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We establish the existence of a nontrivial solution for systems with an arbitrary number of coupled
Poisson equations with critical growth in punctured unbounded domains. The proof depends on
a generalized linking theorem due to Krysewski and Szulkin, and on a concentration-compactness
argument, proved by Frigon and the author. Applications to reaction-diffusion systems with skew
gradient structure are also discussed in the last section.

1. Introduction

In this paper, we consider the following systemswith an arbitrary number of coupled Poisson
equations with critical growth in punctured unbounded domainsΩ. More precisely, we study
the following system:

−Δu1 = Fu1(x,u,v),

...
...

...

−Δun = Fun(x,u,v),

Δv1 = Fv1(x,u,v),

...
...

...

Δvm = Fvm(x,u,v),

(u,v) = 0, on ∂Ω,

(S)

mailto:fcolin@cs.laurentian.ca


2 Boundary Value Problems

where N ≥ 3, n,m ≥ 1, x ∈ Ω ⊂ R
N , ui, vj ∈ D1,2

0 (Ω), for all i, j, and where F(x,u,v) ∈
C1(RN × R

n+m), using the following notations: u = (u1, . . . , un), and v = (v1, . . . , vm). We will
show in Section 3 that the corresponding variational formulation is given by

ϕ(u,v) :=
∫
Ω

⎛
⎝1

2

n∑
i=1

|∇ui|2 − 1
2

m∑
j=1

∣∣∇vj∣∣2 − F(x,u,v)

⎞
⎠dx. (1.1)

The first difficulty to be tackled in order to prove the existence of a solution for the system
(S) is due to the fact that the preceding functional has a strong indefinite quadratic part.
Therefore the classical min-max results cannot be applied, unlike the generalized linking
theorem presented by Kryszewski and Szulkin (cf. [1]).

Let us mention that similar types of problems for systems of two equations on
bounded domains were studied in the subcritical growth case by Husholf and van der Vorst
[2] using the Indefinite Functional Theorem due to Benci and Rabinowitz [3], and by Felmer
and Wang [4] who obtained multiplicity results in using Galerkin type methods. The critical
growth case was studied by Husholf et al. [5] where they used a dual formulation due to
Clarke and Ekeland [6]. Let us also mention that Zhang and Liu in [7], and Alves et al.
in [8], studied elliptic systems with two equations on unbounded domains, while Silva and
Xavier [9] showed the existence of multiple solutions for similar systems on smooth bounded
domains, where the Laplacian is replaced with the p-Laplacian.

In 2005, Frigon and the author studied in [10] the following system of two coupled
Poisson equations with critical growth:

−Δu = |v|2∗−2v,

−Δv = |u|2∗−2u
(1.2)

on unbounded punctured domains Ω of the form

Ω := R
N \ E, (1.3)

where

E :=
⋃
a∈ZN

a +ω, (1.4)

and where ω is a bounded domain with a C1-boundary, such that 0 ∈ ω ⊆ B(0, R), R < 1/2.
Indeed, these domains are invariant under Z

N-translations and have a C1-boundary. Due
to the latter invariance and the periodicity of the function F, the corresponding functional,
besides its strong indefinite quadratic part, is also invariant under Z

N-translations.
Consequently, the Palais-Smale condition fails at every critical level, and that is a second
difficulty to overcome. In the proof of the existence of a solution for the above system, the
generalized linking theorem of Krysewki and Szulkin was used to obtain a Palais-Smale
sequence, and a concentration-compactness lemma à la Lions also proved in [10]was invoked
in order to show the nontriviality of the solution. The same method will be applied to the
system (S).
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In addition, we would like F(x,u,v) to fulfill the following classical assumptions.

(A1) The function F ∈ C1(RN × R
n+m) must be 1-periodic in xk for each 1 ≤ k ≤ N, and

F(x, 0, 0) = 0, for all x ∈ R
N.

