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A homogeneous boundary condition is constructed for the parabolic equation (∂t + I −
Δ)u = f in an arbitrary cylindrical domain Ω×R (Ω ⊂ Rn being a bounded domain, I
and Δ being the identity operator and the Laplacian) which generates an initial-boundary
value problem with an explicit formula of the solution u. In the paper, the result is ob-
tained not just for the operator ∂t + I −Δ, but also for an arbitrary parabolic differential
operator ∂t +A, where A is an elliptic operator in Rn of an even order with constant co-
efficients. As an application, the usual Cauchy-Dirichlet boundary value problem for the
homogeneous equation (∂t + I −Δ)u = 0 in Ω×R is reduced to an integral equation in
a thin lateral boundary layer. An approximate solution to the integral equation generates
a rather simple numerical algorithm called boundary layer element method which solves
the 3D Cauchy-Dirichlet problem (with three spatial variables).

Copyright © 2006 A. Kozhevnikov and O. Lepsky. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

It is well known that the initial-boundary value problem with the Dirichlet/Neumann
boundary condition for the parabolic equation (∂t + I − Δ)u = f can be solved using
the Green function. But the Green function can be found explicitly just for a few very
specific domains Ω such as balls and half-spaces. Unfortunately, in the case of an arbitrary
domain Ω, there is no explicit formula for the solution.

In this paper, the following question is investigated. How can one define boundary
conditions for an arbitrary domain Ω in order to obtain an explicitly solvable initial
boundary value problem? An answer is obtained not just for the operator ∂t + I −Δ, but
also for a rather general parabolic differential operator of the form ∂t +A, where A is an
elliptic differential operator of even order with constant coefficients. Similar questions
for elliptic boundary value problems have been investigated in [4].
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It turns out—and this is the first result of the paper—that by replacing the Dirichlet-
Neumann boundary condition with a more complicated homogeneous equation on
boundary, we obtain an explicitly solvable initial-boundary value problem. Moreover,
the solution can be represented by an explicit formula similar to the solution of the equa-
tion (∂t + I −Δ)u= f over the whole spaceRn+1. The anisotropic Sobolev spaces are very
natural for solvability of parabolic initial-boundary value problems. These spaces as well
as the solvability have been investigated by Slobodeckiı̆ [9], Agranovič and Višik [1], V.
A. Solonnikov (see, e.g., [5]), Lions and Magenes [6], Grubb [3], and Eidelman and Zhi-
tarashu [2].

Let n be the unit normal to ∂Ω, pointing towards the exterior of Ω. To state the
boundary condition which gives an explicit solution, let us denote by Ψ− the Dirichlet-
Neumann operator which maps the boundary trace v−|∂Ω×R+ of a function v− satisfying
the equation (∂t + I − Δ)v−(x, t) = 0((x, t) ∈ Ω− := �Ω) into the boundary trace of its
normal derivative ∂nv−|∂Ω×R+ . More precisely, Ψ− is a composition of a Poisson operator
[3, Section 3] solving the problem

(
∂t + I −Δ

)
v−(x, t)= 0, (x, t)∈Ω− ×R+,

v−(x,0)= 0, x ∈Ω−,

v−(x, t)= g(x, t), x ∈ ∂Ω,

(1.1)

and the trace operator ∂nv−|∂Ω×R+ . Replacing Ω− in (1.1) by Ω+ := Ω, we obtain the
operator Ψ+. We show that the equation (∂t + I −Δ)u±(x, t)= f±(x, t)((x, t)∈Ω± ×R+)
under the homogeneous boundary condition ∂nu± −Ψ∓u± = 0 on ∂Ω×R+ has a unique
solution belonging to an anisotropic Sobolev space. We note that the latter boundary
condition is parabolic, that is, the corresponding Lopatinskii condition holds.

