𝐶
=) with strictly convex differentiable functions 𝑐𝑗(𝑥𝑗) was

suggested in [2].
Algorithm 6.

(1) Initialization: 𝐽 := {1, . . . , 𝑛}, 𝑘 := 0, 𝛼(0) := 𝛼, 𝑛(0) :=
𝑛, 𝐽(0) := 𝐽, 𝐽𝜆𝑎 := 0, 𝐽

𝜆
𝑏 := 0, initialize ℎ

=
𝑗 , 𝑗 ∈ 𝐽.

If ∑𝑗∈𝐽 𝑑𝑗𝑎𝑗 ≤ 𝛼 ≤ ∑𝑗∈𝐽 𝑑𝑗𝑏𝑗 go to Step (2), else go
to Step (9).

(2) 𝐽𝜆(𝑘) := 𝐽(𝑘). Calculate 𝜆(𝑘) by using the explicit
expression of 𝜆, calculated from the equality con-
straint ∑𝑗∈𝐽𝜆(𝑘) 𝑑𝑗𝑥𝑗 = 𝛼(𝑘), where 𝑥𝑗, 𝑗 ∈ 𝐽𝜆(𝑘), are
given by (17). Go to Step (3).

(3) Construct the sets 𝐽𝜆(𝑘)𝑎 , 𝐽𝜆(𝑘)
𝑏

, 𝐽𝜆(𝑘) through (15), (16),
(17) (with 𝐽(𝑘) instead of 𝐽) and find their cardinalities
|𝐽𝜆(𝑘)𝑎 |, |𝐽𝜆(𝑘)

𝑏
|, |𝐽𝜆(𝑘)|, respectively. Go to Step (4).

(4) Calculate

𝛿 (𝜆
(𝑘)
) := ∑

𝑗∈𝐽
𝜆(𝑘)

𝑎

𝑑𝑗𝑎𝑗 + ∑

𝑗∈𝐽
𝜆(𝑘)

𝑏

𝑑𝑗𝑏𝑗

+ ∑

𝑗∈𝐽𝜆(𝑘)

𝑑𝑗𝑥
∗
𝑗 − 𝛼
(𝑘)
,

(18)

where 𝑥∗𝑗 , 𝑗 ∈ 𝐽
𝜆(𝑘), are calculated from (17) with 𝜆 =

𝜆(𝑘). Go to Step (5).
(5) If 𝛿(𝜆(𝑘)) = 0 or 𝐽𝜆(𝑘) = 0 then 𝜆 := 𝜆(𝑘), 𝐽𝜆𝑎 := 𝐽𝜆𝑎 ∪

𝐽𝜆(𝑘)𝑎 , 𝐽𝜆𝑏 := 𝐽
𝜆
𝑏 ∪ 𝐽
𝜆(𝑘)

𝑏
, 𝐽𝜆 := 𝐽𝜆(𝑘), go to Step (8)

else if 𝛿(𝜆(𝑘)) > 0 go to Step (6)
else if 𝛿(𝜆(𝑘)) < 0 go to Step (7).

(6) 𝑥∗𝑗 := 𝑎𝑗 for 𝑗 ∈ 𝐽𝜆(𝑘)𝑎 , 𝛼(𝑘+1) := 𝛼(𝑘) − ∑
𝑗∈𝐽
𝜆(𝑘)

𝑎

𝑑𝑗𝑎𝑗, 𝐽
(𝑘+1) := 𝐽(𝑘) \ 𝐽𝜆(𝑘)𝑎 ,

𝑛(𝑘+1) := 𝑛(𝑘) − |𝐽𝜆(𝑘)𝑎 |, 𝐽𝜆𝑎 := 𝐽𝜆𝑎 ∪ 𝐽
𝜆(𝑘)
𝑎 , 𝑘 := 𝑘 + 1. Go

to Step (2).
(7) 𝑥∗𝑗 := 𝑏𝑗 for 𝑗 ∈ 𝐽

𝜆(𝑘)

𝑏
, 𝛼(𝑘+1) := 𝛼(𝑘) − ∑

𝑗∈𝐽
𝜆(𝑘)

𝑏

𝑑𝑗𝑏𝑗, 𝐽
(𝑘+1) := 𝐽(𝑘) \ 𝐽

𝜆(𝑘)

𝑏
,

𝑛(𝑘+1) := 𝑛(𝑘) − |𝐽
𝜆(𝑘)

𝑏
|, 𝐽𝜆𝑏 := 𝐽𝜆𝑏 ∪ 𝐽

𝜆(𝑘)

𝑏
, 𝑘 := 𝑘 + 1. Go

to Step (2).
(8) 𝑥∗𝑗 := 𝑎𝑗 for 𝑗 ∈ 𝐽

𝜆
𝑎 ; 𝑥
∗
𝑗 := 𝑏𝑗 for 𝑗 ∈ 𝐽

𝜆
𝑏 ; assign 𝑥

∗
𝑗 the

value, calculated from (17) for 𝑗 ∈ 𝐽𝜆. Go to Step (10).
(9) The problem has no optimal solution because𝑋𝐿 = 0.
(10) End.

It is proved in [2] that this algorithm is convergent.

Theorem 7 (convergence of Algorithm 6). Let {𝜆(𝑘)} be the
sequence generated by Algorithm 6. Then,

(i) if 𝛿(𝜆(𝑘)) > 0, then 𝜆(𝑘) ≤ 𝜆(𝑘+1),
(ii) if 𝛿(𝜆(𝑘)) < 0, then 𝜆(𝑘) ≥ 𝜆(𝑘+1).
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The following algorithm for solving problem (𝐶≥) with
strictly convex differentiable functions 𝑐𝑗(𝑥𝑗) is suggested in
[2].

