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We obtain some uniqueness results for the Dirichlet problem for second-order elliptic
equations in an unbounded open set Ω without the cone property, and with data de-
pending on appropriate weight functions. The leading coefficients of the elliptic operator
are VMO functions. The hypotheses on the other coefficients involve the weight function.
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1. Introduction

Let Ω be an open subset of Rn, n ≥ 3. Consider in Ω the uniformly elliptic differential
operator with measurable coefficients

L=−
n∑

i, j=1

ai j
∂2

∂xi∂xj
+

n∑

i=1

ai
∂

∂xi
+ a, (1.1)

and the Dirichlet problem

Lu= 0, u∈W2,p(Ω)∩
o
W1,p(Ω), (D)

with p ∈]1,+∞[.
Suppose that Ω verifies suitable regularity assumptions.
If p ≥ n, ai j ∈ L∞(Ω) (i, j = 1, . . . ,n), and the coefficients ai (i= 1, . . . ,n), a satisfy cer-

tain local summability conditions (with a > 0), then it is possible to obtain a uniqueness
result for the problem (D) using a classical result of Alexandrov and Pucci (see [17] for
the case of bounded open sets and [6, Section 1] for the unbounded case).

If p < n, some more assumptions on the ai j ’s are necessary to get uniqueness results for
the problem (D). IfΩ is bounded, problem (D) has been widely studied by several authors
under various hypotheses on the leading coefficients. In particular, if the coefficients ai j
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2 Uniqueness results for elliptic problems with singular data

belong to the space Co(Ω), then uniqueness results for problem (D) have been obtained
(see [12–15]). On the other hand, when the coefficients ai j are required to be discon-
tinuous, the classical result by Miranda [16] must be quoted, where the author assumed
that the ai j ’s belong to W1,n(Ω) (and consider the case p = 2). More recently, a relevant
contribution has been given in [11, 22], where the coefficients ai j are supposed to be in
the class VMO and p ∈]1,∞[; observe here that VMO contains both classes Co(Ω) and
W1,n(Ω) (see [10]). If Ω is unbounded, uniqueness results for problem (D), under as-
sumptions similar to those required in [16], have been for istance obtained in [4, 18, 19]
with p = 2 and in [5] with p ∈]1,∞[. Moreover, futher uniqueness results for (D), when
the ai j ’s are in VMO and p ∈]1,∞[, can be found in [6, 9].

Suppose now that Ω has singular boundary. In [8], a problem of type (D) has been
investigated, with (ai j)xk , ai and a singular near a nonempty subset Sρ of ∂Ω, and p = 2.
In particular, the data are supposed to be depending on an appropriate weight function ρ
related to the distance function from Sρ.

The aim of this paper is to obtain uniqueness results for a Dirichlet problem of type
(D) under hypotheses weaker than those of [8] on the ai j ’s, and with p > 1. More precisely,
if there exist extensions aoi j of the coefficients ai j (i, j = 1, . . . ,n) in VMO(Ωo)∩ L∞(Ωo),
where Ωo is a regular open set containing Ω, and the functions ρai (i= 1, . . . ,n), ρ2a are
assumed to be bounded with ess infΩ ρ2a > 0, we can prove a uniqueness result for the
problem

Lu= 0, u∈W2,p
loc

(
Ω \ Sρ

)∩
o
W

1,p
loc

(
Ω \ Sρ

)∩Lpt (Ω), (D1)

where L
p
t (Ω), t ∈R, is a weighted Sobolev space.

Observe that if Sρ = ∂Ω and Ω has the segment property, we are able to deduce from
the above result that the problem

u∈W2,p
loc (Ω)∩Lp(Ω), Lu= 0, (D2)

admits only the trivial solution.

2. Notation and function spaces

Let G be any Lebesgue measurable subset of Rn and let Σ(G) be the collection of all
Lebesgue measurable subsets of G. If F ∈ Σ(G), denote by |F| the Lebesgue measure of F
and by �(F) the class of restrictions to F of functions ζ ∈ C∞o (Rn) with F ∩ suppζ ⊆ F.
Moreover, for p ∈ [1,+∞], let L

p
loc(F) be the class of functions g such that ζg ∈ Lp(F) for

all ζ ∈�(F).
Let Ω be an open subset of Rn. We put

Ω(x,r)=Ω∩B(x,r) ∀x ∈Rn, ∀r ∈R+, (2.1)

where B(x,r) is the open ball of radius r centered at x.
Denote by �(Ω) the class of all measurable functions ρ : Ω→R+ such that