(A2) There exists a constant C > 0 such that

(|∇uF(x,u,v)| + |∇vF(x,u,v)|)(|u| + |v|) ≤ C
(
|u|2∗ + |v|2∗

)
. (1.5)

(A3) There exists α, β > 2 such that, for every u,v/= 0,

1
α
∇uF(x,u,v) · u +

1
β
∇vF(x,u,v) · v ≥ F(x,u,v) > 0 (1.6)

with

∇uF(x,u,v) · u > 0, ∇vF(x,u,v) · v > 0, (1.7)

where ∇uF(x,u,v), (resp., ∇vF(x,u,v)), denotes the gradient of F with respect to the
variables ui, (resp., vj).

The main result of this paper can now be stated as follows.

Theorem 1.1 (existence of a nontrivial solution). Let Ω be a punctured domain defined in (1.3),
and let F(x,u,v) be a function satisfying assumptions (A1), (A2), and (A3). Then the system (S)
has a nontrivial solution.

This paper is organized as follows. In the next section, the key concentration-
compactness lemma, and the generalized linking of Krysewski and Szulkin are presented.
In Section 3, we show that the functional ϕ fulfills the assumptions of the Krysewski and
Szulkin theorem. The proof of the main theorem is presented in Section 4. Finally, Section 5 is
devoted to an application of the main result to reaction-diffusion systems with skew-gradient
structure. Existence of steady-states solutions for these systems will be established.

2. Preliminaries

In the sequel, we will study the caseN ≥ 3, and let 2∗ := 2N/(N−2). Let us define the Hilbert
space

D1,2
(
R
N
)
:=
{
u ∈ L2∗

(
R
N
)
: ∇u ∈ L2

(
R
N
)}
, (2.1)

endowed with the inner product

∫
RN

∇u(x) · ∇v(x)dx, (2.2)
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and the associated norm noted ‖u‖. The Sobolev Imbedding Theorem asserts that the
imbedding

D1,2
(
R
N
)
↪→ L2∗

(
R
N
)

(2.3)

is continuous.
For a domain Ω ⊂ R

N , we denote by D1,2
0 (Ω) the closure of D(Ω) in D1,2(RN).

ObviouslyD1,2(RN) = D1,2
0 (RN), andD1,2

0 (Ω) = H1
0(Ω), provided that the Poincaré Inequality

is satisfied.

2.1. Concentration-Compactness Lemmas

Let us recall that the embeddingD1,2(RN) ↪→ L2∗(RN) is not compact because of the action of
dilatations, but we have the following well-known result (refer to Wang and Willem [11] for
a generalization).

Lemma 2.1. If un ⇀ u in D1,2(RN), then un → u in L2
loc(R

N).

The following lemma due to Ramos, Ramos et al. [12] gives sufficient conditions
ensuring the convergence to 0 in L2∗(RN) of a sequence in H1(RN). This type of results was
firstly established by Lions [13] for an exponent p < 2∗. See also Colin [14] or [15] for a similar
result in a weighted space on a cylindrical domain.

Lemma 2.2. Let r > 0. If (un) is bounded inH1(RN) and if

sup
x∈RN

∫
B(x,r)

|un|2
∗
dx −→ 0 as n −→ ∞, (2.4)

then un → 0 in L2∗(RN).

In [10], Frigon and the author proved a similar result for punctured unbounded
domains invariant by Z

N-translations. As mentioned earlier, this lemma will be used in order
to prove the nontriviality of the weak solution given by the Krysewski-Szulkin’s theorem.

Lemma 2.3. Let (un) ⊂ D1,2
0 (Ω) be a bounded sequence, where Ω is a punctured unbounded domain

defined as in (1.3). If

sup
a∈ZN

∫
B(a,

√
N)

|un|2
∗
dx −→ 0, when n −→ ∞, (2.5)

then un → 0 in L2∗(RN).

2.2. Kryszewski-Szulkin Linking Theorem

In 1996, Krysewski and Szulkin [1] (interested readers could also refer to [16] for an elegant
proof) presented a generalized linking theorem for a suitable functional defined on a Hilbert
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space X = Y ⊕ Z with Y a separable subspace of X which could be infinite dimensional, and
Z := Y⊥. Let us state a corollary of their result that will be sufficient for our purposes.

