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We consider the problem −div(|∇u|p−2∇u)= a(x)(um + λun),x ∈RN ,N ≥ 3, where 0 <
m < p− 1 < n,a(x)≥ 0,a(x) is not identically zero. Under the condition that a(x) satisfies
(H), we show that there exists λ0 > 0 such that the above-mentioned equation admits at
least one solution for all λ ∈ (0,λ0). This extends the results of Laplace equation to the
case of p-Laplace equation.
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In this work, we are interested in studying the existence of solutions to the following
quasilinear equation:

−div
(|∇u|p−2∇u)= a(x)

(
um + λun

)
, x ∈RN , N ≥ 3, (1)

where 0 < m < p− 1 < n, a(x) ≥ 0, a(x) is not identically zero. We will assume through-
out the paper that a(x)∈ C(RN ). Equations of the above form are mathematical models
occuring in studies of the p-Laplace equation, generalized reaction-diffusion theory [1],
non-Newtonian fluid theory, and the turbulent flow of a gas in porous medium [2]. In the
non-Newtonian fluid theory, the quantity p is characteristic of the medium. Media with
p > 2 are called dilatant fluids and those with p < 2 are called pseudoplastics. If p = 2,
they are Newtonian fluids.

Problem (1) for bounded domains with zero Dirichlet condition has been extensively
studied (even for more general sublinear functions). We refer in particular to [3–10] (see
also the references therein). When p = 2, the related results have been obtained by [11–
16] (including bounded domains with zero Dirichlet condition or RN ). Our existence
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results extend that of Brezis and Kamin (see [11, Theorem 1]) for semilinear problem,
and complement results in [3–10].
u∈W1,p(RN )∩C1(RN ) is called a entire weak solution to (1) if

∫

RN
|∇u|p−2∇u ·∇ψdx =

∫

RN
a(x)

(
um + λun

)
ψdx ∀ψ ∈ C∞0

(
RN
)

(2)

and u > 0 in RN .

Definition 1. u∈W1,p(RN )∩C1(RN ) is called a supersolution to problem

div
(|∇u|p−2∇u)+ f (x,u)= 0 (3)

if
∫

RN
|∇u|p−2∇u ·∇ψdx ≥

∫

RN
f (x,u)ψdx ∀ψ ∈ C∞0

(
RN
)

(4)

and u > 0 in RN . As always, a subsolution u is defined by reversing the inequalities.

From [3], we have the following lemma.

Lemma 1. Suppose that f (x,u) is defined on RN+1 and is locally Hölder continuous (with
exponent λ ∈ (0,1)) in x. u is a subsolution and u is a supersolution to (3) with u ≤ u on
RN , and suppose that f (x,u) is locally Lipschitz continuous in u on the set

{
(x,u) : x ∈RN , w(x)≤ u≤ v(x)

}
. (5)

Then, (3) possesses an entire solution u(x) satisfying

w(x)≤ u(x)≤ v(x), x ∈RN . (6)

Definition 2. Say that a function a(x) ∈ C(RN ), a(x) ≥ 0, has the property (H) if the
linear problem

−div
(|∇u|p−2∇u)= a(x), in RN , (7)

has a bounded solution.

Remark 1. If a(x) satisfies

H∞ =
∫∞

0

(
s1−N

∫ s

0
tN−1ψ(t)dt

)1/(p−1)

ds <∞, (8)

where ψ(r)=max|x|=r a(x), then a(x) has the property (H).
In fact, because

V(x)=
∫∞

|x|

(
1

sN−1

∫ s

0
σN−1ψ(σ)dσ

)1/p−1

ds (9)

which is a solution for the −div(|∇V |p−2∇V)= ψ(r) in RN and lim|x|→∞V(x)= 0, so V
is a supersolution for (7). On the other hand, 0 is a subsolution for (7), then (7) exists
bounded entire solution.
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Remark 2. If N ≥ 3, N > p, then condition (8) of Remark 1 is replaced by

0 <
∫∞

1
r1/(p−1)ψ(r)1/(p−1)dr <∞ if 1 < p ≤ 2, (A)

0 <
∫∞

1
r((p−2)N+1)/(p−1)ψ(r)dr <∞ if p ≥ 2. (B)