γ−1ρ(y)≤ ρ(x)≤ γρ(y) ∀y ∈Ω, ∀x ∈Ω
(
y,ρ(y)

)
, (2.2)
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where γ ∈R+ is independent of x and y. For ρ ∈�(Ω), we put

Sρ =
{
z ∈ ∂Ω : lim

x→z ρ(x)= 0
}
. (2.3)

It is known that

ρ∈ L∞loc(Ω), ρ−1 ∈ L∞loc

(
Ω \ Sρ

)
, (2.4)

and, if Sρ 
= ∅,

ρ(x)≤ dist
(
x,Sρ

) ∀x ∈Ω (2.5)

(see [7, 20]).
If r ∈N, 1≤ p ≤ +∞, s∈R, and ρ ∈�(Ω), we consider the space W

r,p
s (Ω) of distri-

butions u on Ω such that ρs+|α|−r∂αu∈ Lp(Ω) for |α| ≤ r, equipped with the norm

‖u‖Wr,p
s (Ω) =

∑

|α|≤r

∥∥ρs+|α|−r∂αu
∥∥
Lp(Ω). (2.6)

Moreover, we denote by
o
W

r,p
s (Ω) the closure of C∞o (Ω) in W

r,p
s (Ω) and put W

0,p
s (Ω) =

L
p
s (Ω). A detailed account of properties of the above-defined function spaces can be

found in [21].
If Ω has the property

∣∣Ω(x,r)
∣∣≥Arn ∀x ∈Ω, ∀r ∈]0,1], (2.7)

where A is a positive constant independent of x and r, it is possible to consider the space
BMO(Ω, t) (t ∈R+) of functions g ∈ L1

loc(Ω) such that

[g]BMO(Ω,t) = sup
x∈Ω
r∈]0,t]

∫
−
Ω(x,r)

∣∣∣∣g −
∫
−
Ω(x,r)

g
∣∣∣∣dy < +∞, (2.8)

where
∫−

Ω(x,r)
gdy=(1/|Ω(x,r)|)∫Ω(x,r) g dy. We will say that g ∈VMO(Ω) if g ∈ BMO(Ω)=

BMO(Ω, tA), where

tA = sup
t∈R+

⎛
⎜⎜⎝ sup

x∈Ω
r∈]0,t]

rn∣∣Ω(x,r)
∣∣ ≤

1
A

⎞
⎟⎟⎠ , (2.9)

and [g]BMO(Ω,t) → 0 fort→ 0+.
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3. Some density results

Let ρ ∈�(Ω). We consider the following conditions on ρ.
(i1) There exists an open subset Ωo of Rn with the segment property such that

Ω⊂Ωo, ∂Ω \ Sρ ⊂ ∂Ωo. (3.1)

(i2) H = infΩ ρ−n(x)|Ω(x,ρ(x))| ∈R+.

Remark 3.1. If condition (i2) holds, then it is possible to find a function σ ∈�(Ω)∩
C∞(Ω)∩C0,1(Ω) which is equivalent to ρ and such that

∣∣∂ασ(x)
∣∣≤ cασ1−|α|(x) ∀x ∈Ω, ∀α∈Nn

o , (3.2)

where cα is independent of x (see [20]).

Fix r ∈N and p ∈ [1,+∞[. We denote by
o
Wr,p(Ω \ Sρ) the space of distributions u on

Ω such that

u∈Wr,p(Ω), suppu⊂Ω \ Sρ. (3.3)

Lemma 3.2. Assume that condition (i1) holds. Then �(Ω \ Sρ) is dense in
o
Wr,p(Ω \ Sρ).

Proof. Fix u ∈
o
Wr,p(Ω \ Sρ) and denote by uo the zero extension of u to Ωo. It is easy

to prove that uo belongs to Wr,p(Ωo). It follows from (i1) that there exists a sequence
{uk}k∈N ⊂�(Ωo) such that

uk −→ uo in Wr,p(Ωo
)

(3.4)

(see [1, Theorem 3.18]).
Let ψ ∈�(Ω \ Sρ) such that ψ = 1 on suppu. Observe that {ψuk}k∈N ⊂�(Ω \ Sρ) and

∥∥ψuk −u
∥∥
Wr,p(Ω) ≤

∥∥ψ
(
uk −uo

)∥∥
Wr,p(Ωo) ≤ c1

∥∥uk −uo
∥∥
Wr,p(Ωo), (3.5)

where c1 depends on n,ψ. Thus the statement is a consequence of (3.4). �

Lemma 3.3. Assume that conditions (i1) and (i2) hold. Then �(Ω \ Sρ) is dense inW
r,p
s (Ω).