Let P : X → Y, Q : X → Z be the orthogonal projections. Now, let ρ > r > 0 and let
z ∈ Z be such that ‖z‖ = 1. Define

M :=
{
u = y + λz : ‖u‖ ≤ ρ, λ ≥ 0, y ∈ Y}, (2.6)

M0 :=
{
u = y + λz : y ∈ Y, (‖u‖ = ρ and λ ≥ 0

)
or
(‖u‖ ≤ ρ and λ = 0

)}
, (2.7)

N := {u ∈ Z : ‖u‖ = r}. (2.8)

Theorem 2.4 (see [1]). Let ψ ∈ C1(X,R) be weakly sequentially lower semicontinuous, bounded
below and such that ψ ′ is weakly sequentially continuous. If

ϕ(u) :=
‖Qu‖2

2
− ‖Pu‖2

2
− ψ(u) (2.9)

satisfies

b := inf
N
ϕ > 0 = sup

M0

ϕ, d := sup
M

ϕ <∞, (2.10)

then there exists c ∈ [b, d] and a sequence (un) ⊂ X such that

ϕ(un) −→ c, ϕ′(un) −→ 0. (2.11)

3. Existence of a Bounded Palais-Smale Sequence for the System (S)

For the sake of simplicity and readability, we chose to divide the present section into five
subsections, each of them dedicated to a specific aspect of the assumptions that must be
fulfilled by the functional in order to apply the Krysewski-Szulkin theorem.

3.1. Functional Setting

First of all, we establish some general results. Let Ω be a punctured domain in R
N defined as

in (1.3). Denote by X := (D1,2
0 (Ω))n × (D1,2

0 (Ω))m, the Hilbert space endowed with the inner
product

((u,v), (u1,v1)) :=
∫
Ω
(〈∇u,∇u1〉 + 〈∇v,∇v1〉)dx, (3.1)

where

〈∇u,∇u1〉 :=
n∑
i=1

∇ui · ∇u1,i, 〈∇v,∇v1〉 :=
m∑
i=1

∇vi · ∇v1,i, (3.2)
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and where ∇ stands for the gradient operator with respect to x. In the sequel, the norm
induced by the preceding inner product on the space X will be denoted by ‖ ‖. If we set

Y := {(0,v) ∈ X}, Z := {(u, 0) ∈ X}, (3.3)

then X = Y ⊕ Z. Let us denote by P (resp., Q) the projection of X onto Y (resp., Z) and let us
define the functional ϕ : X → R by

ϕ(u,v) :=
∫
Ω

(
1
2
(〈∇u,∇u〉 − 〈∇v,∇v〉) − F(x,u,v)

)
dx

=
‖Q(u,v)‖2

2
− ‖P(u,v)‖2

2
− ψ(u,v),

(3.4)

where

ψ(u,v) :=
∫
Ω
F(x,u,v)dx, (3.5)

and where F(x,u,v) satisfies the assumptions (A1), (A2), and (A3). We will see in Section 3.3
(Lemma 3.3) that the system (S) allows a variational formulation since its solutions will
correspond to critical points of ϕ in X.

3.2. Growth Conditions on the Function F(x,u,v)

The assumptions (A1), (A2), and (A3) have important consequences on the growth of
F(x,u,v), that are summarized in the next two lemmas.

Lemma 3.1. Under assumption (A2), there exists C > 0 such that

|F(x,u,v)| ≤ C
(
|u|2∗ + |v|2∗

)
. (3.6)

Proof. We have

|F(x,u,v)| ≤
∫1

0

∣∣∣∣ ddtF(x, tu, tv)
∣∣∣∣dt

≤
∫1

0
|∇uF(x, tu, tv) · u +∇vF(x, tu, tv) · v|dt

≤
∫1

0
(|∇uF(x, tu, tv)| + |∇vF(x, tu, tv)|)(|u| + |v|)dt

≤ C
∫1

0

(
|u|2∗ + |v|2∗

)
t2

∗−1 dt by assumption (A2)

≤ C
(
|u|2∗ + |v|2∗

)
.

(3.7)
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The next growth condition is almost identical to the one considered by several authors
(see e.g., [17, 18] or [19]).