As a consequence—and this is the second of two main results of the paper—the inte-
rior/exterior Cauchy-Dirichlet problem

(
∂t + I −Δ

)
v±(x, t)= 0, (x, t)∈Ω± ×R+,

v±(x,0)= 0, x ∈Ω±,

v±(x, t)= g(x, t), x ∈ ∂Ω,

(1.2)

is reduced to an integral equation in a thin exterior/interior lateral boundary layer of
∂Ω×R+. An approximate solution of the integral equation generates a rather simple nu-
merical algorithm solving the interior/exterior Cauchy-Dirichlet problem in the case of
Ω± ⊂Rn (n= 2,3). The algorithm is different from the methods of finite differences, fi-
nite elements, boundary elements, or difference potentials. It can be called boundary layer
element method. It is shown that any solution of the interior/exterior Cauchy-Dirichlet
problem with zero initial data is represented in the form of the layer potential with an
unknown density supported in an arbitrarily thin exterior/interior boundary layer. Such
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layer potential representation is simpler than the representation by either simple-layer
or double-layer potentials in the boundary element method or related representation
by difference potentials [8]. Further, the standard cubic grid, just as in finite difference
method, is used for the calculation of the unknown density. We reduce the problem to
a linear system of NM equations, where N is the number of cubic cells inside the thin
exterior boundary layer to Ω⊂R3, and M is the number of time levels. It turns out that
the system has a lower block-triangular matrix with M equal diagonal blocks. Each block
is a square matrix of order N . The solution of the system needs const·N3M operations
and is obtained using a standard PC for N = 536, M = 10. Examples of an accuracy of the
method are presented.

The first equation (∂t + I −Δ)v±(x, t) = 0 in (1.2) may be replaced by the usual heat
equation (∂t −Δ)u±(x, t)= 0 due to the fact that if v(x, t) satisfies (1.2), then the function
u± = e−tv± is a solution to the following Cauchy-Dirichlet problem:

(
∂t −Δ

)
u±(x, t)= 0, (x, t)∈Ω± ×R+,

u±(x,0)= 0, x ∈Ω±,

u±(x, t)= etg(x, t), x ∈ ∂Ω.

(1.3)

In the next section, instead of I −Δ, we consider a more general case, that is, an ar-
bitrary invertible elliptic differential operator A of even order 2m with constant coeffi-
cients. We prove that under appropriate homogeneous boundary conditions, the operator
∂/∂t +A generates an isomorphism between anisotropic Sobolev spaces with an explicit
formula for the inverse operator.

In [4], similar results are obtained for the elliptic equation (I −Δ)u= f , as well as for
its generalization (I −A)u= f .

2. Theorem on explicit solvability

Some prerequisites, such as the definition of the weighted anisotropic Sobolev spaces as
well as a result on solvability of the Cauchy-Dirichlet problem, are collected below before
the statement of Theorem 2.2.

Let A be a linear differential operator inRn of an even order 2m (m∈N+ := {1,2, . . .}),
with constant coefficients aα ∈ C, that is, A := A(D) :=∑|α|≤2maαD

α, where α is a multi-
index, that is, α := (α1, . . . ,αn), αj ∈N := {0,1,2, . . .}, |α| := α1 + ···+αn, i :=√−1; Dj :=
i−1∂/∂xj ; Dα :=Dα1

1 Dα2
2 ···Dαn

n .
Let ∂Ω be a closed compact infinitely smooth surface in Rn bounding a domain Ω+

and let Ω− be the complement of Ω+ in Rn, where Ω+ is the closure of Ω+.
We consider two equations:

(
∂t +A(D)

)
u±(x, t)= f±(x, t), either (x, t)∈Ω+×R+ or (x, t)∈Ω− ×R+, (2.1)

in short (∂t +A(D))u±(x, t)= f±(x, t), x ∈Ω± ×R+.
The polynomials a(ξ) :=∑|α|≤2maαξ

α and a0(ξ) := ∑|α|=2maαξ
α are called, respec-

tively, the symbol and the principal symbol of A. Let the following condition be satisfied.
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Condition 2.1. There is a constant c > 0 such that

