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Pharmacokinetics (PK) has been traditionally dealt with under the homogeneity
assumption. However, biological systems are nowadays comprehensively understood as
being inherently fractal. Specifically, the microenvironments where drug molecules
interact with membrane interfaces, metabolic enzymes or pharmacological receptors,
are unanimously recognized as unstirred, space-restricted, heterogeneous and
geometrically fractal. Therefore, classical Fickean diffusion and the notion of the
compartment as a homogeneous kinetic space must be revisited. Diffusion in fractal
spaces has been studied for a long time making use of fractional calculus and expanding
on the notion of dimension. Combining this new paradigmwith the need to describe and
explain experimental data results in defining time-dependent rate constants with a
characteristic fractal exponent. Under the one-compartment simplification this strategy
is straightforward. However, precisely due to the heterogeneity of the underlying
biology, often at least a two-compartment model is required to address macroscopic data
such as drug concentrations. This simple modelling step-up implies significant
analytical and numerical complications. However, a few methods are available that
make possible the original desideratum. In fact, exploring the full range of parametric
possibilities and looking at different drugs and respective biological concentrations, it
may be concluded that all PK modelling approaches are indeed particular cases of the
fractal PK theory.

Keywords: fractional calculus; anomalous diffusion; fractal microenvironments;
time-dependent rate constants

Introduction

Since the notion of ‘compartment’ was first introduced by Teorell [72] to describe the time

course of drugs in biological systems, the homogeneity assumption has become almost

dogmatic in pharmacokinetics (PK) [61,75,80,83]. Amenable to the differential calculus

formalism, such a compartment, or homogeneous kinetic space, is really an abstraction that

together with the law of mass action continues to be very useful in the context of

compartmental analysis. It bears no anatomical or physiological connotation other than

referring to the ensemble of all the tissues, organs or systems for which the probability of

encountering a drug molecule at any given point is the same. This assumption builds upon

another about Fickean diffusion for which themean square displacement of a drugmolecule

in a homogeneous, or well-stirred, space is proportional to time (kx 2(t)l / t). However,

phenomena referred to as anomalous diffusion have been known for a long time, even

preceding Teorell’s work. Richardson conjectured, although empirically, in 1926, that the

diffusion coefficient in a turbulent medium depends on the scale unit of the measurement

ISSN 1748-670X print/ISSN 1748-6718 online

q 2010 Taylor & Francis

DOI: 10.1080/17486700903029280

http://www.informaworld.com

*Email: luis.pereira@childrens.harvard.edu

Computational and Mathematical Methods in Medicine

Vol. 11, No. 2, June 2010, 161–184



[62], defining the Richardson plot principle still used today. Later, unusual experimental

observations started being reported as ‘strange’ kinetics [9] and, afterMandelbrot’s seminal

work [49], many reports followed, for example, on diffusion in dense objects [42],

dynamics in polymeric networks [2,8], diffusion in porous and fractal media [55,59] and

kinetics in viscoelastic media [48]. Ultimately, a generalized diffusion equation was

proposed [41,56] which provided a heuristic support for a more realistic characterization of

systems with dimensional constraints, as biological microenvironments are indeed.

Kopelman’s groundbreaking work on chemical kinetics [3,34,35] became the

foundation for general fractal kinetics and PK just followed [33]. Particularly in the PK

field, Macheras [44] and Savageau [66] were among the first to document real fractal

PK applications and since then many other examples were published, particularly by

Macheras’ group, for modelling drug dissolution [20,36,38–40,47,77], absorption

[13,25,46], distribution [21,28–32,45], whole disposition [79], stochastic processes [16],

Michaelis–Menten metabolism [50] and carrier-mediated transport [58].

However, most of the publications on fractal PK so far, are phenomenological or very

specific in scope and only a few attempt to establish a theoretical quantitative

methodology. Kotulski et al. [37] made use of stochastic relaxation theory in the context

of power law time dependent rate constants for first- and second-order kinetics with

bimolecular reactions. Later, Tsallis [73] used non-extensive entropy theory to derive

nonlinear differential equations with fractional-order, but still a theoretical PK approach is

missing. This work intends to systematize the background theory and provide a unified

modelling framework for handling PK experimental data.

Theory

Although fractal kinetics is usually built up from the fractal geometry point of view, it has

more to do with anomalous diffusion and fractional calculus than anything else.