Proof. It follows from (i1), (i2), and [20, Theorem 4.1] that there exists a sequence {δk}k∈N
⊂�(Ω \ Sρ) such that

lim
k→+∞

∂α
(
1− δk(x)

)= 0 ∀x ∈Ω, ∀α∈Nn
o , (3.6)

sup
k∈N

∣∣∂αδk(x)
∣∣≤ cαρ−|α|(x) ∀x ∈Ω, ∀α∈Nn

o , (3.7)

where cα is independent of x.
Fix u∈Wr,p

s (Ω). Observe that condition (3.7) implies that δku∈Wr,p
s (Ω) for all k ∈

N. Moreover, by (3.6) we have that

δku−→ u in W
r,p
s (Ω). (3.8)
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On the other hand, using (2.4), it is easy to show that δku ∈Wr,p(Ω), and so δku ∈o
Wr,p(Ω \ Sρ). For each k ∈ N, Lemma 3.2 yields that there exists a sequence {ukh}h∈N ⊂
�(Ω \ Sρ) such that

ukh −→ δku in Wr,p(Ω). (3.9)

Moreover, let ψk ∈ C∞o (Rn) such that ψk = 1 on supp(δku). Thus by (2.4), we have

∥∥ψkukh− δku
∥∥
W

r,p
s (Ω) ≤ c1

∥∥ukh− δku
∥∥
Wr,p(Ω), (3.10)

where c1 ∈ R+ depends on ρ, r, s, k. It follows from (3.9) that there exists hk ∈ N such
that

∥∥ψkukhk − δku
∥∥
W

r,p
s (Ω) ≤

1
k
. (3.11)

If ϕk = ψk ukhk , k ∈N, we obtain from (3.8) and (3.11) that

ϕk −→ u in W
r,p
s (Ω), (3.12)

and the lemma is proved. �

If r ∈N, 1 ≤ p < +∞, we will denote by
o
W

r,p
loc(Ω \ Sρ) the set of distributions u on Ω

such that ζu∈
o
Wr,p(Ω) for any ζ ∈�(Ω \ Sρ).

Lemma 3.4. Assume that conditions (i1) and (i2) hold. Then
o
W

r,p
loc

(
Ω \ Sρ

)∩Wr,p
s (Ω)=

o
W

r,p
s (Ω). (3.13)

Proof. It is clearly enough to show that

o
W

r,p
loc

(
Ω \ Sρ

)∩Wr,p
s (Ω)⊆

o
W

r,p
s (Ω). (3.14)

Let u ∈
o
W

r,p
loc(Ω \ Sρ)∩Wr,p

s (Ω) and consider a sequence {δk}k∈N ⊂�(Ω \ Sρ) satis-
fying (3.6) and (3.7). Since each δku belongs to

o
Wr,p(Ω), for any k ∈ N, there exists a

sequence {ukh}h∈N ⊂ C∞o (Ω) such that

ukh −→ δku in Wr,p(Ω). (3.15)

Letψk ∈ C∞o (Rn) such thatψk = 1 on supp(δku). Sinceψkukh ∈ C∞o (Ω), the same argument
used in Lemma 3.3 allows to deduce from (3.15) that for every k ∈N, there exists hk ∈N
such that

∥∥ψkukhk − δku
∥∥
W

r,p
s (Ω) ≤

1
k
. (3.16)

We put ϕk = ψkukhk for each k. Therefore it follows from (3.16) that

∥∥ϕk −u
∥∥
W

r,p
s (Ω) ≤

1
k

+
∥∥δku−u

∥∥
W

r,p
s (Ω). (3.17)
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As the sequence {δk}k∈N satisfies (3.8), (3.17) yields that the sequence {ϕk}k∈N converges
to u in W

r,p
s (Ω), and hence (3.14) holds. �

4. Main results

Let Ω be an open subset of Rn, n≥ 3, with the segment property. Fix ρ ∈�(Ω)∩L∞(Ω)
and consider the following condition on Ω.

(h1) There exists an open subset Ωo of Rn with the uniform C1,1-regularity property,
such that

Ω⊂Ωo, ∂Ω \ Sρ ⊂ ∂Ωo. (4.1)

Remark 4.1. If condition (h1) holds and ρ ∈�(Ω)∩ L∞(Ω), then Ω satisfies (i2) (see
[20]).