∣
∣q2m + a0(ξ)

∣
∣≥ c

(|ξ|+ |q|)2m
for ξ ∈Rn, |argq| ≤ π

4m
. (2.2)

Weighted anisotropic Sobolev spaces. Let 0≤ s∈R andΩ coincide with eitherRn orRn
+ :=

{x = (x1, . . . ,xn) ∈ Rn : xn > 0} or Ω±. Let Hs(Ω) denote the usual Sobolev spaces over
Ω. Following [1, 9], we consider the anisotropic Sobolev space H(s,s/d)(Ω×R) (0 ≤ s ∈
R, d ∈N+), that is, the completion of the set of all smooth functions u(x, t) with respect
to the norm

‖u‖2
H(s,s/d) (Ω×R) :=

∫∞

0

∥
∥u(x, t)

∥
∥2
Hs(Ω)dt+

∫

Ω

∥
∥u(x, t)

∥
∥2
Hs/d(R)dx. (2.3)

Let Hs(∂Ω) denote the Sobolev spaces over the smooth surface ∂Ω, and let H(s,s/d)(∂Ω
×R) be the anisotropic Sobolev space of functions u(x′, t)(x′ ∈ ∂Ω) with the norm

‖u‖2
H(s,s/d)(∂Ω×R) :=

∫∞

0

∥
∥u(x′, t)

∥
∥2
Hs(∂Ω)dt+

∑

j

∫

∂Ω

∥
∥ϕj(x′)u(x′, t)

∥
∥2
Hs/d(R)dx

′, (2.4)

where {ϕj} is a partition of unity on ∂Ω such that

‖u‖2
Hs(∂Ω) :=

∑

j

∥
∥ϕj(x′)u‖2

Hs(Rn−1). (2.5)

For δ ≥ 0, let H(s,s/d)
(0) (Ω×R+,δ) (0≤ s∈R, d ∈N+) denote the weighted anisotropic

Sobolev space of all functions u(x, t) defined in Ω×R and equal zero for t < 0 and such
that e−δtu∈H(s,s/d)(Ω×R). The norm in this space is defined by

‖u‖H(s,s/d)
(0) (Ω×R+,δ) := ∥∥e−δtu∥∥H(s,s/d)(Ω×R). (2.6)

Similarly, H(s,s/d)
(0) (∂Ω×R+,δ) (0≤ s∈R, d ∈N+) denotes the weighted anisotropic Sob-

olev space of all functions u(x′, t) defined in ∂Ω×R and equal zero for t < 0 and such
that e−δtu∈H(s,s/d)(∂Ω×R). The norm in this space is defined by

‖u‖H(s,s/d)
(0) (∂Ω×R+,δ) := ∥∥e−δtu∥∥H(s,s/d)(∂Ω×R). (2.7)

Let Dn := i−1∂n. It is known that the trace operators are continuos and surjective:

u �−→D
j
nu|∂Ω×R+ : H(s,s/d)

(0)

(
Ω± ×R+,δ

)−→H
(s− j−1/2,(s− j−1/2)/d)
(0)

(
∂Ω×R+,δ

)
(2.8)

for s > j− 1/2.
Let

gj(x′, t)∈H
(2m− j−1/2,(2m− j−1/2)/(2m))
(0)

(
∂Ω×R+,δ

)
( j = 1, . . . ,m− 1). (2.9)
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For the homogeneous equations (2.1), we consider two Cauchy-Dirichlet problems (one
over Ω+×R+ and the other over Ω− ×R+):

(
∂t +A(D)

)
v± = 0, in Ω± ×R+,

D
j
nv± = gj ( j = 0,1, . . . ,m− 1), on ∂Ω×R+,

v±|t=0 = 0, on Ω±.