Lemma 3.2. If F(x,u,v) satisfies (A1) and (A3) then there exist constants c1, c2 > 0 such that

F(x,u,v) ≥ c1
(
|u|α + |v|β

)
− c2, ∀(u,v) ∈ R

n+m, ∀x ∈ R
N. (3.8)

Proof. Let S be the set given by S := {(u,v) ∈ R
n+m | |u|α + |v|β = 1}, and let us define, for

every (u,v) ∈ S, the function g : [1,+∞) → R as

g(s) := F
(
x, s1/αu, s1/βv

)
. (3.9)

Next,

dg

ds
(s) =

1
sα

∇uF
(
x, s1/αu, s1/βv

)
· s1/αu +

1
sβ

∇vF
(
x, s1/αu, s1/βv

)
· s1/βv

≥ 1
s
F
(
x, s1/αu, s1/βv

)
using assumption (A3)

=
1
s
g(s).

(3.10)

Letting c = inf{F(x,u,v) | (u, v) ∈ S, x ∈ R
N}, we get from the periodicity of F (assumption

(A1)), and from (A3) that c > 0. An integration of inequality (3.10) results in

g(s) ≥ cs. (3.11)

Now, let us consider (u,v) ∈ R
n+m such that |u|α + |v|β > 1. Next, let s := |u|α + |v|β, ũ := s−1/αu,

and ṽ := s−1/βv, so we have (ũ, ṽ) ∈ S. Inequality (3.11) implies that

F(x,u,v) = g(s) ≥ c
(
|u|α + |v|β

)
. (3.12)

Since by the continuity of F (assumption (A1))we have

c2 = inf
{
F(x,u,v) | (u,v) ∈ S, x ∈ [0, 1]N

}
> 0, (3.13)

then there exists c1 > 0 such that

F(x,u,v) ≥ c1
(
|u|α + |v|β

)
− c2, ∀x ∈ [0, 1]N. (3.14)

Finally, the result holds for all x ∈ R
N because of the periodicity of the function F.
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3.3. Regularity of the Functional ϕ

Lemma 3.3. The function ψ is C1. Moreover, for every (u,v), (w, z) ∈ X,

〈
ϕ′(u,v), (w, z)

〉
=
∫
Ω
(〈∇u,∇w〉 − 〈∇v,∇z〉 − (∇uF(x,u,v) ·w +∇vF(x,u,v) · z))dx.

(3.15)

Proof. Let (u,v), (w, z) ∈ X. For x ∈ Ω and |t| ∈ ]0, 1[, there exists λ ∈ ]0, 1[ such that

F(x,u + tw,v + tz) − F(x,u,v)
t

= ∇uF(x,u + λtw,v + λtz) ·w

+∇vF(x,u + λtw,v + λtz) · z.
(3.16)

On the other hand, assumption (A2) implies specific growth conditions on∇uF and∇vF that
lead to

|F(x,u + tw,v + tz) − F(x,u,v)|
|t| ≤ C

(
|u + λtw|2∗−1 + |v + λtz|2∗−1

)
(|w| + |z|)

≤ C(|u| + |w| + |v| + |z|)2∗−1(|w| + |z|).
(3.17)

Using the Hölder inequality, we conclude that the term on the right-hand side is in L1(Ω),
since |w|, |z| ∈ L2∗(Ω). Hence, the Lebesgue dominated convergence theorem implies that

lim
t→ 0

1
t

∫
Ω
F(x,u + tw,v + tz) − F(x,u,v)dx =

∫
Ω
(∇uF(x,u,v) ·w +∇vF(x,u,v) · z)dx.

(3.18)

Now, assume that (un,vn) → (u,v) in X. From Lemma 2.1 and assumption (A1), we deduce

∇uF(x,un(x),vn(x)) − ∇uF(x,u(x),v(x)) −→ 0,

∇vF(x,un(x),vn(x)) − ∇vF(x,u(x),v(x)) −→ 0
(3.19)

a.e. in Ω. The continuous embedding D1,2
0 (Ω) ↪→ L2∗(Ω) and assumption (A2) imply that

∇uF(x,un(x),vn(x)) − ∇uF(x,u(x),v(x)),

∇vF(x,un(x),vn(x)) − ∇vF(x,u(x),v(x))
(3.20)
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are, respectively, bounded in the spaces (L2∗/(2∗−1)(Ω))n and (L2∗/(2∗−1)(Ω))m

