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When solving boundary value problems on infinite intervals, it is possible to use contin-
uation principles. Some of these principles take advantage of equipping the considered
function spaces with topologies of uniform convergence on compact subintervals. This
makes the representing solution operators compact (or condensing), but, on the other
hand, spaces equipped with such topologies become more complicated. This paper shows
interesting applications that use the strength of continuation principles and also presents
a possible extension of such continuation principles to partial differential inclusions.
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ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

When solving boundary value problems on noncompact (in particular, on infinite) in-
tervals, it is possible to use continuation principles. Unfortunatelly, one cannot simply
extend the Leray-Schauder type theorems, because of the obstructions brought by the
topology of uniform convergence on compact subintervals (see [1, 2] or [6]). This topol-
ogy makes the representing solution operators compact (or condensing) but, on the other
hand, causes closed convex sets of certain type to have empty interiors. The main aim of
this paper is to propose a modification of the continuation principle, originally given by
Andres and Bader [1], to partial differential inclusions in Banach spaces and to present a
nontrivial application of its usage.

Although the topology of uniform convergence on compact subintervals is well-
known (see [10]), for the sake of completeness we recall some of its interesting properties
in Section 2. We show an example of a closed and convex set, which is often considered in
applications and which has empty interior. We recall a way to overcome this drawback by
considering relatively open subsets of closed convex sets (see [2, 6]). Such sets are known
to be absolute retracts (see [4]) and therefore are suitable for exploiting fixed point in-
dex techniques. We construct an example of such a relatively open set which is used in
Section 3.
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Section 3 gives an example that fully uses the strength of the continuation principle
proposed by Andres and Bader in [1]. We consider a first order differential inclusion with
a special right-hand side and show the existence of an entirely bounded solution.

In the following section we propose a possible modification of the continuation princi-
ple, namely its application to boundary value problems for partial differential inclusions
in Banach spaces. This section is a direct generalization of the results obtained by An-
dres and Bader in [1]. We show that the above mentioned continuation principles can be
applied to a broad class of differential inclusions of parabolic type.

The last section gives an illustrating example of solving a boundary value problem for a
particular differential inclusion of parabolic type. Inclusions of the considered type arise
in solving nonlinear diffusion-type problems.

2. Structure of Fréchet spaces

When solving differential equations or inclusions on noncompact intervals, we often en-
counter the problem that the operators involved cease to be compact. To be able to exploit
fixed point techniques even in this case, we take advantage of suitable topologies. This
section deals with the topology of uniform convergence on compact subintervals in the
space of continuous functions on the real axis. We collect here some of the known facts
about the topology of uniform convergence on compact intervals.

Let X be a Banach space. Consider space �(R,X) of all X-valued functions continuous
on the real axis. Let {Kk}k∈N be a countable collection of compact intervals such that
Kk ⊂ Kk+1 and R=∪k∈NKk and define collection of seminorms {pk}k∈N by

pk( f ) :=max
{∥∥ f (t)

∥
∥
X ; t ∈ Kk

}
. (2.1)

Then space �(R,X) equipped with the metric

d( f ,g) :=
∑

j∈N

1
2 j

p j( f − g)

1 + pj( f − g)
(2.2)

becomes a complete metric space. (See [3, page 9].) It is a representant of the wide class
of Fréchet spaces. Let us first mention some properties of sets in this topology.

First observe that any subset A⊂�(R,X) is bounded, since for any pair f ,g ∈�(R,X)
it holds that

d( f ,g)=
∑

j∈N

1
2 j

p j( f − g)

1 + pj( f − g)
≤
∑

j∈N

1
2 j ≤ 1. (2.3)

Any open ball B(0,ε) in space �(R,X) always contains functions which are unbounded
in the usual sup-norm. Consider

B(0,ε)= { f ∈�(R,X); d(0, f ) < ε
}
. (2.4)

It is possible to find n0 ∈ N such that
∑∞

j=n0
(1/2 j) < ε. It follows that any continuous

function g which satisfies g = 0 on Kn0 , satisfies estimate d(g,0) < ε and therefore g ∈
B(0,ε). This shows that arbitrarily small balls contain functions that are unbounded in the
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usual sup-norm. Let us mention that since open sets in �(R,X) are not even topologically
bounded, space �(R,X) is not normable.