Homogeneity, in the sense of instantaneous mixing, is really not supported by nature,

particularly in microenvironments, space restricted and heterogeneous, sometimes

impacting on how whole systems behave at the macro-level. Namely, fixed rate constants

mean the fraction of drug transferred from one compartment to another is fixed,

independent of time and amount. This is true only under the homogeneity assumption.

Conversely, heterogeneous media may be conceived as low-dimension environments

or fractal spaces, for which their dimension d is fractional. As an example, one may think

about a pathway along a simple line versus a whole surface admissible for movement,

being obvious that the first has dimension equal to one, or one degree of freedom, while

the latter has dimension two for two degrees of freedom (Figure 1(I),(II)). These are the

Euclidean dimensions which assume only integer values. But imagining the path getting

increasingly tortuous, as trying to ‘fill’ the surface, then its real length depends on

the ‘ruler’ used to measure it (Figure 1(III)). As the smallest division of this ‘ruler’ gets

smaller, more fine characteristics of the line are captured adding to the path length
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Figure 1. Examples of a line, a surface and something in between.
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(Figure 2). On the limit, for an infinitely small particle, if the line had infinitely intricate

details, its length would be infinite. In practice, moving particles have a finite size, and

when a relationship is found between the measurements of the path and their unit size, it’s

usually of a log–log type and corresponds to a constant real number defined as fractal

dimension.

Perhaps the simplest way to identify and estimate the fractal dimension of an object is

the so-called box-counting method. Basically, one defines different grids superimposed on

a projection of the object (Figure 1(III)), keeping track of the ‘unit size’ and the number

of boxes required to cover it (Figure 2(I)–(III)). Plotting the logarithm of the number of

occupied boxes vs. the logarithm of the reciprocal of the unit size, the slope of the best fit

line will correspond approximately to the Hausdorff–Besicovitch dimension of the object

in a metric space (Figure 3), defined as

DHB ¼ lim
r!0

logNðrÞ

logð1=rÞ
; ð1Þ

where N(r) is the number of boxes of size r needed to cover the object. In some cases, this

is akin to the Minkowski–Bouligand dimension, or Kolmogorov dimension, being this

discussion however outside the scope of this communication. In simple words, the number

of measuring units used, are proportional to their unit size, or similarity ratio, raised to the

negative DHB power.
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Figure 2. Illustration of the box-counting method to determine the dimension of a fractal object.
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Figure 3. Box-counting method applied to the object in Figure 1(III). Entries on the left correspond
to Figure 2(I)–(III). The complete analysis on the right may be carried out implementing the
box-counting algorithm into a standard spreadsheet, or using one of the many freeware programs
available on the internet.
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Thus, the path between points A and B in Figures 1(III) and 2(I)–(III) has a

Hausdorff–Besicovitch dimension equal to the limit of the sequence (Figure 3),

logð1024Þ

logð243Þ
;
logð4096Þ

logð729Þ
;
logð16384Þ

logð2187Þ
; . . . )

logð4nÞ

logð3nÞ
¼

n logð4Þ

n logð3Þ
¼

logð4Þ

logð3Þ
¼ 1:26:

This procedure may be used for any entity in any metric space resulting in a quantity

equivalent to a dimension. In fact, applied to the straight line in Figure 1(I), it takes one big

box with size one, two with size 1/2, four with size 1/4 and so on, such that at the limit,

log 2n/log 2n ¼ 1, while for the surface in Figure 1(II), one requires four boxes size 1/2, 16

boxes size 1/4 and so on with log 22n/log 2n ¼ 2, as expected from Euclidean geometry.

It must be noted though, that a very common mistake incurred in using this technique is the

lack of attention for the limiting nature of Equation (1). Obviously, not all crooked objects

are fractals. Often, ratios of logarithms are reported with too coarse box sizes and an

erroneous conclusion for a fractal dimension is stated. Indeed, one of the drawbacks of the

box-counting method is the fact that the series in Equation (1) may take a long time to

converge for not so ‘well-behaved’ fractals.

Anyway, accordingly and for illustrative purposes, although both results for the

straight line and the surface agree with the topological interpretation of a dimension, a

common question is how to interpret a dimension equal to 1.26 which is neither 1 nor 2.

A simple interpretation may just conclude that the path in Figures 1(III) and 2(I)–(III) is

something between a line and a plane, therefore with a dimension that is not a whole

number but rather a fraction, or in short, it is a fractal. For a better definition, it may be said

that a fractal is an object with a Hausdorff–Besicovitch dimension exceeding its smallest

topological, or Euclidean, dimension.