∣∣∣∣
∫
Ω
(∇uF(x,un,vn) ·w +∇vF(x,un,vn) · z − ∇uF(x,u,v) ·w − ∇vF(x,u,v) · z)dx

∣∣∣∣

≤ ‖w‖L2∗

(∫
Ω
|∇uF(x,un,vn) − ∇uF(x,u,v)|2

∗/(2∗−1)dx
)(2∗−1)/2∗

+ ‖z‖L2∗

(∫
Ω
|∇vF(x,un,vn) − ∇vF(x,u,v)|2

∗/(2∗−1)dx
)(2∗−1)/2∗

≤ C
((∫

Ω
|∇uF(x,un,vn) − ∇uF(x,u,v)|2

∗/(2∗−1)dx
)(2∗−1)/2∗

+
(∫

Ω
|∇vF(x,un,vn) − ∇vF(x,u,v)|2

∗/(2∗−1)dx
)(2∗−1)/2∗)

,

(3.21)

for every (w, z) ∈ X such that ‖w, z‖ ≤ 1 because of the continuous embedding X ↪→
(L2∗(Ω))n+m. Now a direct application of the Lebesgue’s Dominated Convergence Theorem
gives the continuity of the Gâteau derivative of ψ and hence ψ is C1.

On the other hand,

lim
t→ 0

1
t

∫
Ω

1
2
(〈∇(u + tw),∇(u + tw)〉 − 〈∇(v + tz),∇(v + tz)〉

−〈∇(u),∇(u)〉 + 〈∇(v),∇(v)〉)dx
= ((u, 0), (w, 0)) − ((0,v), (0, z)).

(3.22)

This Gâteau derivative is obviously continuous; so ϕ is C1 and

〈
ϕ′(u,v), (w, z)

〉
=
∫
Ω

(
1
2
(〈∇u,∇w〉 − 〈∇v,∇z〉)

−∇uF(x,u,v) ·w − ∇vF(x,u,v) · z
)
dx.

(3.23)

Lemma 3.4. Under assumptions (A1) and (A2), the map ψ is weakly sequentially lower
semicontinuous, while the map ψ ′ is weakly sequentially continuous.

Proof. Suppose that (un,vn) ⇀ (u,v) in X. So, {|un|} and {|vn|} are bounded in D1,2
0 (Ω), and

consequently in L2∗(Ω). Lemma 2.1 implies that |un| → |u| and |vn| → |v| in L2
loc(Ω). Going,

if necessary to a subsequence, un → u and vn → v a.e. on Ω, thus F(x,un,vn) → F(x,u,v)
a.e. on Ω, by the continuity of the function F. Now, the growth condition (3.6) together with
the Fatou’s lemma implies that

ψ(u,v) ≤ lim inf
n→∞

ψ(un,vn). (3.24)
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On the other hand, reusing the arguments presented in the preceding proof, we have for
every w, z ∈ D(Ω),

∫
Ω
(∇uF(x,un,vn) ·w +∇vF(x,un,vn) · z)dx −→

∫
Ω
(∇uF(x,u,v) ·w +∇vF(x,u,v) · z)dx,

(3.25)

that is, 〈ψ ′(un,vn), (w, z)〉 → 〈ψ ′(u,v), (w, z)〉. Moreover, {ψ ′(un,vn)} is bounded in X, so
ψ ′(un,vn)⇀ ψ ′(u,v).

3.4. The Functional ϕ Has a Linking Geometry

Choose (z, 0) ∈ Z such that ‖(z, 0)‖ = 1, and z ∈ (D(B1(0)))
n, where B1(0) is the ball with

center at the origin, and radius 1. LetM andM0 be defined, respectively, by (2.6) and (2.7).