Algorithm 8.

(1) Initialization: 𝐽 := {1, . . . , 𝑛}, 𝑘 := 0, 𝛼(0) := 𝛼, 𝑛(0) :=
𝑛, 𝐽(0) := 𝐽, 𝐽𝜆𝑎 := 0, 𝐽

𝜆
𝑏 := 0, initialize ℎ≥𝑗 , 𝑗 ∈ 𝐽.

If ∑𝑗∈𝐽 𝑑𝑗𝑎𝑗 ≤ 𝛼 ≤ ∑𝑗∈𝐽 𝑑𝑗𝑏𝑗 then go to Step (2), else
go to Step (9).
Steps (2)–(7) are the same as Steps (2)–(7) of Algo-
rithm 6, respectively.

(8) If 𝜆 ≤ 0 then 𝑥≥𝑗 := 𝑎𝑗 for 𝑗 ∈ 𝐽
𝜆
𝑎 ; 𝑥
≥
𝑗 := 𝑏𝑗 for 𝑗 ∈ 𝐽

𝜆
𝑏 ;

assign 𝑥≥𝑗 the value, calculated through (17) for
𝑗 ∈ 𝐽𝜆, go to Step (10)

else if 𝜆 > 0 then

𝑥≥𝑗 := 𝑏𝑗 for 𝑗 ∈ 𝐽
𝜆
𝑏 ,

𝑥≥𝑗 := min{𝑏𝑗, ℎ
≥
𝑗 } for 𝑗 ∈ 𝐽

𝜆,

if 𝑗 ∈ 𝐽𝜆𝑎 and 𝑐

𝑗(𝑎𝑗) < 0 then 𝑥

≥
𝑗 := min{𝑏𝑗, ℎ

≥
𝑗 }

else if 𝑗 ∈ 𝐽𝜆𝑎 and 𝑐

𝑗(𝑎𝑗) ≥ 0 then 𝑥

≥
𝑗 := 𝑎𝑗,

go to Step (10).

(9) Problem (𝐶≥)has no optimal solution because𝑋≥ = 0
or there do not exist 𝑥∗𝑗 ∈ [𝑎𝑗, 𝑏𝑗], 𝑗 ∈ 𝐽, such that
∑𝑗∈𝐽 𝑑𝑗𝑥

∗
𝑗 = 𝛼.

(10) End.

Since Algorithm 8 is based on Theorem 5 and Algo-
rithm 6, and since the “iterative” Steps (2)–(7) of Algorithms
6 and 8 are the same, then the “convergence” of Algorithm 8
follows fromTheorem 7 as well.

1.2. Organization of the Paper. The rest of the paper is
organized as follows. In Section 2, the concepts of well-
posedness of optimization problems in the sense of Tychonov,
Hadamard, and in a generalized sense, as well as calmness in
the sense of Clarke, are discussed. It is shown in Section 2.3
that the convex separable optimization problems under
consideration are calm in the sense of Clarke. In Section 3,
the concept of stability of the set of saddle points of the
Lagrangian in the sense of Gol’shtein is also discussed and it is
shown that this set is not stable for the “classical” Lagrangian.
However, it is explained that despite this instability, due to
the specificity of the approach, suggested by the author in
previous papers for solving problems under consideration,
it is not necessary to use modified Lagrangians but only the
“classical” Lagrangians. In Section 4, primal-dual analysis of
the problems under consideration in view of methods for
solving them is presented. Main results of well-posedness
and primal-dual analysis are included in Section 2.3 and in
Sections 3 and 4.

2. Well-Posedness of Optimization Problems

Questions of existence of solutions and how they depend
on problem’s parameters are usually important for many
problems of mathematics, not only in optimization.The term
well-posedness refers to the existence and uniqueness of a
solution and its continuous behavior with respect to data
perturbations, which is referred to as stability. In general, a
problem is said to be stable if

𝜀 (𝛿) → 0 when 𝛿 → 0, (19)

where 𝛿 is a given tolerance of the problem’s data, 𝜀(𝛿) is
the accuracy with which the solution can be determined, and
𝜀(𝛿) is a continuous function of 𝛿. Besides these conditions,
accompanying robustness properties in the convergence of
sequence of approximate solutions are also required.

Problemswhich are not well-posed are called ill-posed, or,
sometimes, improperly posed.

2.1. Tychonov and Hadamard Well-Posedness: Well-Posedness
in the Generalized Sense. Recall that 𝑓 is a proper function if
𝑓(x) < ∞ for at least one x ∈ R𝑛 and 𝑓(x) > −∞ for all
x ∈ R𝑛, or, in other words, if

dom𝑓
def
= {x ∈ R

𝑛
: 𝑓 (x) < ∞} (20)

is a nonempty set on which 𝑓(x) > −∞, where dom𝑓 is the
effective domain of 𝑓. Otherwise, 𝑓 is improper.

Definition 9. Let 𝑋 be a space with either a topology or a
convergence structure associated and let 𝑓 : 𝑋 → R ≡ R ∪

{+∞} be a proper extended real-valued function. Consider
the problem

min 𝑓 (x)

subject to x ∈ 𝑋.
(21)

The problem (21) is Tychonov well-posed if and only if 𝑓 has
a unique global minimum point on 𝑋 towards which every
minimizing sequence converges.

An equivalent definition is as follows: problem (21) is
Tychonov well-posed if and only if there exists a unique x0 ∈ 𝑋
such that 𝑓(x0) ≤ 𝑓(x) for all x ∈ 𝑋 and

𝑓 (x𝑛) → 𝑓 (x0) implies x𝑛 → x0. (22)

There are two ways to cope with ill-posedness.
The first one is to change the statement of the problem.
The second one is the so-called Tychonov regulariza-

tion. A parametric functional is constructed such that if
it approaches 0, the solution of the “regularized” problem
converges to the exact solution of the original problem.