Let M > 0 and consider set

Q := {q ∈�(R,X);
∥
∥q(t)

∥
∥
X ≤M ∀t ∈R}, (2.5)

which often occurs in applications. It is easy to verify that Q is closed and convex.
Observe also that Q has an empty interior because any q ∈Q belongs to the boundary

of Q.
Finally, we turn our attention to an example of a relatively open subset of Q. Such sets

are important in applications since it is known that a relatively open subset of a closed,
convex set in a Fréchet space is an absolute neighborhood retract. (See [4].) In Section 3
we present an interesting application of such sets.

Let K ⊂R be compact andO be a closed subset ofX which satisfiesO ⊂ B(0,M), where
M is given by (2.5). Consider the following obstacle set:

Q′ := {q ∈Q; q(t) 	∈O ∀t ∈ K
}
. (2.6)

Since O “fits” into Q, it is evident that Q′ is nonempty, f ≡M being one of its elements.
It is easy to see that Q′ is not open in �(R,X), nevertheless, it can be shown that it is open
in Q.

Let us conclude this section by the statement of a version of the classical Arzelà-Ascoli
theorem.

Proposition 2.1. Let X be a Banach space and A an equicontinuous subset of �(R,X)
such that for all t ∈R, set { f (t); f ∈A} is precompact. Then A is relatively compact.

3. Continuation principle

In this section we present an example of the usage of a continuation principle in Fréchet
spaces. The continuation principle is based on the fixed point index for multivalued maps
defined by Andres and Bader in [1]. For the sake of completness we collect here a simpli-
fied context of the index.

Let F be a Fréchet space and H : X ⊂ F × [0,1] � F a multivalued homotopy. We call
a homotopy H : X × [0,1] � F suitable if

(i) X is a relatively open subset of a closed convex set in a Fréchet space F,
(ii) H is upper semi-continuous with Rδ values,

(iii) H is compact, (this condition can be replaced by the weaker requirement of H
being condensing, see [1])

(iv) for any fixed point x ∈H(x, t), there exist a neighborhood �x of x in X such that
H(�x × [0,1])⊂ X .

We can now state the following lemma. (See [1, Corollary 12].)
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Figure 3.1. Graph of the multifunction t→ F(t,0).

Lemma 3.1. Let H : X × [0,1] � F be a suitable homotopy such that H(X ,0) ⊂ X . Then
H(·,1) has a fixed point in X .

In applications, the strength of this principle is seldom used, we are thus going to
present an example that fully uses the strength of the above lemma. Consider the inclu-
sion

u′(t)∈ F
(
t,u(t)

)
(3.1)

for t ∈ [0,∞) with initial condition u(0) = 0. We will look for a solution which satisfies
inclusion (3.1) almost everywhere on R+ in space ACloc(R+) of all real valued functions
locally absolutely continuous on [0,∞). This space is again endowed with the topology
of uniform convergence on compact subintervals. In this particular case, we will look for
bounded solutions which “go around” an obstacle O := [0,1/10] which is placed at t = 1.

Let us consider particular right-hand side of inclusion (3.1):

F(t, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
1
4
− t

10
,e−t/3 +

1
3
‖y‖

]
for 0≤ t ≤ 5

2
,

[
− e−t/3− 1

3
‖y‖,e−t/3 +

1
3
‖y‖

]
for

5
2
≤ t ≤ 5,

[
− e−t/3− 1

3
‖y‖,0

]
for 5≤ t.