Kinetic considerations readily stem from this geometric description [4,53] as much as

the time to go from point A to B exceeds the one expected for the shortest path, either

along a straight line or resulting from fixed tortuosity with a homogeneous diffusion

medium. For a long time now, a heuristic connection has been established between

the fractal dimensionality of Brownian motion in a heterogeneous space and the mean

first-passage time through it [69]. The early models described discrete random walks on a

lattice with transition probabilities drawn from a distribution with infinite variance, known

as a Lévy distribution [27], although this mean first-passage time parameter may not be

accurately defined, unlike for other higher moments. In fact, for a persistent process in

a given microenvironment, the average amount of time spent there is infinite and a

quantitative relation with its fractal dimension is impossible to establish. Instead, a

quantitative relationship exists between the mean first-passage time to escape a given

region of space and the Hausdorff–Besicovitch dimensionality.

In general, translationally invariant Markov processes are called Lévy processes, in one,

two or three (Euclidean) dimensions, if their characteristic function is proportional to

exp(2x h), where h is an ‘heterogeneous’ exponent for the trajectories of the process.

Examples are, Brownian motion, Poisson processes, Feller–Markov processes, interlacing

processes, among others. So, for a one-dimensional Lévy trajectory x(t), the meanmagnitude

of displacement kx(t) 2 x(0)l is proportional to t 1/h, for t . 0. Therefore, the number of

boxes of side r required to cover the distance travelled between t and t þ r is equal to

Distance covered

Box size
¼

r ð1=hÞ21

r
¼ r ð1=hÞ22: ð2Þ
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Hence, the Hausdorff–Besicovitch dimension becomes DHB ¼ logðr ð1=hÞ22Þ=logð1=rÞ ¼

22 1=h [69], and for a Brownian motion h ¼ 2 and DHB ¼ 3/2 as expected.

As Kopelman put it long time ago, ‘fractal differ from Euclidean spaces not only in

their typical ‘fractal’ dimension df, but also in having more than one relevant dimension’

[35]. Several definitions of dimension have been derived [63,71] what in some extent has

created a bit of confusion among end users. As an example, particularly for the case of a

random walker, such as a drug molecule, the recurrence probability P of its returning to the

origin after a time t is defined as the spectral dimension ds such that P , t2ds=2, also

known as an anomalous waiting time distribution. Fractal spaces have characteristically

ds , df , d, where d stands for the dimension of the Euclidean spaces in which they are

embedded [49], while for these ds ¼ df ¼ d, meaning that all locations are available for

‘walking’. In kinetic terms, Smoluchowski was perhaps the first, back in 1917, to point out

that, for low dimensions, diffusion-limited reactions have rate constants and

corresponding diffusion coefficients that depend on the time scale [70]. In fact, he

replaced the classical term ‘mean free path’ under such conditions, by ‘diffusion length’ of

the random walker, defining what became to be known as Smoluchowski kinetics.

Diffusion in fractal spaces

Considering a drug molecule moving randomly and under no constraints, its probability

density as a function of distance and time satisfies the condition known as Fick’s second

law of diffusion. However, under anomalous diffusion, instead of the mean square

displacement being proportional to time, as observed in Gaussian processes, such as

Fickean diffusion, it increases slower or faster than linearly with time, becoming

kx(t)2l / t 2/h [10,41], according to an anomalous diffusion exponent h . 1, but different

from 2, the Fickean value (h ¼ 2/ds).

For an irreversible process, by a thermodynamic linear approximation, the

macroscopic flux of an extensive quantity, such as mass, across a fractal interface is

described by the generalized diffusion equation, also referred to as the fractional diffusion

Equation [19,41],

›ð2=hÞ

›t ð2=hÞ
MðtÞ ¼ k·DCðtÞ; ð3Þ

where k is a rate constant, DC(t) is a time dependent driving force, such as a concentration

gradient and ›n=›t n stands for the Riemann–Liouville fractional derivative operator,

being n any real number (actually, a differintegral defined as ›n y=›t n ¼ ð1=n!Þðd=dtÞÐ t

0
ðyðzÞ=ðt 2 zÞnÞdz). In fact, fractional differential Equations (or fractional-order

differential equations), such as Equation (3), allow the exploration of various boundary

conditions relevant for many physical and biological phenomena. Particularly, biological

systems deviate from the asymptotic power law for very small scales, and fractional

calculus allows the interpolation between the macro and the microenvironment. It can be

dated back to Leibniz’s correspondence about non-integer differentiation, being today

applied to numerous phenomenological theories in physics, chemistry and biology [64].