Consider the problem

min
x∈𝑋⊂R𝑛

𝑓 (x) = 𝑓 (x∗) . (23)

Associate the following problem with (23):

min
x∈𝑋

[𝑓 (x) + 𝑛𝑘 (x)] = 𝑧𝑘 (x
∗
(𝑛𝑘 (x))) , (24)
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where 𝑛𝑘(x) is perturbation in the input data and x∗(𝑛𝑘(x)) is
an optimal solution to the perturbed problem.

Let

∫
R𝑛
𝑛
2
𝑘 (x) 𝑑x ≤ 𝑐

2
𝑘 < ∞. (25)

If
𝑧𝑘 (x
∗
(𝑛𝑘 (x))) − 𝑓 (x

∗
)
 → 0, (26)

when 𝑐𝑘 → 0, then problem (23) is stable with respect to
perturbation 𝑛𝑘(x).

A parametric function𝐹(x, Δ, 𝑓(x))with a parameterΔ is
called a regularizing function for problem (23) with respect to
perturbation 𝑛𝑘(x) if the following conditions are satisfied.

(1) 𝐹(x, Δ, 𝑓(x)) is defined for all x ∈ 𝑋 and Δ > 0.
(2) If x∗(𝑛𝑘(x), Δ) is an optimal solution to problem

min
x∈𝑋

𝐹 (x, Δ, 𝑧𝑘 (x))

= 𝐹 (x∗ (𝑛𝑘 (x) , Δ) , Δ, 𝑧𝑘 (x)) ,
(27)

then there exists a function Δ 𝑘 = Δ 𝑘(𝑐𝑘) such that

𝐹 (x∗ (𝑛𝑘 (x) , Δ 𝑘) , Δ 𝑘, 𝑧𝑘 (x)) → 𝑓 (x∗) , (28)

when 𝑐𝑘 → 0.
Following Tychonov, an ill-posed problem is said to be

regularizable if there exists at least one regularizing function
for it.

The concept of Tychonovwell-posedness can be extended
to problems without the uniqueness of the optimal solution.

Definition 10. Let 𝑋 be a space with either a topology or
a convergence structure associated, and 𝑓 : 𝑋 → R ≡

R ∪ {+∞} be a proper real-valued function. Problem (21) is
said to be well-posed in the generalized sense if and only if
arg minx∈𝑋𝑓(x) ̸= 0 and every sequence {u𝑛} ⊂ 𝑋 such that
𝑓(u𝑛) → inf{𝑓(x) : x ∈ 𝑋} has some subsequence {k𝑛} → u
with u ∈ argminx∈𝑋𝑓(x).

Problem (21) is Tychonov well-posed if and only if it is
well-posed in the generalized sense and argminx∈𝑋𝑓(x) is a
singleton.

Hadamard well-posedness is primarily connected with
problems of mathematical physics (boundary value problems
for partial differential equations) and can be extended to
mathematical programming problems.Wedonot discuss this
topic here.

As recent studies in the calculus of variations, opti-
mal control, and numerical methods of optimization show,
uniqueness and continuity are often too restrictive to be
adopted as the standards of well-posedness. It turns out that
practical concepts concerningwell-posedness are some forms
of semicontinuity in the problem’s data and solution map-
ping, along with potential multivaluedness in this mapping.

2.2. Calmness in the Sense of Clarke. Let𝑋 be a Banach space.

Definition 11. Let 𝑌 be a subset of 𝑋. A function 𝑓 : 𝑌 →

R is said to satisfy a Lipschitz condition on 𝑌 provided that,

for some nonnegative scalar𝐾, the following inequality holds
true:


𝑓 (y) − 𝑓 (y) ≤ 𝐾


y − y , (29)

for all points y, y ∈ 𝑌; this is also referred to as a Lipschitz
condition of rank 𝐾. We say that 𝑓 is Lipschitz (of rank 𝐾)
near x if for some 𝜀 > 0, 𝑓 satisfies a Lipschitz condition (of
rank 𝐾) on the set x + 𝜀𝐵 (i.e., within an 𝜀-neighborhood of
x), where 𝐵 is the open unit ball around 0.

A function 𝑓, which satisfies a Lipschitz condition,
sometimes is said to be Lipschitz continuous.

Consider the following general mathematical program-
ming problem:

(𝑃)

min 𝑓 (x)

subject to 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑡,

ℎ𝑗 (x) = 0, 𝑗 = 1, . . . , 𝑚,

x ∈ 𝐶, 𝐶 ⊂ 𝑋,

(30)

where 𝑔𝑖, ℎ𝑗 are real-valued functions on𝑋.
Let g and h be the functions g = [𝑔1, . . . , 𝑔𝑡] : 𝑋 →

R𝑡, h = [ℎ1, . . . , ℎ𝑚] : 𝑋 → R𝑚.
Let (𝑃) be imbedded in a parametrized family 𝑃(p, q) of

mathematical programs, where p ∈ R𝑡, q ∈ R𝑚:
𝑃(p, q)

min 𝑓 (x)

subject to g (x) + p ≤ 0

h (x) + q = 0

x ∈ 𝐶.

(31)

Denote by 𝐴 the feasible region of problem 𝑃(p, q).

Definition 12 (Clarke [3]). The value function𝑉 : R𝑡 ×R𝑚 →

R ∪ {±∞} is defined via 𝑉(p, q) = inf{𝑃(p, q)} (i.e., the value
of the problem 𝑃(p, q)). If there are no feasible points for
𝑃(p, q), then the infimum is over the empty set and 𝑉(p, q)
is assigned the value +∞.