(3.2)

Figure 3.1 shows the graph of the multifunction t→ F(t,0).
In order to prove the existence of an entirely bounded solution to (3.1) which goes

around the obstacle, we again employ the linearization technique. We define the param-
eter set

Q := {q ∈ ACloc(R+); q(0)= 0,
∣
∣q(t)

∣
∣≤ 3∀t ∈R+} (3.3)
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and the obstacle set

Q′ := {q ∈Q; q(1) 	∈O
}

, (3.4)

where O = [0,1/10]. With respect to the first section, we see that Q is closed and convex
subset of the Fréchet space ACloc(R+) and Q′ is its relatively open subset. It is easy to ver-
ify, that the relative boundary ∂QQ′ of Q′ with respect to Q is formed by those functions
q ∈Q that satisfy q(1)= 0 or q(1)= 1/10.

Let us now define a homotopy H : [0,1]×Q′ � ACloc(R+) which to any (λ,q) ∈
[0,1]×Q′ associates all solutions to

u′(t)∈ F
(
t,λq(t)

)
, (3.5)

where F is given by (3.2) and boundary conditions of (3.1) remain valid. We want to
apply Lemma 3.1 and show that H(1,·) has a fixed point in Q′ which corresponds to the
desired solution to the original problem. In order to draw such conclusion we need to
show that

(1) H is compact,
(2) H is upper semi-continuous with compact and convex values,
(3) H does not have any fixed points on the relative boundary ∂QQ′,
(4) H(0,Q′)⊂Q′.

ad 1. We need to prove that H([0,1]×Q′) is a relatively compact subset of ACloc(R+).
In view of Proposition 2.1, it is sufficient to prove that H([0,1]×Q′) is equicontinuous.
The estimate |q(t)| ≤ 3 for all q ∈Q′ and relation (3.2) imply that |F(t,q(t))| ≤ 2 for all
t ∈R+. This means that |u′(t)| ≤ 2 for all u∈H([0,1]×Q′). Such uniform boundedness
of u′ implies equicontinuity of H([0,1]×Q′). This proves the compactness of homotopy
H .

ad 2. Since H is compact, it is sufficient to prove that H has closed graph in order to
conclude that it is upper semi-continuous. (See [3, Section I, Proposition 3.16].) Let us
take a sequence (λn,qn,un) in the graph of H which converges to (λ,q,u) in [0,1]×Q′ ×
ACloc(R+). We want to show that u ∈H(λ,q), which means that u satisfies (3.5) for al-
most all t ∈R+. Let us fix t0 ∈R+ such that u′n(t0) and u′(t0) exist. Note that the comple-
ment of the set of all such t0 ∈R+ has zero measure due to the local absolute continuity
of un and u. We know that

u′n
(
t0
)∈ F

(
t0,λnqn

(
t0
))

, (3.6)

which together with the closedness of the values of F implies

u′
(
t0
)∈ lim

n→∞F
(
t0,λnqn

(
t0
))
. (3.7)

The continuity of the mapping y→ F(t0, y), which is clear from (3.2), implies that

lim
n→∞F

(
t0,λnqn

(
t0
))= F

(
t0,λq

(
t0
))

(3.8)
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which completes the proof of the upper semi-continuity of H . Since H is compact and
the graph of H is closed, we conclude that H has compact values. The convexity of the
values of H follows from the convexity of the values of F. Note that compact and convex
sets are, in particular, Rδ sets. (See [3, Chapter I.2].)

ad 3. Observe that ∂QQ′ consists of such functions q ∈Q that satisfy q(1)= 0 or q(1)=
1/10. Let us suppose there exists such (λ,q)∈ [0,1]×Q′ that the solution u of (3.5) sat-
isfies u(1) = 1/10. By the mean value theorem, this implies the existence of t0 ∈ [0,1]
such that u′(t0)≤ 1/10 which is a contradiction to the form of F given by (3.2). Note that
1/4− t/10 > 1/10 for all t ∈ [0,1]. By the same argument we exclude the possibility that
u(1)= 0. This proves the nonexistence of fixed points on the relative boundary of Q′.

ad 4. At last we show that H(0,Q′) ⊂ Q′. By an analogous argument to the previous
paragraph, we can show that u(1) 	∈ O for all u ∈ H(0,Q′). The particular form of F
implies that all u∈H(0,Q′) have to be nondecreasing on [0,5/2] and nonincreasing on
[5,∞). Simple calculation shows that |u(t)| ≤ 3 for all t ∈ R+ and u ∈ H(0,Q′) which
completes the argument.