(2.10)

By the Laplace transform, the Cauchy-Dirichlet problem (2.10) can be formally reduced
to the corresponding boundary value problem depending on the complex parameter p :

(
p+A(D)

)
V±(x, p)= 0, x ∈Ω±,

D
j
nV±(x′, p)=Gj(x′, p) ( j = 0,1, . . . ,m− 1), x′ ∈ ∂Ω.

(2.11)

Under condition (2.2), there exists γ > 0 such that for Re p > γ, the problem (2.11) has
a unique solution belonging to an appropriate Sobolev space. This assertion has been
stated in [10, Theorem 1.4], where it is noted that for the bounded domain Ω+, this fact is
proved in [1], however, the localization technique used in [1] enables one to establish the
assertion for the unbounded domain Ω−. In view of this and using [1, Theorem 9.2], we

obtain that the Cauchy-Dirichlet problem (2.10) has a unique solution v± ∈H(2m,1)
(0) (Ω± ×

R+,δ).
By � and �, we denote the vector operators

� := (I ,Dn, . . . ,Dm−1
n

)|∂Ω×R+ ,

� := (Dm
n , . . . ,D2m−1

n

)|∂Ω×R+ .
(2.12)

It is known that if v±(x, t) is the solution of (2.10), the vectors �v± and �v± are related
by the equation

�v± =Ψ±
(
�v±

)
. (2.13)

Here Ψ± := {Ψ±, jk} j,k=1,...,m is an m×m matrix operator acting on ∂Ω×R+ which can
be called a Dirichlet-to-Neumann mapping. We note that Ψ±, jk is an operator of order

κ :=m+ j− k mapping the space H(s,s/(2m))
(0) (Ω± ×R+) to H(s−κ,(s−κ)/(2m))

(0) (Ω± ×R+).
Let Φ := {Φ jk} j,k=1,...,m be another m×m matrix operator acting on ∂Ω×R+ such that

ord Φ jk =m+ j− k.
For f+(x, t)∈ L2(Ω+×R+,δ), we consider the following conjugation problem (a par-

ticular case of a conjugation problem studied in [2]):
(
∂t +A(D)

)
u+(x, t)= f+(x, t), (x, t)∈Ω+×R, (2.14)

(
∂t +A(D)

)
u−(x, t)= 0, (x, t)∈Ω− ×R, (2.15)

�u+
(
x′, t

)−�u−(x′, t)= 0, (x′, t)∈ ∂Ω+×R, (2.16)

�u+(x′, t)−Φ
(
�u+

)
(x′, t)= 0, (x′, t)∈ ∂Ω+×R, (2.17)

u+(x,0)= 0, x ∈Ω+, (2.18)

u−(x,0)= 0, x ∈Ω−. (2.19)
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We will call the function u(x, t) a solution to the conjugation problem if with some δ > 0,

u(x, t) :=
⎧
⎪⎨

⎪⎩

u+(x, t)∈H(2m,1)
(0)

(
Ω+×R+,δ

)
, (x, t)∈Ω+×R,

u−(x, t)∈H(2m,1)
(0)

(
Ω− ×R+,δ

)
, (x, t)∈Ω− ×R,

(2.20)

and (2.14)–(2.19) hold.

Theorem 2.2. Let Condition 2.1 be satisfied.
Then for any f+(x, t)∈ L2(Ω+×R+,δ) with some δ > 0, the conjugation problem (2.14)–

(2.19) has a “smooth” solution u(x, t) ∈ H(2m,1)
(0) (Rn ×R+,δ) if and only if u(x, t) satisfies

(2.17) with Φ replaced by Ψ−.
If Φ=Ψ−, the solution u(x, t), and consequently u+(x, t) and u−(x, t), can be represented

as

u(x, t)=
∫ t

0
dτ
∫

Rn
Ξ(t− τ,x− ξ) f+(τ,ξ)dξ, (2.21)

where the function Ξ(t,x) is the fundamental solution to the equation (∂t +A(D))u = f+,
that is,

Ξ(x, t)=�−1
(ξ,τ)→(x,t)

1
iτ + a(ξ)

, (2.22)

and �−1
(ξ,τ)→(x,t) denotes the inverse Fourier transform.