It generalizes the derivative and antiderivative operations from integer orders to the entire

complex plane.

Accordingly, for the simplest case of a one-dimensional diffusion from a fractal

interface,

›ð32hÞ Cðx; tÞ

›t ð32hÞ
¼ Dh

›2Cðx; tÞ

›x2
; 2 # h , 3; ð4Þ
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where for h ¼ 2 the classical Fick’s second law of diffusion results. Dh corresponds to the

fractional diffusivity, which may be time dependent due to the fractal nature of the

diffusional interface,

DhðtÞ ¼ Dh

t ð22f Þ

Gð32 f Þ
; ð5Þ

(some authors prefer the notation n! ¼ G(1 2 n), where G refers to the Gamma function).

Furthermore, the flux across the fractal interface becomes,

Jf ðx; tÞ ¼
›

›t
DhðtÞ*

›Cðx; tÞ

›x

� �
; ð6Þ

where * refers to the convolution operator [19].

In more general terms, the so called fractional kinetic equation, first introduced by

Zaslavsky [64,85], reads

›h

›t h
Pðx; tÞ ¼

›n

›xn
Pðx; tÞ þ gðx; tÞ; ð7Þ

where the probability density P(x, t) $ 0, for finding a given particle at position x at any

time t, satisfies the usual normalization condition,ð1
21

Pðx; tÞdx ¼ 1 ðt . 0Þ; ð8Þ

but also the identity condition, ð1
21

›n

›xn
Pðx; tÞdx ¼ 0; ð9Þ

having been shown that to ensure positivity (P(x, t) $ 0), 0 , n # 2 [54]. Again, for the

usual case of Fickean diffusion, n ¼ 2 and with the source function g(x,t) in Equation (7)

assumed to be d(x)·d(t) (where d(·) corresponds to the Dirac delta function), then

›

›t
Pðx; tÞ ¼

›2

›x2
Pðx; tÞ; ð10Þ

with initial condition P(x,t ¼ 0) ¼ d(x), as in Fick’s second law of diffusion.

However, in fractal environments, space restricted, the fractional derivative in

Equation (7) corresponds to a non-local operator for the probability density of a

symmetrically wandering particle from x ¼ 0 at t ¼ 0,

›h

›t h
Pðx; tÞ ¼

›n

›xn
Pðx; tÞ þ gðtÞdðxÞ; ð11Þ

defining now the source function gðx; tÞ ¼ gðtÞ·dðxÞ. Integrating Equation (11) with respect

to x between 21 and þ1, g(t) is found to be

gðtÞ ¼
t2h

Gð12 hÞ
; ð12Þ
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using the fractional differentiation rule

›n

›t n
yðxÞ ¼ yðxÞ*

t2ðnþ1Þ
þ

Gð2nÞ
;

in the regularized form for 0 , n , 1, to avoid the singularity near to the upper limit of

integration, where * stands for the convolution operation, G(·) is the Gamma function and

the subscript þ corresponds to the truncation function

yþðxÞ ¼
yðxÞ; x . 0;

0; x , 0:

(

Thus, the fractional kinetic equation becomes,

›m

›t m
Pðx; tÞ ¼

›n

›xn
Pðx; tÞ þ

t2h

Gð12 hÞ
dðxÞ: ð13Þ

The case of 0 , h , 1 and n ¼ 2 corresponds to a fractal Brownian motion with a mean

square displacement equal to

kx2l ¼
2

Gðh þ 1Þ
t h: ð14Þ

Fractal kinetics

For the simple diffusion-limited reaction A þ A ! A2, Kopelman showed that its rate is

proportional to t 2h £ [A]2, where 0 , h , 1 depends on the dimensionality of the

medium [34]. If the reaction can only occur on a one-dimensional channel, then h ¼ 0.5; in

full three dimensions h ¼ 0 according to the law of mass action; and in a percolation

cluster, as an example of a heterogeneous medium with topological constraints, h ¼ 1/3.

This way, time-dependent rate constants have become the hallmark of fractal kinetics,

although not always fully documented.