We have shown that all the assumption of Lemma 3.1 are satisfied and we can there-
fore establish the existence of a fixed point ofH(1,·) which represents an entirely bounded
solution to (3.1) which goes around the given obstacle.

4. Application to partial differential inclusions

In this section we present a possible extension of the continuation principle which shows
the possibility of application of such principles in solving partial differential inclusions in
Banach spaces.

Let us first introduce the Bochner space Wp,q(K ,V1,V2), where K is a compact in-
terval, V1 and V2 Banach spaces. The space Wp,q(K ,V1,V2) consists of functions u such
that

(i) u(t)∈V1 for any t ∈ K ,
(ii) u∈ Lp(K ,V1) in the sense that

∫
K ‖u(t)‖pV1

dt is finite,
(iii) (du/dt)(t)∈V2 for any t ∈ K ,
(iv) du/dt ∈ Lq(K ,V2) in the sense that

∫
K ‖(du/dt)(t)‖qV2

dt is finite,
where the derivatives are understood in the weak sense. If K is a compact interval then
Wp,q(K ,V1,V2), endowed with the norm

‖u‖Wp,q := ‖u‖Lp(K ,V1) +
∥
∥
∥
∥
du

dt

∥
∥
∥
∥
Lq(K ,V2)

=
(∫

K

∥
∥u(t)

∥
∥p
V1
dt
)1/p

+
(∫

K

∥
∥
∥
∥
du

dt
(t)
∥
∥
∥
∥

q

V2

dt
)1/q

,

(4.1)

becomes a Banach space.
If I is an arbitrary interval, possibly whole R, we let Kk be a countable collection of

compact intervals such that Kk ⊂ Kk+1 and I ⊂∪k∈NKk and for v ∈Wp,q(I ,V1,V2) define



Tomáš Fürst 7

the seminorm

pk(v) := ‖v‖Wp,q(Kk ,V1,V2). (4.2)

Then the space Wp,q(I ,V1,V2) equipped with the metric

d
(
u1,u2

)
:=
∑

j∈N

1
2 j

p j
(
u1−u2

)

1 + pj
(
u1−u2

) (4.3)

becomes a complete metric space.
Consider the inclusion

du

dt
(t) + Au(t)∈ F

(
t,u(t)

)
, (4.4)

where t ∈ I an arbitrary interval. Inclusion (4.4) has an abstract boundary condition

u∈ S⊂Wp,q(I ,V1,V2
)
. (4.5)

Let A : V1 → V2 be an operator (not necessarily linear), the properties of which are to
be specified later. This operator represents the “spacial” part of the inclusion and in ap-
plications it usually stands for a differential operator of the second order from the Banach
space V into its dual V∗. Exponents p and q are usually dual and their qualification is
given in Lemma 4.1. Let F : I ×V1 � V2 be a multivalued map and let S be a nonempty
subset of Wp,q(I ,V1,V2).

By a strong solution to problem (4.4) with boundary condition (4.5) we understand a
function u∈Wp,q(I ,V1,V2) which satisfies boundary condition (4.5) and satisfies inclu-
sion (4.4) on V2 for almost all t ∈ I .

First, we are going to prove a technical lemma, which will be used later and which
provides the qualification of the right-hand side of inclusion (4.4). We will need these
definitions.

Let F : I ×V1 �V2 be a multivalued map. For (t,v)∈ I ×V1 we define

∥
∥F(t,v)

∥
∥
V2

:= sup
{‖ f ‖V2 : f ∈ F(t,v)

}
. (4.6)

Let F : I×V1 �V2 be a multivalued map. We define the Nemyckii operator NF : Lp(I ,V1)
� Lq(I ,V2) by

NF(v) := { f ∈ Lq
(
I ,V2

)
: f (t)∈ F

(
t,v(t)

)
for almost all t ∈ I

}
. (4.7)

The following lemma justifies the above definition and describes the properties of the
Nemyckii operator.