If Φ=Ψ−, the Cauchy-Dirichlet problem (2.14), (2.17), and (2.18) is parabolic (i.e., the
corresponding parameter-dependent problem satisfies the Lopatinskii condition) and unique-

ly solvable and the operator �u+ maps surjectively the set of all solutions u+(x, t)∈H(2m,1)
(0)

(Ω+×R+,δ) satisfying (2.17) onto the space

m−1∏

j=0

H
(2m− j−1/2,(2m− j−1/2)/2m)
(0)

(
∂Ω×R+,δ

)
. (2.23)

Proof. Let u(x, t)∈H(2m,1)
(0) (Rn×R+,δ) be a solution to the conjugation problem (2.14)–

(2.19). Then, by (2.15) and (2.16), we get

Ψ−
(
�u+

)
(x′, t)=Ψ−

(
�u−

)
(x′, t)=�u−(x′, t). (2.24)

Since u(x, t)∈H(2m,1)(Rn×R+,δ), �u−(x′, t)=�u+(x′, t). By (2.17), we have

Ψ−
(
�u+

)
(x′, t)=�u−

(
x′, t

)=�u+(x′, t)=Φ
(
�u+

)
(x′, t). (2.25)

Therefore, Φ(�u+)(x′, t)=Ψ−(�u+)(x′, t), which proves the necessity.

Now, let u+(x, t) ∈ H(2m,1)
(0) (Ω+ × R+,δ) and u−(x, t) ∈ H(2m,1)

(0) (Ω− × R+,δ) satisfy
(2.14)–(2.19) with Φ=Ψ−. In particular, u+(x, t) satisfies (2.14), (2.17), and (2.18), that
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is, u+(x, t) is a solution to the initial boundary value problem

(
∂t +A(D)

)
u+(x, t)= f+(x, t), (x, t)∈Ω+×R+,

�u+(x, t)−Ψ−
(
�u+(x, t)

)= 0, (x, t)∈ ∂Ω+×R+,

u+(x,0)= 0, x ∈Ω+.

(2.26)

Following [1], to check the Lopatinskii condition, we suppose that Ω+ is a hyperplane
xn > 0 and replace ∂t by q2m, replace A(D) = A(D′,Dn) by its principal part A0(D′,Dn),
and then by a0(ξ′,Dn). In this case, it is enough to check that for f+(x, t)≡ 0, the solution
u+(x′,xn,q)∈H2m(Rn−1×R+) to the problem

(
q2m +A0

(
D′,Dn

))
u+
(
x′,xn,q

)= 0, x′ ∈Rn−1, xn ∈R+, |argq| ≤ π

4m
,

Dm+k
n u+(x′,0,q)−Ψ−

(
Dk

nu+(x′,0,q)
)= 0, k = 0,1, . . . ,m− 1,

lim
xn→∞

u+
(
x′,xn,q

)= 0

(2.27)

is the identical zero. Indeed, the Cauchy data of u+ belongs to the subspace

�u+(x′,q)−Ψ−
(
�u+

)
(x′,q)= 0. (2.28)

On the other hand, since u+ is the solution to the homogeneous equation

(
q2m +A0(D)

)
u+(x,q)= 0, (2.29)

its Cauchy’s data belongs to the subspace

�u+(x′,q)−Ψ+
(
�u+

)
(x′,q)= 0. (2.30)

It is known [10, Proposition 2.3] that under Condition 2.1, the intersection of two sub-
spaces consists solely of the zero element, that is, the Lopatinskii condition holds. This
together means that the problem (2.26) is parabolic.