Definition 13 (Clarke [3]). Let x solve (𝑃). The problem (𝑃) is
calm at x provided that there exist positive 𝜀 and𝑀 such that
for all (p, q) ∈ 𝜀𝐵, for all x ∈ x + 𝜀𝐵 which are feasible for
𝑃(p, q), one has

𝑓 (x) − 𝑓 (x) + 𝑀‖(p, q)‖ ≥ 0, (32)

where 𝐵 is the open unit ball in 𝑋 and ‖ (p, q) ‖ is the
Euclidean norm of (p, q).

Let 𝑈 be an open convex subset of𝑋.

Theorem 14 (Roberts and Varberg [4], Clarke [3]; Lipschitz
condition from boundedness of a convex function). Let 𝑓 be
a convex function, bounded above on a neighborhood of some
point of 𝑈. Then, for any x in 𝑈, 𝑓 is Lipschitz near x.
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Recall that limit superior of a bounded sequence {𝑥𝑛} in
R, denoted lim sup{𝑥𝑛} or lim{𝑥𝑛}, equals the infimum of all
numbers 𝑞 ∈ R for which at most a finite number of elements
of {𝑥𝑛} (strictly) exceed 𝑞. Similarly, limit inferior of {𝑥𝑛} is
given by lim inf{𝑥𝑛} ≡ lim{𝑥𝑛} ≡ sup{𝑞 : at most a finite
number of elements of {𝑥𝑛} are (strictly) less than 𝑞}.

A bounded sequence always has a unique limit superior
and limit inferior.

Theorem 15 (Clarke [3], Calmness). Let 𝑉(0, 0) be finite and
suppose that

lim inf
(p,q)→(0,0)

𝑉 (p, q) − 𝑉 (0, 0)
‖(p, q)‖

> −∞ (33)

(this is true in particular if 𝑉 is Lipschitz near (0, 0)). Then,
for any solution x to (𝑃), problem (𝑃) is calm at x.

Sometimes problem (𝑃) is said to be calm provided 𝑉

satisfies the hypothesis of Theorem 15.

Slater-Type Conditions. Suppose that (𝑃) has no equality
constraints (i.e.,𝑚 = 0), that the functions 𝑔𝑖, 𝑖 = 1, . . . , 𝑡, are
convex, and that𝐶 is a convex set. Recall that Slater’s condition
(Slater’s constraint qualification), then is: there exists a point
x in 𝐶 such that 𝑔𝑖(x) < 0, 𝑖 = 1, . . . , 𝑡 (x is called a strictly
feasible point).

For p ∈ R𝑡, let 𝑉(p) be the infimum in the problem 𝑃(p)
in which the constraints𝑔𝑖(x) ≤ 0 of problem (𝑃) are replaced
by 𝑔𝑖(x) + 𝑝𝑖 ≤ 0.

Theorem 16 (Clarke [3]; Lipschitz property of the value
function from Slater’s condition). If 𝐶 is bounded and 𝑓 is
Lipschitz on 𝐶, then Slater’s condition (i.e., the existence of a
strictly feasible point) implies that 𝑉 is Lipschitz near 0.

Theorems 15 and 16 mean that Slater’s constraint qualifi-
cation implies calmness of problem 𝑃(p) in this case.

Theorem 17 (Clarke [3]; Calmness of a problem subject
to inequality constraints). Let 𝑃 incorporate only inequality
constraints 𝑔𝑖(x) ≤ 0 and the abstract constraint x ∈ 𝐶 and
suppose that the value function𝑉(p) is finite for p near 0.Then,
for almost all p in a neighborhood of 0, the problem 𝑃(p) is
calm.

Remark 18. In the case of problem (𝑃), in which equality
constraints exist, it is a consequence of Ekeland’s theorem that
𝑃(p, q) is calm for all (p, q) in a dense subset of any open set
upon which 𝑉 is bounded and lower semicontinuous.

Consider the following way of perturbing problem (𝑃):
𝑃(𝛼)

min {𝑓 (x,𝛼) : g (x,𝛼) ≤ 0, h (x,𝛼) = 0, (x,𝛼) ∈ 𝐷} , (34)

where 𝛼 is a vector of 𝑘 real components.The value function
𝑉 then would be a function of 𝛼 : 𝑉(𝛼) = inf 𝑃(𝛼).

This is a special case of problem 𝑃(p, q) with 𝑘 = 𝑡 +

𝑚, 𝛼 = (p, q), 𝑓(x,𝛼) = 𝑓(x), g(x,𝛼) = g(x) + p, h(x,𝛼) =
h(x) + q, 𝐷 = 𝐶 × R𝑡+𝑚. At least when the dependence of
𝑓, g, and h on 𝛼 is locally Lipschitz, we can consider problem

𝑃(p, q) with 𝑘 = 𝑡 + 𝑚, 𝛼 = (p, q), 𝑓(x,𝛼) = 𝑓(x), g(x,𝛼) =
g(x) + p, h(x,𝛼) = h(x) + q, and 𝐷 = 𝐶 × R𝑡+𝑚 rather than
problem 𝑃(𝛼). Hence, the methods and results, considered
above, can be applied to perturbed family 𝑃(𝛼) as well.

Constraint qualifications (regularity conditions) can be
classified into two categories: on the one hand, Mangasarian-
Fromowitz and Slater-type conditions and their extensions,
and, on the other hand, constraint qualifications called
calmness. It turns out that calmness is the weakest of these
conditions, since it is implied by all the others (see, e.g.,
Theorem 16).