In an earlier work, Savageau proposed a power law formalism, also known as the

generalized mass action kinetics, for the rate of a multireactant process in the intracellular

space [65] such that,

Rate ¼ k
Yn

i¼1

½Ai�
ai ; ð15Þ

where k is explicitly time independent and the kinetic orders ai correspond to the

molecularity of the single step reaction between n reactants, under the classical law of

mass action [66,67]. Basically, reactant concentrations are raised to non-integer powers

instead of deriving time dependent rate constants. It has been extensively assumed,

particularly in the biochemical literature, that this phenomenological approximation is

equivalent to Kopelman’s time-dependence [7,15,18]. However, although it may be

applied in many cases, it fails to describe others more complex, such as saturation and

sigmoidicity [24]. Schnell et al. showed recently that this correspondence is only valid for

long time and under the special case of a reaction A þ B ! AB with A0 ¼ B0,

equivalent to a homodimeric reaction, not that general in nature [23,68]. The fractal
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kinetics based ordinary differential equations (ODE) are not universally equivalent to their

power law approximation. Unfortunately, both Kopelman and Savageau coin their work as

‘fractal kinetics’ mostly because they evolve from an underlying fractal geometry

conception, in spite of the significantly different mathematical outcomes. Nevertheless,

fractal kinetics and time-dependent rate constants seem to be the most adequate

mechanistic and observational theory when diffusion-limited processes are relevant.

That’s why fractional calculus should be taken into consideration. A recent paper by

Brauers et al. [11] clarifies things considerably. Summarizing their rationale, for any given

decaying phenomenon, let’s say a finite amount of drug in an open system, the most

elemental kinetic relationship between its rate (dM/dt) and its driving force (M(t)) is

dM

dt
¼ 2kMðtÞn; ð16Þ

where k corresponds to a (proportionality) rate constant and n is the overall order of

the process. For zero-order processes n ¼ 0 and the rate is fixed, while for subsequent

integer orders the molecular reaction rationale is followed. The integrated solution for

Equation (16) becomes

MðtÞ ¼ Mo 1þ ðn 2 1ÞMn21
0 kt

� � 1
12n; ð17Þ

known as the generalized Pareto function with initial condition M(t ¼ 0) ¼ Mo. Making

use of the deformed q-exponential function introduced by Tsallis [74], denoted as ex
q ¼

ð1þ ð12 qÞxÞ1=ð12qÞ for 1 þ (1 2 q)x . 0 and 0 otherwise (note: ex
1 ¼ ex), Equation (17)

may assume the algebraically equivalent form,

MðtÞ ¼ Moe
2t=tn

n ; ð18Þ

also referred to as a stretched exponential, with the order-dependent time constant,

or characteristic time, tn ¼ ðMn21
0 kÞ21. By differentiating Equation (18), it may be

parameterized in terms of a time-dependent rate coefficient,

dM

dt
¼ 2

Mo

tn

e
2 t

tn
n

� �n

¼ 2
Mo

tn

1þ ðn 2 1Þ
t

tn

� � 1
12n

2 1

ð19Þ

¼ 2kðtÞMðtÞ; ð20Þ

where kðtÞ ¼ ðtn þ ðn 2 1ÞtÞ21. The net result is that for t p tn the effective rate gets

slowed down, while for t q tn and n ¼ 1 the classical first-order exponential behaviour

results.

Recognizably, for those early times and more complex systems, this does not

apparently exhibit a power law relationship useful for describing experimental data.

However, for non-extensive (non-additive) variables, i.e. not proportional to size,

occurring in a dimension d, relaxation theory shows that this is a particular case of the

general expression derived as [12],

MðtÞ ¼ Moe
2kðtÞMn21

o t d

n ¼ Moð1þ ðn 2 1ÞkðtÞMn21
0 t dÞ

1
12n; ð21Þ
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which is the solution to the fractional differential equation,

ddM

dt d
¼ 2kdðtÞ·MðtÞn: ð22Þ

Now, the effective rate constant

kðtÞ ¼
t d21d

t d
n

1þ ðn 2 1Þ
t

tn

� �d
 !21

; ð23Þ

where

tn ¼ ðMn21
0 kðtÞÞ21=d;

clearly reveals two asymptotic characteristics: as t ! 0 kðtÞ / t d21, while as t ! 1 one

recognizes the homogeneous case depicted above kðtÞ ¼ t21. Identifying Kopelman’s

fractal parameter 0 , h , 1 as 1 2 d, one may recognize the phenomenological

characteristics of fractal kinetics associated with non-homogeneous microenvironments.