Now, let f+(x, t) ∈ L2(Ω+×R+,δ) and u+(x, t) ∈H(2m,1)
(0) (Ω+×R+,δ) be a solution to

the problem (2.26). By (2.8), we have

�u+ ∈
m−1∏

j=0

H
(2m− j−1/2,(2m− j−1/2)/(2m))
(0)

(
∂Ω×R+,δ

)
. (2.31)

We denote by u−(x, t) the solution to the Cauchy-Dirichlet problem

(
∂t +A(D)

)
u−(x, t)= 0, (x, t)∈Ω− ×R+,

�u−(x′, t)=�u+(x′, t), (x, t)∈ ∂Ω×R+,

u−(x,0)= 0, x ∈Ω−.

(2.32)

There exists a unique solution to the latter problem u−(x, t)∈H(2m,1)
(0) (Ω− ×R+,δ).
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In view of the definition of the Dirichlet-to-Neumann mapping, we have

�u−(x, t)=Ψ−
(
�u−(x, t))=Ψ−(�u+(x, t)

)=�u+(x, t). (2.33)

Therefore, we get for the functions u±(x, t) belonging to H(2m,1)
(0) (Ω± ×R+,δ) that their

normal derivatives up to order 2m− 1 coincide on the interface ∂Ω. From this follows that
the function u(x, t) defined by (2.20) belongs to H(2m,1)

(0) (Rn ×R+,δ). Moreover, u(x, t)
satisfies the equation

(
∂t +A(D)

)
u(x, t)= f (x, t), (x, t)∈Rn×R, (2.34)

where

f (x, t)=
⎧
⎨

⎩

f+(x, t), (x, t)∈Ω+×R+

0, (x, t)∈Ω− ×R+.
(2.35)

Thus, it was proved that each solution to (2.26) has a smooth extension which satisfies
(2.34). Conversely, let us prove that each solution to (2.34) with f+(x, t)∈ L2(Ω+×R+,δ)

satisfies (2.14)–(2.19). Indeed, since u ∈H(2m,1)
(0) (Rn×R+,δ), we have for u+ = u|Ω+ and

u− = u|Ω− that

�u+(x′, t)=�u−(x′, t), �u+(x′, t)=�u−(x′, t). (2.36)

Since (∂t + A(D))u− = 0, then �u−(x′, t) = Ψ−(�u−)(x′, t), and therefore �u+(x′, t)−
Ψ−(�u+)(x′, t) = 0. It follows that u+ and u− satisfy (2.14)–(2.19). In particular, the re-
striction u+ of u is a unique solution to (2.26). This means that the parabolic problem
(2.26) has a unique solution u+(x, t) belonging to H(2m,1)

(0) (Ω+×R+,δ) for each right-hand
side f+(x, t)∈ L2(Ω+×R+,δ). In view of (2.34), we get the formula (2.21).

To prove the last sentence of the theorem, we use the known fact that the operator �

maps surjectively the space H(2m,1)
(0) (Ω+×R+,δ) onto the space

m−1∏

j=0

H
(2m− j−1/2,(2m− j−1/2)/(2m))
(0) (∂Ω×R+,δ). (2.37)

Let us note that the boundary condition �u+(x′, t) = Ψ−(�u+)(x′, t) means that there
are no constraints for the Dirichlet data �u+(x′, t) and just restrictions for the Neu-
mann data �u+(x′, t). Therefore, the operator � maps surjectively the subspace of all

solutions u+(x, t) ∈ H(2m,1)
(0) (Ω+ ×R+,δ) satisfying �u+(x′, t) = Ψ−(�u+)(x′, t) onto the

space (2.37). �

3. Numerical algorithm to the exterior/interior Cauchy-Dirichlet problem

Near ∂Ω a normal vector field, n(x)= (n1(x), . . . ,nn(x)) is defined as follows: for x0 ∈ ∂Ω,
n(x0) is the unit normal to ∂Ω, pointing towards the exterior of Ω+. We set n(x) := n(x0)
for x of the form x = x0− sn(x0)=: ζ(x0,s), where x0 ∈ ∂Ω, s∈ (−ε,ε). Here ε > 0 is taken
to be so small that the representation of x in terms of x0 ∈ ∂Ω and s ∈ (−ε,ε) is unique
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and smooth, that is, ζ is bijective and C∞ with C∞ inverse, from ∂Ω× (−ε,ε) to the set
ζ(∂Ω× (−ε,ε)) ⊂ Rn. We denote by Ωbl