2.3. Well-Posedness of Problems (𝐶), (𝐶=), and (𝐶≥)

2.3.1. Existence of Solutions. The question of existence of
solutions to problems (𝐶), (𝐶=), and (𝐶≥) has been discussed
in Theorems 1, 4, and 5, respectively. Steps (0), (1), and (9)
of Algorithm 2 and Steps (1) and (9) of Algorithms 6 and 8,
respectively, refer to these results.

2.3.2. Uniqueness of Solution. The question of uniqueness of
the optimal solution to problems under consideration is also
important.

If 𝑐(x) ≡ ∑𝑗∈𝐽 𝑐𝑗(𝑥𝑗) defined by (1) (by (9), (12), resp.)
is a strictly convex function, then problem (𝐶) (problem
(𝐶=) or problem (𝐶≥), resp.) has a unique optimal solution
in the feasible region 𝑋 (𝑋𝐿, 𝑋≥, resp.) in case problem (𝐶)

(problem (𝐶=) or problem (𝐶≥), resp.) has feasible solutions;
that is, 𝑥∗𝑗 , 𝑗 ∈ 𝐽

𝜆, are uniquely determined from (6) [(17)] in
the interval [𝑎𝑗, 𝑏𝑗] in this case. If the parameters 𝑎𝑗, 𝑏𝑗, and so
forth of particular problems of the form (𝐶) ((𝐶=) and (𝐶≥),
resp.) are generated in intervals where the functions 𝑐𝑗(𝑥𝑗) are
strictly convex, then problem (𝐶) (problem (𝐶=) or problem
(𝐶≥), resp.), if it has feasible solutions, has a unique optimal
solution.

In the general case, if functions 𝑐𝑗(𝑥𝑗) are convex but not
necessarily strictly convex, then, as it is known, a convex
programming problem has more than one optimal solution
and the set of optimal solutions to such a problem is convex.
Further, the optimal value of the objective function is the
same for all optimal solutions to problem (𝐶) (problem (𝐶

=)

or problem (𝐶≥), resp.) if it has more than one optimal
solution. If, for example, (6) ((17), resp.) is a linear equation
of 𝑥∗𝑗 , then 𝑥

∗
𝑗 , 𝑗 ∈ 𝐽

𝜆, are also uniquely determined from (6)
(from (17), resp.).

2.3.3. Calmness of the Problems (of the Optimal Solutions).
Let (𝐶(p)), (𝐶=(p, 𝑞)), and (𝐶≥(p)) be the parametrized
families of mathematical programs associated with problems
(𝐶), (𝐶=), and (𝐶≥), respectively.

Feasible regions of problems (𝐶) and (𝐶≥) are nonempty
by the assumption; this is satisfied when ∑𝑗∈𝐽 𝑑𝑗(𝑎𝑗) ≤ 𝛼 and
∑𝑗∈𝐽 𝑑𝑗𝑏𝑗 ≥ 𝛼, respectively.Without loss of generality, feasible
regions
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𝑋(p):

∑
𝑗∈𝐽

𝑑𝑗 (𝑥𝑗) + 𝑝0 ≤ 𝛼

𝑎𝑗 ≤ 𝑥𝑗 + 𝑝𝑗 ≤ 𝑏𝑗, 𝑗 ∈ 𝐽,

(35)

and𝑋≥(p):

∑
𝑗∈𝐽

𝑑𝑗𝑥𝑗 + 𝑝0 ≥ 𝛼

𝑎𝑗 ≤ 𝑥𝑗 + 𝑝𝑗 ≤ 𝑏𝑗, 𝑗 ∈ 𝐽,

(36)

of problems (𝐶(p)) and (𝐶≥(p)), respectively, are also
nonempty in a neighborhood of p = 0.

Since the value function 𝑉(p), associated with problems
(𝐶(p)) and (𝐶≥(p)), is finite near 0 (according toDefinition 12
and the assumption that the corresponding feasible set
is nonempty) then both problems are calm according to
Theorem 17.

An alternative proof of calmness of problem (𝐶) is the
following.

The objective function 𝑐(x) of problem (𝐶) (1)–(3) is
convex (and, therefore, Lipschitz in accordance with Theo-
rem 14), and Slater’s constraint qualification is satisfied by
the assumption. From Theorem 16, it follows that the value
function 𝑉(p) is Lipschitz, and problem (𝐶) is calm at any
solution x∗ of problem (𝐶) according toTheorem 15.

Consider the parametrized family (𝐶=(p, 𝑞)) in which
problem (𝐶=) is imbedded as follows:

(𝐶=(p, 𝑞))

min
{

{

{

𝑐 (x) = ∑
𝑗∈𝐽

𝑐𝑗 (𝑥𝑗)
}

}

}

subject to x ∈ 𝑋𝐿 (p, 𝑞) ,

(37)

where𝑋𝐿(p, 𝑞) is defined as follows:

∑
𝑗∈𝐽

𝑑𝑗𝑥𝑗 + 𝑞 = 𝛼

𝑎𝑗 ≤ 𝑥𝑗 + 𝑝𝑗 ≤ 𝑏𝑗, 𝑗 ∈ 𝐽.

(38)

As it has been pointed out,𝑋𝐿 ̸= 0 if

∑
𝑗∈𝐽

𝑑𝑗𝑎𝑗 ≤ 𝛼 ≤ ∑
𝑗∈𝐽

𝑑𝑗𝑏𝑗, (39)

whereas𝑋𝐿(p, 𝑞) ̸= 0 if

∑
𝑗∈𝐽

𝑑𝑗 (𝑎𝑗 − 𝑝𝑗) ≤ 𝛼 − 𝑞 ≤ ∑
𝑗∈𝐽

𝑑𝑗 (𝑏𝑗 − 𝑝𝑗) . (40)

Without loss of generality, assume that there exists a (p, 𝑞)
such that 𝑋𝐿(p, 𝑞) ̸= 0. This is satisfied, for example, when
∑𝑗∈𝐽 𝑑𝑗𝑝𝑗 = 𝑞 in addition to the requirement 𝑋𝐿 ̸= 0. Then
the value function𝑉(p, 𝑞), associated with (𝐶=(p, 𝑞)), is finite
by Definition 12.