Lemma 4.1. Let K be a compact interval, p,q ≥ 1, V1↩V2 continuously and let F : K ×
V1 �V2 satisfy conditions

(i) F(t,v)⊂V2 is nonempty, closed and convex for all (t,v)∈ K ×V1,
(ii) F(t,·) : V1 �V2 is upper semi-continuous for almost all t ∈ K ,
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(iii) F(t,v) : K ×V1 �V2 is product measurable,

(iv) ‖F(t,v)‖V2 ≤ α(t) +β‖v‖p/qV1
, where α∈ Lq(K) and β ≥ 0,

then the Nemyckii operator NF : Lp(K ,V1) � Lq(K ,V2) has nonempty, closed and convex
values and is upper semi-continuous. Moreover, it satisfies the following property:

un −→ u in Wp,q(I ,V1,V2
)

fn ∈NF
(
un
)
, fn f weakly in Lq

(
K ,V2

)

}

implies that f ∈NF(u). (4.8)

Proof. The proof of the first part of the statement follows directly from [8, page 237].
For p,q ≥ 1 and V1↩V2 it holds that Wp,q(K ,V1,V2)↩C(K ,V2). (See [7, page 173].)
The proof of part two now follows from [1] (see [1, Lemma 14]) and from the obvious
embedding Lq(K)↩L1(K), for q ≥ 1. �

We now specify the properties of the operator A. Let A be locally bounded in the sense
that

‖Av‖V2 ≤ C
(

1 +‖v‖p/qV1

)
(4.9)

for any v ∈V1. Observe that for u∈ Lp(K ,V1) we then have
∫

K

∥
∥Au(t)

∥
∥q
V2
dt ≤

∫

K
Cq
(
1 +
∥
∥u(t)

∥
∥p/q
V1

)q ≤M
∫

K

∥
∥u(t)

∥
∥p
V1

, (4.10)

which is finite because u∈ Lp(K ,V1). We further define operator � by

(�u)(t) := Au(t). (4.11)

If A is bounded in the sense of (4.9), then the above calculation shows that � : Lp(K ,
V1)→ Lq(K ,V2).

We will further need some notion of continuity of �. The following definition turns
out to be optimal.

Operator � : Lp(I ,V1) → Lq(I ,V2) is demicontinuous if un → u in Lp(I ,V1) implies
�(un)⇀�(u) weakly in Lq(I ,V2). Operator � is locally demicontinuous if it is demi-
continuous for any K ⊂ I compact.

We now want to employ the standard technique of partial linearization of the right-
hand side of inclusion (4.4). We need to prove that the solution operator of the linearized
problem has closed graph. This, together with some compactness argument, will guaran-
tee the upper semi-continuity of the solution operator.

Lemma 4.2. Let G : I ×V1×V1 � V2 satisfy assumptions (i)–(iv) of Lemma 4.1 jointly in
V1×V1. Let S be a nonempty and closed subset of Wp,q(I ,V1,V2). Let A be bounded in the
sense of (4.9) and let � defined in (4.11) be locally demicontinuous. Let there exist a closed
Q ⊂Wp,q(I ,V1,V2) such that for any q ∈Q the problem

du

dt
(t) + Au(t)∈G

(
t,u(t),q(t)

)
, u∈ S, (4.12)

has a solution. Denote by T : Q � S the solution mapping. Then T has closed graph.
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Proof. Choose (qn,un) an arbitrary sequence in the graph of T such that (qn,un)→(q0,u0)
in Wp,q(I ,V1,V2)×Wp,q(I ,V1,V2). Since S is closed, we have u0 ∈ S. We need to show
that u0 ∈ T(q0) which means that

du0

dt
(t) + Au0(t)∈G

(
t,u0(t),q0(t)