+ := ζ(∂Ω× (0,ε)) the interior boundary layer to
∂Ω, and denote by Ωbl− := ζ(∂Ω× (−ε,0)) the exterior boundary layer to ∂Ω. Let us note
that Ωbl

+ ⊂Ω+ and Ωbl− ⊂Ω−.

We denote the complements to the boundary layers by �Ωbl
± := Rn \Ωbl

± , where Ω
bl
± is

the closure of Ωbl± .
The theorem remains valid after the replacement of Ω+ and Ω−, respectively, by the

boundary layers Ωbl± and by �Ωbl
± in the statement of the theorem as well as in the state-

ment of the conjugation problem (2.14)–(2.19). The proof is similar.
As a result, we obtain

u∓(x, t) :=
∫ t

0
dτ
∫

Ωbl±
Ξ(t− τ,x− ξ) f±(τ,ξ)dξ,

f± ∈ L2
(
Ωbl
± ×R+,δ

)
.

(3.1)

Moreover, the function u∓(x, t) is a solution to the Cauchy-Dirichlet problem

(
∂t +A(D)

)
u∓(x, t)= 0, in (x, t)∈Ω∓ ×R+, u∓ ∈H(2m,1)(Ω∓ ×R+,δ

)
,

(
�u∓

)|∂Ω×R+ = g, on ∂Ω×R+,

u∓|t=0 = 0, on Ω∓,

(3.2)

if and only if f±(x, t) is a solution to the integral equation

g(x, t)=�
∫ t

0
dτ
∫

Ωbl±
Ξ(t− τ,x− ξ) f±(τ,ξ)dξ (x, t)∈ ∂Ω×R+. (3.3)

Using the latter integral equation, let us construct an approximate solution to the
Cauchy-Dirichlet problem

(
∂t + I −Δ

)
u+(x, t)= 0, in Ω+× (0,T), u+ ∈H(2,1)(Ω+× (0,T)

)
,

u+|∂Ω×(0,T) = g(x, t), on ∂Ω× (0,T), g(x, t)∈H(3/2,3/4)(∂Ω× (0,T)
)
,

u+|t=0 = 0, on Ω+.

(3.4)

We consider a rectangular grid in the space Rn (n = 1,2,3) and choose only those cells
which belong to the thin exterior boundary layer Ωbl− . Denoting these cells by ωk (k =
1, . . . ,N), we define the indicator fk,r(x, t) of the set ωk × (tr−1, tr), where t j = jT/M, j =
0,1, . . . ,M, that is,

fk,r(x, t) :=
⎧
⎨

⎩
1, x ∈ ωk ×

(
tr−1, tr

)
,

0 otherwise.
(3.5)

We introduce basic functions

Fk,r(x, t) :=
∫ t

0
dτ
∫

ωk

Ξ
(
t− τ,x− ξ

)
fk,r(τ,ξ)dξ, (x, t)∈Ω+×R+. (3.6)
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Let us note that since the functions fk,r are linearly independent and the operator in the
right-hand side of (3.6) is invertible, then the functions Fk,r are linearly independent.