Characteristically, for n ¼ 1 and d ¼ 1,

dM

dt
¼ 2kMðtÞ and MðtÞ ¼ Moe

2kt; ð24Þ

corresponding to the classical first-order homogeneous kinetics. For n ¼ 1 and d – 1,

ddM

dt d
¼ 2kMðtÞ and MðtÞ ¼ Moe

2kt d

; ð25Þ

corresponding to a Weibull heterogeneous kinetics, or a stretched exponential kinetics if

0 , d , 1, and for n ¼ 2 and d – 1,

dhM

dt h
¼ 2kMðtÞ2 and MðtÞ ¼ Moð1þ MoðktÞhÞ21; ð26Þ

one obtains the generalized second-order kinetics relationships.

Compartmental modelling

Observed concentration versus time profiles with long-time decaying tails, CðtÞ / t2l for

t . t, where t is to the threshold time for the decay, were first described by negative power

laws, sequential power laws and gamma functions (CðtÞ ¼ kt2le2at) [6,26,57,81,82].

As discussed above, in fractal microenvironments kinetic rate constants become time-

dependent (kðtÞ ¼ kt2h) with a fractal exponent h ¼ 12 ðds=2Þ. At the molecular level,

the spectral dimension ds characterizes the random walk of a molecule in the fractal space

[1], assuming the classical value of 2 in fully unrestricted homogeneous spaces [4]. Thus,

the notion of time-dependent rate constants has been used in the context of compartmental

and non-compartmental PK, although it bears also interesting potential in the context of

system analysis and input–output convolution relationships, as hinted above.

In fact, using the simplest open compartmental model with instantaneous input

(e.g. bolus dosing), the implementation of a fractal disposition in terms of the mass of drug,
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is reasonably straight forward. For a zero-order time-dependent elimination,

dM

dt
¼ 2K0t

2h !
integrating

ðM

Mo

dM ¼ 2K0

ðt

0

t2hdt ! M ¼ Mo

K0

h 2 1

� �
t 12hð Þ; ð27Þ

and for a first-order time-dependent elimination,

dM

dt
¼ 2kt2hM !

integrating
jlnMj

M
Mo

¼
2k

12 h
jt 12hj

t
0 ! M ¼ Moe

2 k
12h

t ð12hÞ

: ð28Þ

However, particularly when a drug reveals in vivo fractal PK characteristics, such as non-

loglinear terminal elimination, the single compartment model falls short from describing

the anticipated distribution delays into the whole body. For the same reasons argued in

‘homogeneous’ PK, drugs may require some time to distribute into less irrigated tissues

or those with less favourable partition coefficients, eliciting excessive initial blood

concentrations in comparison to a single exponential back extrapolation towards time zero.

The instantaneous distribution assumption becomes thus unusable, being the next degree of

complexity, under the compartmental approach, the conception of a bicompartmental

disposition. Furthermore, drugs with localized sites of action, or biophases, for which local

concentrations are better indicators of drugs efficacy, and/or toxicity, in comparison to blood

levels, benefit considerably from a multicompartmental modelling approach.

Unfortunately, this simple move from a one to a two compartment model in a fractal

PK context generates significant complexity. Fuite et al. were the first to tackle the

problem [22], complemented later in different ways [14,51]. Since the original work

focused on the drug mibefradil and its fractal hepatic metabolism, a two compartment

open model with peripheral elimination only was chosen (k10 ¼ 0 in Figure 4). The more

common central elimination assumption (k20 ¼ 0 in Figure 4) was investigated later [51].

Either way, following the standard law of mass action, a system of linear ODE’s results

with constant coefficients for classical homogeneous PK, since all rate constants are fixed,

analytically solvable by Laplace transformation and the partial fractions theorem, or

Heaviside’s expansion.

Allowing some rate constants to be time-dependent, the model becomes a system of

linear ODE’s with variable coefficients, for which no analytical solutions are usually

found. The usual two compartments mamillary model (Figure 4 with k20 ¼ 0, for central

elimination only), assuming a fractal distribution rate constant between the central and the

peripheral compartment (k12ðtÞ ¼ k12t2h; for the sake of simplicity, redistribution and

elimination will be assumed to be time independent at this point), becomes

One simple trick to handle such a system of first-order ODE’s is to differentiate the

first equation again, replace the M2 derivative with the second equation and extract M2

from the first one to replace it as well. This way a second-order heterogeneous ODE in M1