)
(4.13)

for almost all t ∈ I . We know that

dun
dt

(t) + Aun(t)∈G
(
t,un(t),qn(t)

)
. (4.14)

Let us confine to any K ⊂ I compact. In view of Lemma 4.1, it is sufficient to show that

dun
dt

+ �
(
un
) du0

dt
+ �

(
u0
)

weakly in Lq
(
K ,V2

)
. (4.15)

The convergence dun/dt → du0/dt in Lq(K ,V2) is ensured by the first step of the proof
and the weak convergence �(un)⇀�(u0) follows from the demicontinuity of �. This
proves (4.15) and in view of Lemma 4.1 indeed (4.13) holds for almost all t ∈ K . Since K
is arbitrary, we conclude that (4.13) holds for almost all t ∈ I , which means u0 ∈ T(q0).

�

We are now in the position to prove the main result of this section—the continuation
principle. We again consider problem (4.4) with boundary condition (4.5).

Proposition 4.3. Let G : I ×V1×V1× [0,1] � V2 satisfy the assumptions of Lemma 4.1
jointly in V1×V1 and uniformly on [0,1]. Let G(t,c,c,1)⊂ F(t,c) for all (t,c)∈ I ×V1. Let
A be locally bounded in the sense of (4.9) and � locally demicontinuous. Let S⊂Wp,q(I ,V1,
V2) be nonempty and closed. Let there exist a closed convex Q ⊂Wp,q(I ,V1,V2) such that
for any (s,q)∈ [0,1]×Q the problem

du

dt
(t) + Au(t)∈G

(
t,u(t),q(t),s

)
, u∈ S, (4.16)

has a solution such that the solution operator T : [0,1]×Q � S has the following properties:
(i) for any (s,q)∈ [0,1]×Q, set T(s,q) is Rδ ,

(ii) T is compact,
(iii) T(Q,0)⊂Q,
(iv) for any fixed point q ∈ T(s,q), there exists a neighborhood �q in Q such that T([0,

1]×�q)⊂Q.
Then problem (4.4) together with boundary condition (4.5) has a solution.

Proof. In view of Lemma 4.2 we conclude that the solution operator T has closed graph.
This, together with assumption (ii) gives the upper semi-continuity of T . (See again [3,
Section I, Proposition 3.16].) Assumptions (i), (ii), and (iv) ensure that T is a suitable
homotopy in the sense of the previous section. We can therefore apply Lemma 3.1, the
assumption of which is guaranteed by (iii), and conclude that T(u,1) has a fixed point
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u∈ T(u,1) which is a solution to the inclusion

du

dt
(t) + Au(t)∈G

(
t,u(t),u(t),1

)
, u∈ S. (4.17)

Relation G(t,c,c,1) ⊂ F(t,c) ensures that this fixed point u is a solution to the original
problem. �

5. Illustrating example

As an example we will consider inclusion

du

dt
−Δu∈ F(t,u), u∈ S, (5.1)

where t ∈ I an arbitrary interval and x ∈Ω a bounded subset of Rn and the properties
of F and S are to be specified later. We will look for a strong solution to problem (5.1) in
space W2,2(I ,W1,2(Ω),L2(Ω)). For the sake of simplicity, we denote

W2,2 :=W2,2(I ,W1,2(Ω),L2(Ω)
)
,

L2
L := L2(I ,L2(Ω)

)
.

(5.2)

We will now specify S as follows:

S := {u∈W2,2 : u(0)= u0, u= 0∀(t,x)∈ I × ∂Ω
}
. (5.3)

Note that this definition has meaning, because the functions involved have continuous
representants.

Let the right-hand side F : I ×L2(Ω) � L2(Ω) satisfy the following assumptions:
(i) F(t,v) is nonempty, closed and convex for all (t,v)∈ I ×L2(Ω),

(ii) F is product measurable,
(iii) F(t,·) is upper semi-continuous,
(iv) |F(t,v)| ≤ α(t) +β‖v‖L2 , where α∈ L2(I) and β < 1/2.