Let p ∈]1,+∞[, and let L be the differential operator in Ω defined by

L=−
n∑

i, j=1

ai j
∂2

∂xi∂xj
+

n∑

i=1

ai
∂

∂xi
+ a. (4.2)

Consider the following conditions on the coefficients of L:
(h2) there exist extensions aoi j of ai j to Ωo such that

aoi j = aoji ∈ L∞
(
Ωo
)∩VMO

(
Ωo
)
, i, j = 1, . . . ,n,

∃ν∈R+ :
n∑

i, j=1

aoi jξiξ j ≥ ν|ξ|2 a.e. in Ωo, ∀ξ ∈Rn,
(4.3)

(h3)

ai ∈ L∞1 (Ω), i= 1, . . . ,n, a∈ L∞2 (Ω),

ao = ess inf
Ω

(
σ2(x)a(x)

)
> 0,

(4.4)

where σ is the function defined in Remark 3.1.
Moreover, we suppose that the following hypothesis on ρ holds:
(h4)

lim
k→+∞

(
sup
Ω\Ωk

((
σ(x)

)
x + σ(x)

(
σ(x)

)
xx

))
= 0, (4.5)

where

Ωk =
{
x ∈Ω : σ(x) >

1
k

}
, k ∈N. (4.6)
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In the proof of our main theorem, we need the following uniqueness result.

Lemma 4.2. Assume that conditions (h1)–(h4) hold and also that p > n/2. Then the problem

Lu= 0, u∈W2,p
loc (Ω),

lim
x→xo

(
σsu
)
(x)= 0, ∀xo ∈ ∂Ω,

lim
|x|→+∞

(
σsu
)
(x)= 0, if Ω is unbounded,

(4.7)

admits only the zero solution.

Proof. The statement can be proved as [2, Corollary 5.4]. In fact, the proof of that result
also works if the condition Sρ = ∂Ω is replaced by the assumption (h1). �

Theorem 4.3. Suppose that conditions (h1)–(h4) are satisfied. Then for any t ∈R, the prob-
lem

u∈W2,p
loc

(
Ω \ Sρ

)∩
o
W

1,p
loc

(
Ω \ Sρ

)∩Lpt (Ω), Lu= 0, (4.8)

admits only the zero solution.

Proof. Let u be a solution of the problem (4.8). It follows from [3, Theorem 5.2] that

u ∈W
2,p
t+2(Ω). Moreover, u belongs to W

1,p
t+1(Ω), and hence Lemma 3.4 yields that u ∈

W
2,p
t+2(Ω)∩

o
W

1,p
t+1(Ω). Using Remark 3.1, it is easy to prove that

σt+2u∈W2,p(Ω)∩
o
W1,p(Ω). (4.9)

Put v = σt+2u and denote by vo the zero extension of v to Ωo. Then

vo ∈W2,p(Ωo
)∩

o
W1,p(Ωo

)
(4.10)

by Lemma 3.3. Suppose first that p > n/2. By the Sobolev embedding theorem, vo belongs
to C0(Ωo)∩

o
W1,p(Ωo), and hence vo|∂Ωo = 0. On the other hand, vo ∈W2,p(Ωo), so that

another application of the Sobolev embedding theorem gives that lim|x|→+∞ vo(x) = 0.
Thus by (h1), we have that

lim
|x|→+∞

(
σt+2u

)
(x)= 0,

(
σt+2u

)
(x)|∂Ω = 0. (4.11)

In this case the statement follows now from Lemma 4.2.
Assume now that p ∈]1,n/2]. Then by the Sobolev embedding theorem, we have that

vo ∈ Lq(Ωo), where 1/q ≥ 1/p− 2/n. It follows from [3, Theorem 5.2] that vo ∈W2,q
2 (Ωo),

and hence vo belongs to W2,q(Ωo) by (2.4). If q > n/2, the previous case can be used to
complete the proof. If finally q ≤ n/2, an iterated application of [3, Theorem 5.2] yields
that vo ∈W2,q′(Ωo) with q′ > n/2. Thus the first case applies again to complete the proof.

�

As an application of Theorem 4.3, we consider the case Sρ = ∂Ω (examples of such
situation can for instance be found in [20]). The condition (h1) is obviously satisfied by
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each Ωo ⊃Ω with the uniformC1,1-regularity property; in this case, condition (h2) means
that the coefficients ai j admit extensions outside Ω in the class L∞(Ωo)∩VMO(Ωo).

Corollary 4.4. Assume that (h2), (h3), (h4) hold and that Sρ = ∂Ω. Then the problem

u∈W2,p
loc (Ω)∩Lp(Ω), Lu= 0 (4.12)

admits only the zero solution.

Proof. The statement follows from Theorem 4.3 observing that, in this case, u belongs to
o
W

1,p
loc (Ω). �
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