Lemma 3.5. There exists r > 0 such that

b := inf
(u,0)∈Z
‖(u,0)‖=r

ϕ(u, 0) > 0 = min
(u,0)∈Z
‖(u,0)‖≤r

ϕ(u, 0).
(3.26)

Moreover, there exists ρ > r such that

max
M0

ϕ = 0, d := sup
M

ϕ <∞. (3.27)

Proof. The Sobolev Imbedding Theorem of D1,2
0 (Ω) ↪→ L2∗(Ω) implies directly (3.26) since for

(u, 0) ∈ Z,

ϕ(u, 0) ≥ ‖(u, 0)‖2
2

− C‖(u, 0)‖2∗ . (3.28)

Next, observe that on Y we have

ϕ(0,v) =
−‖(0,v)‖2

2
−
∫

RN

F(x, 0,v)dx ≤ 0. (3.29)

On the other hand, invoking Lemma 3.2, we have on Y ⊕ R(z, 0)

ϕ((0,v) + λ(z, 0)) = −1
2
‖(0,v)‖2 + λ2

2
‖(z, 0)‖2 −

∫
RN

F(x, λz,v)dx

≤ −1
2
‖(0,v)‖2 + λ2

2
‖(z, 0)‖2 −

∫
B1(0)

F(x, λz,v)dx

≤ −1
2
‖(0,v)‖2 + λ2

2
−
∫
B1(0)

(
c1
(
|λz|α + |v|β

)
− c2
)
dx.

(3.30)



Boundary Value Problems 11

Since the function z has a compact support in B1(0), it follows that

ϕ(λz,v) ≤ −1
2
‖(0,v)‖2 + λ2

2
−K1λ

α −K2, (3.31)

for some positive constants K1 and K2. Therefore we have, for w ∈ Y ⊕ R(z, 0)

ϕ(w) −→ −∞ whenever ‖w‖ −→ ∞, (3.32)

thanks to the inequality α > 2. Thus, for some ρ > r, maxM0ϕ = 0.
Finally, the Cauchy-Schwarz inequality and the Sobolev inequality imply that ϕmaps

bounded sets into bounded sets, hence supMϕ <∞.

3.5. Boundness of the Palais-Smale Sequence

Boundness of the Palais-Smale sequence implies the existence of a limit for a convenient
subsequence, with respect to the weak topology.

Lemma 3.6. There exists c ∈ [b, d] and a bounded sequence {(un,vn)} in X such that

ϕ(un,vn) −→ c > 0, ϕ′(un,vn) −→ 0. (3.33)

Proof. It follows from Theorem 2.4 and Lemmas 3.3–3.5 that there exist c ∈ [b, d] and a
sequence {(un,vn)} in X satisfying (3.33).

Let ε > 0. Observe that for n large enough, assumption (A3) and (3.33) lead to

2c + 1 + ε‖un,vn‖ ≥ 2ϕ(un,vn) − 〈ϕ′(un,vn), (un,vn)〉

= −2
∫
Ω
F(x,un,vn)dx +

∫
Ω
(∇uF(x,un,vn) · un +∇vF(x,un,vn) · vn)dx

≥
∫
Ω

[(
α − 2
α

)
∇uF(x,un,vn) · un +

(
β − 2
β

)
∇vF(x,un,vn) · vn

]
dx.

(3.34)

Since ((α − 2)/α), ((β − 2)/β) > 0, there exists C > 0 such that

2c + 1 + ε‖(un,vn)‖ ≥ C
∫
Ω
(∇uF(x,un,vn) · un +∇vF(x,un,vn) · vn)dx. (3.35)

On the other hand,

‖(un, 0)‖2 − ε‖(un, 0)‖ ≤ ‖(un, 0)‖2 −
〈
ϕ′(un,vn), (un, 0)

〉

=
∫
Ω
∇uF(x,un,vn) · un dx.

(3.36)
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Similarly,

‖(0,vn)‖2 − ε‖(0, vn)‖ ≤
∣∣∣−‖(0,vn)‖2 − 〈ϕ′(un,vn), (0,vn)

〉∣∣∣

=
∫
Ω
∇vF(x,un,vn) · vn dx.

(3.37)

A direct combination of (3.35), (3.36), and (3.37) results in

2c + 1 + (2C + 1)ε‖(un,vn)‖ ≥ C‖(un,vn)‖2, (3.38)

so, {(un,vn)}must be bounded in X.

4. Proof of the Main Result

We are now ready to establish the existence of a solution to the problem (S).