Let

J(r)=
∫ r

0

(
t1−N

∫ t

0
sN−1ψ(s)ds

)1/(p−1)

dt. (10)

In fact, if 1 < p ≤ 2, by estimating the above integral,

J(r)≤ C1 +
∫ r

1
t(1−N)/(p−1)

[∫ t

0
sN−1ψ(s)ds

]1/(p−1)

dt. (11)

Using the assumption N ≥ 3 in the computation of the first integral above and Jensen’s
inequality to estimate the last one,

J(r)≤ C2 +C3

∫ r

1
t(3−N−p)/(p−1)

∫ t

1
s(N−1)/(p−1)ψ(s)1/(p−1)dsdt. (12)

Computing the above integral, we obtain

J(r)≤ C2 +C4

∫ r

1
t1/(p−1)ψ(t)1/(p−1)dt. (13)

Applying (A) in the above integral, we infer that H∞ = limr→∞ J(r) <∞. On the other
hand, if p ≥ 2, set

H(t)=
∫ t

0
sN−1ψ(s)ds (14)

and note that either H(t) ≤ 1 for t > 0 or H(t0) = 1 for some t0 > 0. In the first case,
H1/(p−1) ≤ 1, and hence,

J(r)=
∫ r

0
t(1−N)/(p−1)H(t)1/(p−1)dt ≤ C5 +

∫ r

1
t(1−N)/(p−1)dt (15)

so that J(r) has a finite limit because p < N . In the second case, H(s)1/(p−1) ≤ H(s) for
s≥ s0 and hence,

J(r)≤ C6 +
∫ r

1
t(1−N)/(p−1)

∫ t

0
sN−1ψ(s)dsdt. (16)
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Estimating and integrating by parts, we obtain

J(r)≤ C6 +
p− 1
N − p

∫ 1

0
tN−1ψ(t)dt

+
p− 1
N − p

[∫ r

1
t((p−2)N+1)/(p−1)ψ(t)dt− r(p−N)/(p−1)

∫ r

0
tN−1ψ(t)dt

]

≤ C7 +C8

∫ r

1
t((p−2)N+1)/(p−1)ψ(t)dt.

(17)

By (B), H∞ = limr→∞ J(r) <∞.

Lemma 2. Problem

−div
(|∇u|p−2∇v)= a(x)um, in RN , N ≥ 3, (18)

has a bounded solution if and only if a(x) satisfies (H). Moreover, there is a minimal positive
solution of (18).

Proof

Sufficient condition. Let

BR =
{
x ∈RN : |x| < R} (19)

and let uR be the solution of

−div
(|∇u|p−2∇u)= a(x)um in BR,

u= 0 on ∂BR.
(20)

It is well known that uR exists and is unique (see [5]). The sequence uR is increasing with
R. Indeed, let R′ > R. Then uR′ is a supersolution for (20). We now construct a subsolution
u for (20) and u ≤ uR′ . From Lemma 1, we will imply that there is a solution u for (20)
between u and uR′ . Since the unique solution is uR, it follows that uR ≤ uR′ in BR. For u,
we may take εψ1 where ψ1 satisfies

−div
(∣∣∇ψ1

∣
∣p−2∇ψ1

)= λ1a(x)
∣
∣ψ1

∣
∣p−2

ψ1 in BR,

ψ1 = 0 on ∂BR.
(21)

We now prove that the sequence uR remains bounded as R→∞. In fact,

uR ≤ CU (22)

for some appropriate constant C. Indeed, CU is a supersolution for the (20) since

−div
(∣∣∇(CU)

∣
∣p−2∇(CU)

)= Cp−1a(x)≥ a(x)(CU)m, (23)
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provided that

Cp−1−m ≥ ‖U‖m∞. (24)

Therefore u= limR→∞uR exists and u is a solution of (18) satisfying

u≤ CU. (25)

Clearly, u is the minimal solution. In fact, if u is another solution of (18) then uR ≤ u on
BR by the above argument and thus u≤ u.