It is not difficult to evaluate Fk,r numerically. Indeed, the interior integral over the cell

ωk =
(
ξi−1,ξi

)× (ηi−1,ηi
)× (ζi−1,ζi

)⊂R3 (3.7)

can be obtained as an algebraic expression including different values of the error function
erf(x) := (2/

√
π)
∫ x

0 exp(−p2)dp. Let

Ξi(τ,ξ) := erf
(
ξi− ξ

2
√
τ

)
− erf

(
ξi−1− ξ

2
√
τ

)
, ξ,ξi ∈R, τ > 0. (3.8)

Then for x = (ξ,η,ζ)∈R3, we obtain, in view of (3.5),

Fk,r(x, t)= Fk,r(ξ,η,ζ , t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−3

∫ t−tm−1

0
Ξi(τ,ξ)Ξ j(τ,η)Ξl(τ,ζ)eτdτ, t ∈ (tm−1, tm

]
,

2−3

∫ t−tm−1

t−tm
Ξi(τ,ξ)Ξ j(τ,η)Ξl(τ,ζ)eτdτ, t > tm,

0, t ≤ tm−1.
(3.9)

The integral in the variable τ is calculated numerically. Analogously to the boundary ele-
ment method, the basic functions Fk,r(x, t) can be called lateral boundary layer elements.
Looking for an approximate solution to (3.4) in the form

v(x, t)=
N∑

k=1

M∑

r=1

ck,rFk,r(x, t), (3.10)

we use NM different points (xj , ti)∈ ∂Ω× (0,T) ( j = 1, . . . ,N , i= 1, . . . ,M) to construct
a linear system with respect to ck,r :

g
(
xj , ti

)=
N∑

k=1

M∑

r=1

ck,rFk,r
(
xj , ti

)
( j = 1, . . . ,N , i= 1, . . . ,M). (3.11)

It turns out that the system has a lower block-triangular matrix with equal diagonal
blocks. Each block is a square matrix of order N . Therefore, to solve the system using
the Gaussian elimination, we need the number of operations which is proportional to
N3M. Solving the latter system, we obtain an approximate solution to the problem (3.4)
in the form (3.10).

Calculating numerically the norm ‖v− g‖ in the space L2(∂Ω× (0,T)) and comparing
it with ‖g‖, we get an accuracy of the approximate solution. We can also compare the
values of v(x, t) in (3.10) and g(x, t) in (3.4) at different points of the lateral boundary
∂Ω×R+ and take into account the maximum principle.

Similarly, replacing the exterior boundary layer Ωbl
+ by the interior boundary layer

Ωbl− and considering the corresponding indicators fk,r , we get a solution to the exterior
Cauchy-Dirichlet problem in the form (3.10).
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Numerical examples. We will consider the problem (3.4) in the cylinder Ω+ × [0,T],

where T = 2.5, Ω+ := {x = (x1,x2,x3) ∈ R3 : r :=
√
x2

1 + x2
2 + x2

3 < 1} is the unit ball, and
g(x, t) := t. Let us construct numerical approximations of these solutions using the previ-
ous algorithm. The algorithm was implemented in C. We consider three Cartesian cubic
grids with step sizes h= 1,0.5,025. Using these grids, we produce exterior boundary lay-
ers for the unit ball Ω which consists, respectively, of either 128, or 224, or 536 cells.
We choose the same number of either 128, or 224, or 536 boundary points belonging to
the intervals connecting the centers of the boundary layer cells with the origin. To con-
struct the boundary layer of the cylinder Ω+ × [0,T], we put M = 10. To calculate the
coefficients Fk(xj) of the linear system (3.11), we evaluate the integrals (3.6) using the
following known procedure of the ten-point Gaussian integration for an integral over the
interval [a,b] (see, e.g., [7, Section 4.5]). Solving the linear system (3.11) using the stan-
dard LU decomposition for equal diagonal blocks (see, e.g., [7, Section 2.3]), we get the
coefficients ck,r . Then by (3.10), we can obtain values of the approximate solution v(x, t)
in different points. Integrating numerically, we get the relative error

‖v− g‖L2(∂Ω×(0,T))

‖g‖L2(∂Ω×(0,T))
≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.358 for h= 1,

0.031 for h= 0.5,

0.0031 for h= 0.25.

(3.12)

Thus, the presented numerical method gives a rather accurate approximation. The results
obtained so far are quite encouraging but we have considered only relatively simple test
cases. We plan to consider more sophisticated cases in the near future.
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