;
E1 = k12 + k10

E2 = k21 + k20

dt

dM2

dt
dM1 = f (t) + E2·M2(t) – E1·M1(t)

= E1·M1(t) – E2·M2(t)

k12
M1(t)

k10

M2(t)

k21

k20

f(t)

Figure 4. Fully connected two compartments open model with first-order mass transfer and input
f(t), where Ei correspond to the overall exit rate constant from compartment i. The catenary case with
k10 ¼ 0 was used by Cheminiak et al. [14] and Fuite et al. [22] with k20ðtÞ ¼ k20·t

2h, while Marsh
et al. [51] tested also the k20 ¼ 0 mamillary case with k21ðtÞ ¼ k21·t

2h.
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alone is obtained as

d2M1

dt 2
þ ðk21 þ k10 þ k12t2hÞ

dM1

dt
þ ðk21k10 2 k12ht2ðhþ1ÞÞM1ðtÞ ¼ k21f ðtÞ þ

df

dt
; ð29Þ

with the corresponding homogeneous case (not to be confused with the notion of

homogeneity used above for the compartment concept and biological microenvironments

at large),

d2M1

dt 2
þ ðk21 þ k10 þ k12t2hÞ

dM1

dt
þ ðk21k10 2 k12ht2ðhþ1ÞÞM1ðtÞ ¼ 0; ð30Þ

when f(t) ¼ 0, such as with a bolus administration.

Either formulation of this variable coefficients problem is hard to solve analytically, or

just insolvable depending on the nature of those coefficients. The latter was worked on by

Fuite et al. [22], who resorted to a perturbation numerical method to solve their model,

while Marsh et al. [51] proposed a simulated annealing technique for both the catenary and

the mamillary models. Very unfortunately, Chelminiak et al. [14] transcribed wrongly

Fuite’s model incurring in an erroneous analysis just recently identified [60]. Nevertheless,

their attempt suggests valuable analytical approximations again to mitigate the

aforementioned difficulty.

One more useful exercise consists in adding both equations in Figure 5, which results

in

dM1

dt
þ

dM2

dt
¼ f ðtÞ2 k10M1ðtÞ; ð31Þ

and integrating with respect to t,

M1ðtÞ þ M2ðtÞ ¼

ðt

0

f ðuÞdu 2 k10

ðt

0

M1ðuÞdu þ c0: ð32Þ

Then, solving the second differential equation for M2 one obtains,

M2ðtÞ ¼ e2k21t c1 þ k12

ðt

0

u2hek21uM1ðuÞdu

� �
; ð33Þ

which, replaced into Equation (32), results in the following Volterra integral expression,

M1ðtÞ þ k10

ðt

0

M1ðuÞdu þ k12

ðt

0

u2he2k21ðt2uÞM1ðuÞdu ¼

ðt

0

f ðuÞdu þ c0 þ c1e
2k21t; ð34Þ

dt

dM2

dt
dM1 = f (t) + k21·M2(t) – (k12t–h + k10) · M1(t)

= k12t –h · M1(t) – k21·M2(t)

f(t) k12t–h

1

k10

k21

2

Figure 5. Two compartments mamillary model with just one fractal kinetic step, namely from the
central to the peripheral compartments.
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being constants c1 ¼ 2M2(0) and c0 ¼ M1(0) þ M2(0). Differentiating it twice, Equation

(29) readily results. This implicit solution is amenable to describe experimental

concentration data (C1) resulting, for instance, from a bolus dose D, in the form,

C1ðtÞ þ k10AUCt
0 þ ðk12e

2k21tÞ*ðt
2hC1ðtÞÞ ¼

D

V1

; ð35Þ

using V1 for the apparent volume of distribution and the * convolution notation for

xðtÞ*yðtÞ ¼

ðt

0

xðt 2 uÞyðtÞdu;

or, numerically with a small step size Dt,

ø Dt
Xn21

i¼0

{x½t 2 ði þ 0:5ÞDt�y½ði þ 0:5ÞDt�};

with n ¼ t/Dt (note: for actual calculations better numerical convolution algorithms are

found implemented in software such as Matlab, S-Plus and R).