Theorem 19 (Convexity of the infimum of a convex function
subject to linear equality constraints). Let 𝑓 be a convex
function and 𝑆 be a convex set in R𝑛. Then, function

ℎ (y) def
= infx {𝑓 (x) : 𝐴x = y, 𝐴𝑚×𝑛, x ∈ 𝑆, y ∈ R

𝑚
} (41)

is convex.

Proof. Let x = 𝜆x1 + (1 − 𝜆)x2, 𝜆 ∈ [0, 1], x1, x2 ∈ 𝑆, y1, y2 ∈
R𝑚. Therefore x ∈ 𝑆 as a convex combination of elements of
the convex set 𝑆. Then,

ℎ (𝜆y1 + (1 − 𝜆) y2)

= infx {𝑓 (x) : 𝐴x = 𝜆y1 + (1 − 𝜆) y2}

= infx1 ,x2
{𝑓 (𝜆x1 + (1 − 𝜆) x2) : 𝐴 (𝜆x1 + (1 − 𝜆) x2)

= 𝜆y1 + (1 − 𝜆) y2}

≤ infx1 ,x2
{𝑓 (𝜆x1 + (1 − 𝜆) x2) : 𝐴x1 = y1, 𝐴x2 = y2}

≤ infx1 ,x2
{𝜆𝑓 (x1) + (1 − 𝜆) 𝑓 (x2) : 𝐴x1 = y1, 𝐴x2 = y2}

= infx1 {𝜆𝑓 (x1) : 𝐴x1 = y1}

+ infx2 {(1 − 𝜆) 𝑓 (x2) : 𝐴x2 = y2}

= 𝜆ℎ (y1) + (1 − 𝜆) ℎ (y2) .
(42)

We have used that 𝑓 is a convex function, the property that

{x1, x2 ∈ 𝑆 : 𝐴x1 = y1, 𝐴x2 = y2}

⊂ {x1, x2 ∈ 𝑆 : 𝜆𝐴x1 + (1 − 𝜆)𝐴x2 = 𝜆y1 + (1 − 𝜆) y2}
(43)

and the fact that𝑋 ⊂ 𝑌 implies infx∈𝑌𝑓(x) ≤ infx∈𝑋𝑓(x).
Therefore, ℎ(y) is a convex function by definition.

For problem (𝐶=(p, 𝑞)), matrix 𝐴 of Theorem 19 consists
of a single row, that is, 𝑚 = 1, and convex set 𝑆 is the 𝑛-
dimensional parallelepiped

𝑆 = {x ∈ R
𝑛
: 𝑎𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑗, 𝑗 ∈ 𝐽} . (44)

The value function associated with problem (𝐶=(p, 𝑞)) is

𝑉 (p, 𝑞) = inf
x∈𝑋𝐿(p,𝑞)

𝑓 (x) . (45)

From Theorem 19 and the assumption that 𝑋𝐿(p, 𝑞) ̸= 0,
it follows that 𝑉(p, 𝑞) is convex and finite, respectively, and



8 Advances in Operations Research

fromTheorem 14 it follows that it is Lipschitz.Then, problem
(𝐶=(p, 𝑞)) is calm according toTheorem 15.

In the general case, if the mathematical program is
not convex and equality constraints exist, we can use the
approach of the Remark 18.

3. On the Stability of the Set of Saddle Points
of the Lagrangian

3.1.The Concept of Stability of Saddle Points of the Lagrangian.
Besides well-posedness of the optimization problems, stabil-
ity of methods for solving these problems is also important.

Let Φ(x, y) be a convex function of x ∈ 𝑋 and a concave
function of y ∈ 𝑌, where𝑋 and 𝑌 are convex and closed sets.

Recall the definition of a saddle point.
A point (x̂, ŷ) is said to be a saddle point of function

Φ(x, y), x ∈ 𝑋, y ∈ 𝑌, if the following inequalities hold:

Φ(x̂, y) ≤ Φ (x̂, ŷ) ≤ Φ (x, ŷ) (46)

for all x ∈ 𝑋, y ∈ 𝑌, that is, if

Φ(x̂, ŷ) = min
x∈𝑋

max
y∈𝑌

Φ(x, y) = max
y∈𝑌

min
x∈𝑋

Φ(x, y) . (47)

This means that Φ(x, y) attains at the saddle point (x̂, ŷ)
its maximum with respect to y for fixed x̂ and Φ(x, y) attains
at (x̂, ŷ) its minimum with respect to x for fixed ŷ.

Set
𝜒 (x) = max

y∈𝑌
Φ(x, y) , 𝜓 (y) = min

x∈𝑋
Φ(x, y) . (48)

Denote by 𝑋∗ and 𝑌∗ the sets of optimal solutions to the
optimization problems

min
x∈𝑋

𝜒 (x) ,

max
y∈𝑌

𝜓 (y) ,
(49)

respectively, that is,

𝑋
∗ def
= {x : 𝜒 (x) = min

x∈𝑋
max
y∈𝑌

Φ(x, y)}

≡ {x : max
y∈𝑌

Φ(x, y) = Φ (x̂, ŷ)} ,

𝑌
∗ def
= {y : 𝜓 (y) = max

y∈𝑌
min
x∈𝑋

Φ(x, y)}

≡ {y : min
x∈𝑋

Φ(x, y) = Φ (x̂, ŷ)} .