Proof of the Theorem 1.1. By Lemma 3.6, there exists a bounded sequence (un,vn) ⊂ X
satisfying (3.33)

Now, let us assume that

δ1 := lim sup
n→∞

sup
a∈ZN

∫
B(a,

√
N)

|un|2
∗
dx = 0,

δ2 := lim sup
n→∞

sup
a∈ZN

∫
B(a,

√
N)

|vn|2
∗
dx = 0,

(4.1)

then Lemma 2.3 implies that |un|, |vn| → 0 in L2∗(RN). On the other hand, for ε :=
min{c/3, c/M}, where M > 0 is an upper-bound for ‖(un,vn)‖, and for n large enough,
assumption (A2) implies that

c − ε − ε

2
‖(un,vn)‖ ≤ ϕ(un,vn) − 1

2
〈
ϕ′(un,vn), (un,vn)

〉

≤ 1
2

∫
Ω
(∇uF(x,un,vn) · un +∇vF(x,un,vn) · vn)dx

≤ C
∫
Ω

(
|un|2

∗
+ |vn|2

∗)
dx.

(4.2)

But we are now facing a contradiction, since c > 0. Therefore, we must have δ :=
max{δ1, δ2} > 0. Going to a subsequence if needed, we can assume the existence of an ∈ Z

N

such that

∫
B(an,

√
N)

(
|un|2

∗
+ |vn|2

∗)
dx >

δ

2
. (4.3)
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The sequence (ûn, v̂n) defined by ûn(x) := un(x + an) and v̂n(x) := vn(x + an) is such that

∫
B(0,

√
N)

(
|ûn|2

∗
+ |v̂n|2

∗)
dx >

δ

2 (4.4)

and satisfies (3.33) by Z
N invariance. Extracting again a subsequence, if needed, we may

assume that

(ûn, v̂n)⇀ (u,v) in X. (4.5)

Since ûn → u, v̂n → v in L2
loc(R

N), then (u,v)/= 0. Finally, the weakly sequentially continuity
of ϕ′ gives

∥∥ϕ′(u,v)
∥∥ ≤ lim inf

n→∞
∥∥ϕ′(ûn, v̂n)

∥∥ = 0. (4.6)

Consequently (u,v) is a nontrivial solution of the system (S).

Example 4.1. LetΩ ⊂ R
N ,N = 3 or 4, be a punctured domain defined as in (1.3). Then there exists a

nontrivial solution for the following system of two coupled Poisson equations:

−Δu = 2λ|v|2∗−2u + (2∗ − 2)γ |u|2∗−4uv2,

Δv = 2γ |u|2∗−2v + (2∗ − 2)λ|v|2∗−4vu2,
u, v ∈ D1,2

0 (Ω) (4.7)

for every λ, γ > 0.

Remark 4.2. In the assumption (A1), the 1-periodicity condition on F for each variable xk,
could be replaced with any other periodicity condition on every variable. The punctured
unbounded domain given by (1.3) has then to be defined accordingly, in order to remain
invariant under the corresponding translations. Let us mention that, since the assumptions
on the function F are quite general, some components of the solution could be equal to 0.

5. Applications to Reaction-Diffusion Systems with
Skew-Gradient Structure

Let us consider the following (n +m)-component reaction-diffusion system:

ut = Δu + f(u,v) in Ω,

vt = Δv + g(u,v) in Ω,

u = v = 0 on ∂Ω.

(5.1)

We say that system (5.1) has a skew-gradient structure if there exists a C3-function H(u,v)
such that

f(u,v) = ∇uH(u,v), g(u,v) = −∇vH(u,v). (5.2)
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(For more information about reaction-diffusion systems with skew-gradient structure, see for
instance [20] (or [21]) and references therein.) Consequently, any steady state solution (u,v)
of (5.1) satisfies the system of Poisson equations below

Δu + f(u,v) = 0 in Ω,

Δv + g(u,v) = 0 in Ω,

u = v = 0 on ∂Ω.

(5.3)

Corollary 5.1. Let Ω be an unbounded domain defined as in (1.3). Under assumptions (A1), (A2),
and (A3), system (5.3) admits a nontrivial solution (u,v) ∈ X; in addition, (u,v) is a steady-state
solution for the reaction-diffusion system (5.1) with skew-gradient structure.
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