Necessary condition. Suppose u is bounded positive solution of (18) and set

v = p− 1
p− 1−mu(p−1−m)/(p−1). (26)

Then

−div
(|∇v|p−2∇v)=mu−m−1|∇u|p + a(x)≥ a(x). (27)

The solution wR of the problem

−div
(∣∣∇wR

∣
∣p−2∇wR

)= a(x), x ∈ BR,

wR = 0, x ∈ ∂BR
(28)

satisfies wR ≤ v. Thus wR increases as R→∞ to a bounded solution of (7). �

Theorem 1. Suppose that a(x) satisfies (H), then there exists

λ0 = p− 1−m
n− p+ 1

E(p−1−n)/(p−1−m)−n
(
n− p+ 1
n−m

)(n−m)/(p−1−m)

, (29)

here E = esssupx∈RN e(x), e(x) is a bounded solution of (18), such that for λ ∈ (0,λ0), (1)
has an entire bounded solution. If (1) has an entire bounded solution, then (7) has an entire
bounded solution.

Proof. Firstly, we prove that there exists λ0 > 0 such that for all λ ∈ (0,λ0), (1) has a
bounded solution. Since a(x) satisfies (H), we have that

−div
(|∇u|p−2∇u)= a(x) (30)

has a bounded solution e(x), let E = esssupx∈RN e(x), we consider the following function:

λ(t)= tp−1−Emtm
tnEn

= 1
En
(
tp−1−n−Emtm−n), t > 0, (31)
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for λ(t) first derivation, we have

λ′(t)= 1
En
(
(p− 1−n)tp−2−n− (m−n)Emtm−n−1) (32)

let λ′(t)= 0, it follows that

t0 =
(
Em(n−m)
n− p+ 1

)1/(p−1−m)

. (33)

By simple calculation, we obtain that t0 is maximal value point of λ(t), it is clear that
λ(t0) = λ0. Then for all λ ∈ [0,λ0], ∃T = T(λ) > 0 satisfies (Tp−1−EmTm)/TnEn ≥ λ, it
follows that for all λ ∈ [0,λ0], such that Tp−1 ≥ TmEm + λTnEn,Te is a supersolution of
(1), in fact

−div
(∣∣∇(Te)

∣
∣p−2∇(Te)

)=−Tp−1div
(|∇e|p−2∇e)= Tp−1a(x)

≥ a(x)
(
TmEm + λTnEn

)≥ a(x)
[
(Te)m + λ(Te)n

]
.

(34)

From Lemma 2, problem (18) has a positive solution u0, then εu0 is a subsolution of (1),
in fact , for all λ and sufficiently small, we have ε (0 < ε < 1),

−div
(∣∣∇(ε1/(p−1)u0

)∣∣p−2∇(ε1/(p−1)u0
))=−εdiv

(∣∣∇u0
∣
∣p−2∇u0

)

= εa(x)um0 ≤ a(x)
[(
εu0
)m

+ λ
(
εu0
)n]

.
(35)

�

Set ε sufficiently small, such that ε1/(p−1)u0 < Te, then for 0 < λ < λ0, ε1/(p−1)u0 < u <
Te, therefore (1) has a bounded solution.

Secondly, if (1) has a positive solution, then (3) has a positive solution. Let us define

λ∗ = sup
{
λ > 0 | (1) has at least one bounded positive solution

}
. (36)

Apparently, 0 < λ < λ∗. Suppose u is a bounded positive solution of (1) and for all λ ∈
(0,λ∗), set v = ((p− 1)/(p− 1−m))u(p−1−m)/(p−1). Then

−div
(|∇v|p−2∇v)=

(
p− 1

p− 1−m
)p−1[−div

(∣∣∇(u(p−1−m)/(p−1))∣∣p−2∇(u(p−1−m)/(p−1)))]

=−
(

p− 1
p− 1−m

)p−1

div
((

p− 1−m
p− 1

)p−1

u−m|∇u|p−2∇u
)

=−div
(
u−m|∇u|p−2∇u)=mu−m−1|∇u|p−div

(|∇u|p−2∇u)u−m

=mu−m−1|∇u|p + a(x)
(
1 + λun−m

)≥ a(x).
(37)
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The solution wR of the problem

−div
(∣∣∇wR

∣
∣p−2∇wR

)= a(x), x ∈ BR,

wR = 0, x ∈ ∂BR
(38)

satisfies wR ≤ v. Thus wR increases as R→∞ to a bounded solution of (3).
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