(50)

Let𝑋∗, 𝑌∗ be bounded sets. Then,

𝜒 (x∗) = 𝜓 (y∗) , x∗ ∈ 𝑋∗, y∗ ∈ 𝑌∗, (51)

that is,

𝜒 (x∗) def
= max

y∈𝑌
Φ(x∗, y) = 𝜓 (y∗)

def
= min

x∈𝑋
Φ(x, y∗) = Φ (x̂, ŷ) .

(52)

This means that𝑋∗ × 𝑌∗ is the set of saddle points ofΦ(x, y)
and

Φ(x̂, ŷ) = Φ (x∗, y∗) . (53)

Consider the sets

𝑋y∗
def
= {x : Φ (x, y∗) = Φ (x∗, y∗)} ,

𝑌x∗
def
= {y : Φ (x∗, y) = Φ (x∗, y∗)} ,

(54)

that is, 𝑋y∗ and 𝑌x∗ denote the sets of arguments of Φ(x, y)
with y = y∗ and x = x∗, respectively, for which the value of
Φ(x, y) is equal to its value at the saddle point.

In the general case, 𝑋∗ ⊂ 𝑋y∗ , 𝑌
∗ ⊂ 𝑌x∗ ; that is, the sets

𝑋y∗ , 𝑌x∗ contain sets𝑋∗, 𝑌∗, respectively.

Definition 20. If 𝑋∗ = 𝑋y∗ and 𝑌
∗ = 𝑌x∗ , then the set of

saddle points of Φ(x, y) is said to be stable.

If the set of saddle points of Φ(x, y) is stable, then from

lim
𝑘→∞

Φ(x(𝑘), y∗(𝑘)) = Φ (x∗, y∗) , x(𝑘) ∈ 𝑋, y∗(𝑘) ∈ 𝑌
(55)

it follows that

𝛿 (x(𝑘), 𝑋∗) → 0, 𝑘 → ∞, (56)

and from

lim
𝑘→∞

Φ(x∗(𝑘), y(𝑘)) = Φ (x∗, y∗) , x∗(𝑘) ∈ 𝑋, y(𝑘) ∈ 𝑌
(57)

it follows that

𝛿 (y(𝑘), 𝑌∗) → 0, 𝑘 → ∞, (58)

where 𝛿(x, 𝑋) def
= minz∈𝑋‖x − z‖ is the distance from

x to the set 𝑋. The implications written above mean that
convergence of Φ(x, y∗) to Φ(x∗, y∗) with respect to x(𝑘)
and convergence of Φ(x∗, y) to Φ(x∗, y∗) with respect to
y(𝑘) implies convergence of sequence ({x(𝑘)}, {y(𝑘)}) to the set
𝑋∗ × 𝑌∗ of saddle points of Φ(x, y).

The concept of stability, introduced by Definition 20, is
important for constructing iterative gradient algorithms for
finding saddle points of the Lagrangian associated with an
optimization problem.

The set of saddle points of the Lagrangian associated with
the problem

min
x∈𝑆

𝑓 (x) , (59)

𝑆 = {x ∈ R
𝑛
: 𝜑𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑚, x ∈ 𝑋} (60)

is not stable according to Definition 20. Concerning the dual
variables this can be proved as follows.
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Let 𝑟th constraint of (60) be satisfied as an equality at x∗,
that is,

𝜑𝑟 (x
∗
) = 0 (61)

for some 𝑟, 1 ≤ 𝑟 ≤ 𝑚. Then, the Lagrangian 𝐿(x∗,𝜆)
of problem (59)-(60) does not depend on 𝜆𝑟 and therefore
𝐿(x∗,𝜆∗) = 𝐿(x∗,𝜆) is satisfied for every 𝜆𝑟. Hence, it is
impossible to determine 𝜆𝑟 by using the relation 𝐿(x∗,𝜆

∗
) =

𝐿(x∗,𝜆).
In order to avoid this difficulty, so-called modified

Lagrangians are used instead of the “classical” Lagrangian.
Modified Lagrangians are usually nonlinear functions of 𝜆
and the set of their saddle points is stable and it coincides,
under some assumptions, with the set of saddle points of the
“classical” Lagrangian for the same problem. This is impor-
tant to ensure convergence of iterative gradient algorithms
(see, e.g., Gol’shtein [5]).

3.2. About the Stability of the Set of Saddle Points for the
Approach Considered in this Paper. Consider problem (𝐶)

(problem (𝐶
=) and problem (𝐶≥), resp.). Obviously, the

Lagrangemultiplier 𝜆, associated with the constraint (2) ((10)
and (13), resp.), is not involved in the equality

𝐿 (x∗, u∗, k∗, 𝜆∗) = 𝐿 (x∗, u, k, 𝜆) (62)

when 𝛿(𝜆∗) = 0, that is, when ∑𝑗∈𝐽 𝑑𝑗(𝑥𝑗) = 𝛼. For problem
(𝐶), 𝜆∗ (>0) is either determined uniquely from 𝛿(𝜆∗) = 0

when 𝛿(0) > 0 or we set 𝜆∗ := 0 when 𝛿(0) ≤ 0 (Algo-
rithm 2). Although the set of saddle points of the Lagrangian
𝐿(x, u, k, 𝜆), associated with problem (𝐶) (problem (𝐶

=) and
problem (𝐶≥), resp.) is not stable in the sense of Gol’shtein,
the specificity of the approach suggested (the algorithms are
not of gradient type and 𝜆

∗ is determined uniquely in all
cases for the three problems under consideration) overcomes
this “weakness” of the classical Lagrangian. That is why it is
not necessary to use modified Lagrangians for problems (𝐶),
(𝐶
=), and (𝐶≥).
On the one hand, we need a closed form expression of 𝜆 at

Step (2) of the algorithms suggested.However, it is this feature
of the algorithms that allows us to use classical Lagrangians
instead of modified Lagrangians in the approach suggested.
Moreover, the method for finding 𝜆, and, therefore, for
finding 𝑥∗𝑗 , 𝑗 ∈ 𝐽, in the corresponding problem (𝐶), (𝐶=),
and (𝐶≥), is exact although it is an iterative method.