It follows from Lemma 4.1, that NF : L2
L � L2

L is upper semi-continuous with nonempty,
closed and convex values.

Let us now define the linearization set

Q := {q ∈W2,2 :
∥
∥q(t)

∥
∥
L2 ≤M ∀t ∈ I

}
, (5.4)

where M is to be specified later. Take q ∈Q arbitrary. The obvious embedding W2,2↩L2
L

gives a nonempty, closed and convex NF(q) ⊂ L2
L. For arbitrary f ∈ NF(q) we will solve

the linearized problem

du

dt
−Δu= f (t), u∈ S. (5.5)

It is well-known that problem (5.5) has a unique strong solution u∈W2,2. (See [5, Chap-
ter 7, Theorem 5].) Moreover, the solution operator K : L2

L →W2,2 such that K f = u is
linear and continuous. Let us now denote u the solution of (5.5) for f ∈NF(q). We will
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first prove that u∈Q. We need to show that ‖u(t)‖L2 ≤M. Multiplying (5.5) by u, inte-
grating over Ω and integrating from 0 to t, we obtain

∫ t

0

∫

Ω

du

dt
u−

∫ t

0

∫

Ω
(Δu)u=

∫ t

0

∫

Ω
f u. (5.6)

Applying the Green theorem and rearranging the terms we obtain

∫ t

0

1
2
d

dt
‖u‖2

L2 −
∫ t

0

∫

∂Ω

∂u

∂ν
u+

∫ t

0

∫

Ω
∇u ·∇u=

∫ t

0

∫

Ω
f u. (5.7)

Since u ∈ S, the boundary integral equals to zero. We apply the Hölder and Young in-
equalities to the right hand-side and obtain

1
2

∥
∥u(t)

∥
∥2
L2 − 1

2

∥
∥u0

∥
∥2
L2 +

∫ t

0
‖∇u‖2

L2 ≤ C1

∫ t

0
‖ f ‖2

L2 +
1
2

∫ t

0
‖u‖2

L2 , (5.8)

such that C1 < 2. Since u= 0 on ∂Ω, we employ the Poincaré inequality to obtain

1
2

∥
∥u(t)

∥
∥2
L2 +B

∫ t

0
‖u‖2

W1,2 ≤ C1

∫ t

0
‖ f ‖2

L2 +
1
2

∥
∥u0

∥
∥2
L2 . (5.9)

Using the properties of F and the definition of Q, we obtain

∫ t

0
‖ f ‖2

L2 ≤
∫ t

0
α2 +β2M ≤ C2 +β2M, (5.10)

which substituted back to (5.9) gives

1
2

∥
∥u(t)

∥
∥2
L2 ≤ C3 +C1β

2M. (5.11)

Since C3 > 0, C1 < 2, β2 < 1/4, it is possible to set M, such that

C3 +C1β
2M ≤ M

2
. (5.12)

Indeed, it is sufficient to take

M := 2C3

1− 2C1β2
. (5.13)

This shows that any solution u to problem (5.5) satisfies u∈ S.
Altogether, we have the following sequence of mappings:

q ∈Q⊂W2,2 −→ q ∈ L2
L �NF(q)⊂ L2

L −→ K
(
NF(q)

)⊂Q ⊂W2,2, (5.14)

where the first mapping is the compact inclusion W2,2↩L2
L, the second one is the Nemy-

ckii map with closed and convex values, and the third one is the linear and continuous
solution map of the linearized problem. The composition T : Q→Q of these three maps
is therefore an upper semi-continous map with closed and convex values. To conclude
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that T has a fixed point, we need to ensure that T is compact or, at least, condensing
with respect to a suitable measure of noncompactness. Due to the compactness of the
first inclusion, it is sufficient that NF maps compact sets on compact (or at least precom-
pact) sets. Let us mention that this condition is satisfied for example, if F is single valued
(then the single valued Nemyckii map becomes continuous), or if NF(q) consists of finite
number of points (compare [9]).
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