As it usually happens, the disadvantage in one aspect
turns out to be an advantage in another aspect and vice versa.

All conclusions in this section have been drawn under
the assumption that the objective function 𝑐(x) and the
constraint function(s) 𝑑𝑖(x) of the three problems under
consideration (𝐶), (𝐶=), (𝐶≥) are nondegenerate, that is,
c(x∗) ̸≡ 0, d𝑖 (x

∗) ̸≡ 0; otherwise, the application of the
Karush-Kuhn-Tucker theoremwith differentiability is void of
meaning.

Some optimality criteria for degenerate mathematical
programs are given, for example, in the book of Karmanov
[6].

4. Primal-Dual Analysis

Some of the main characteristics of the approach, suggested
for solving problems (𝐶), (𝐶=), and (𝐶≥), are following.

Since the method, proposed for problem (𝐶), uses values
of the first derivatives of functions 𝑐𝑗(𝑥𝑗), 𝑗 ∈ 𝐽, we can
consider it as a first-order method. Also, this method is a
saddle point method or, more precisely, a dual variables saddle
point method because it is based on convergence with respect
to the Lagrange multiplier (dual variable) 𝜆 associated with
the single constraint (2).

At Step (2) of Algorithm 2, we use the expression of
𝜆
(𝑘), calculated from the equality 𝛿(𝜆(𝑘)) = 0, where 𝑥∗𝑗 are

determined from (6), 𝑗 ∈ 𝐽𝜆(𝑘) = 𝐽(𝑘). As it was proved, under
the assumptions for problem (𝐶), we can always determine
𝜆 = 𝜆(x∗) from 𝛿(𝜆) = 0 as an implicit function of x∗. For
example, when 𝑑𝑗(𝑥𝑗), 𝑗 ∈ 𝐽, are linear functions, the explicit
expression of 𝜆 is always available for Algorithm 2. There are
alsomany other examples of functions, for which it is possible
to obtain closed form expressions of 𝜆, and therefore, the
suggested approach is applicable and gives good results.

Analogous commentary is valid for themethod suggested
for solving problem (𝐶

=).
When the (optimal) Lagrange multiplier 𝜆∗ associated

with (2) is known, then problem (𝐶) (1)–(3) can be replaced
by the following separable convex optimization problem

min
{

{

{

∑
𝑗∈𝐽

[𝑐𝑗 (𝑥𝑗) + 𝜆
∗
𝑑𝑗 (𝑥𝑗)] − 𝜆

∗
𝛼
}

}

}

subject to x ∈ 𝐴 def
= {x ∈ R

𝑛
: 𝑎𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑗, 𝑗 ∈ 𝐽} .

(63)

The problem, dual to problem (𝐶), is

max Ψ (𝜆)

subject to 𝜆 ∈ R
1
+,

(64)

where

Ψ (𝜆) = min
x∈𝐴

{

{

{

∑
𝑗∈𝐽

[𝑐𝑗 (𝑥𝑗) + 𝜆𝑑𝑗 (𝑥𝑗)] − 𝜆𝛼
}

}

}

. (65)

Problem (𝐶
=) can be considered similarly; 𝑑𝑗(𝑥𝑗) = 𝑑𝑗𝑥𝑗

and 𝜆 ∈ R1 for it.
Thus, using the Lagrangian duality and Theorem 1 for

problem (𝐶) (Theorem 4 for problem (𝐶
=)) we have replaced

the multivariate problem (𝐶) (problem (𝐶=)) of x ∈ R𝑛 by
the single-variable optimization problem for finding 𝜆 ∈ R1+
(𝜆 ∈ R1, resp.).

Since Algorithm 8 is based on Theorem 5 and Algo-
rithm 6, and since the “iterative” Steps (2)–(7) of Algorithms
6 and 8 are the same, then primal-dual analysis for problem
(𝐶
≥) is similar to that for problems (𝐶) and (𝐶=).

5. Bibliographical Notes

The definition of Tychonov well-posedness is given by
Tychonov in [7]. Tychonov and Hadamard well-posedness
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and well-posedness in the generalized sense are considered,
for example, in the work of Cavazzuti and Morgan [8], in the
book of Dontchev and Zolezzi [9], in works of Hadamard
[10, 11], and so forth. Other questions regarding stability, ill-
posed problems, and Tychonov regularization can be found
in [12–19], and so forth. Sometimes Tychonov is written
as Tykhonov, Tikhonov or Tychonoff in references. Well-
posedness is also discussed in the book of Rockafellar and
Wets [20].

Calmness in the sense of Clarke is proposed and studied
in the works of Clarke [3, 21, 22]. ConcerningTheorem 14, see
also the paper of Roberts and Varberg [4].

Stability of the set of saddle points of Lagrangians is
considered in the papers of Gol’shtein [5], Gol’shtein and
Tret’iakov [23], and so forth.

Various convex separable optimization problems are con-
sidered and convergent polynomial algorithms for solving
them are proposed in Stefanov [1, 2, 24–29].
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