A similar derivation may be carried out focusing on the M2(t) variable, the amount of

drug in the peripheral fractal compartment according to Figure 5, in which case,

d2M2

dt 2
þ ðk21 þ k10 þ k12t2h þ ht21Þ

dM2

dt
þ ðk10 þ ht21Þk21M2ðtÞ ¼ k12t2hf ðtÞ: ð36Þ

However, one major problem with ‘fractal-like’ variable coefficients is the definition of

the ODE’s at the singularity t ¼ 0, since then, t 2h becomes indefinite. A consensual

recommendation [51,68] seems to be the redefinition of the time-dependent rate constants

in terms of the Zipf–Mandelbrot distribution,

kðtÞ ¼
k

ðt þ tÞh
; 0 # h # 1; ð37Þ
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Figure 6. Left panel, simulated profiles according to Equation (35) with k10 ¼ 0.001 h21,
k12 ¼ 0.2 h21, k21 ¼ 0.02 h21, h ¼ 0.6, D ¼ 500mg and V1 ¼ 200 L. Right panel, amiodarone post-
infusion data kindly supplied by Prof. G.T. Tucker, referring to a 10min i.v. infusion of a 400mg
dose administered to human subjects and followed up for over 60 days [76].
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where t is a small positive constant defined as the critical time for the onset of the fractal

process. This way, Equation (30) becomes

d2M1

dt 2
þ ðk21 þ k10 þ k12ðt þ tÞ2hÞ

dM1

dt
þ ðk21k10 2 k12hðt 2 1Þt2ðhþ1ÞÞM1ðtÞ ¼ 0; ð38Þ

with better numerical characteristics.

To solve this kind of expressions, an analytical method recently proposed by Li [43]

may be used, involving a Volterra integral for the initial value problem, or a Fredholm

integral for the boundary value problem. It may even be extended to higher-order linear

ODE’s. Essentially, he showed that, based on the existence of a unique solution and

integrating twice Equation (38) in the form M00
1ðtÞ þ pðtÞM0

1ðtÞ þ qðtÞM1ðtÞ ¼ gðtÞ, an

implicit solution in M1 may be found as,

M1ðtÞ þ

ðt

0

½pðuÞ þ ðt 2 uÞðqðuÞ2 p0ðuÞÞM1ðuÞ�du ¼ fðtÞ; ð39Þ

where

fðtÞ ¼ M1ð0Þ þ ½M1ð0Þpð0Þ þ M0
1ð0Þ�t þ

ðt

0

ðt 2 uÞgðuÞdu;

with initial conditions M1(0) and M0
1(0). This standard Volterra integral with a continuous

kernel may be solved using first a Taylor series expansion with a second-order

approximation (according to the desired degree of approximation), meaning truncated

after the third term,

M1ðtÞ < M1ðtÞ2 M0
1ðtÞðt2 tÞ þ

1

2
M00

1ðtÞðt2 tÞ2; ð40Þ

which replaced into the integrand in Equation (51) results in,

V02ðtÞM
00
1ðtÞ þ V01ðtÞM

0
1ðtÞ þ V00ðtÞM1ðtÞ ¼ fðtÞ; ð41Þ

where

V02ðtÞ ¼
1

2
pð0Þt 3 þ

ðt

0

ðt 2 tÞ3qðtÞdt

� �
2

ðt

0

ðt 2 tÞ2pðtÞdt;

V01ðtÞ ¼ 2pð0Þt 2 2

ðt

0

ðt 2 tÞ2qðtÞdtþ

ðt

0

ðt 2 tÞpðtÞdt;

V00ðtÞ ¼ 1þ pð0Þt 2

ðt

0

ðt 2 tÞqðtÞdt:

To finally estimate M1(t), Li derived a third equation in M00
1, M0

1 and M1, by two different

approaches, in order to set with Equations (38) and (41), a solvable three equations system

with three unknowns. By his first approach, denoted as the differentiation method,

V12ðtÞM
00
1ðtÞ þ V11ðtÞM

0
1ðtÞ þ V10ðtÞM1ðtÞ ¼ fðtÞ; ð42Þ
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where

V12ðtÞ ¼
1

2
pð0Þt 2 þ

ðt

0

ðt 2 tÞ2qðtÞdt

� �
2

ðt

0

ðt 2 tÞpðtÞdt;

V11ðtÞ ¼ 12 pð0Þt 2

ðt

0

ðt 2 tÞqðtÞdtþ

ðt

0

pðtÞdt;

V10ðtÞ ¼ pð0Þ þ

ðt

0

qðtÞdt:

Finally,

M1ðtÞ ¼

det

fðtÞ V01ðtÞ V02ðtÞ

f0ðtÞ V11ðtÞ V12ðtÞ

gðtÞ pðtÞ 1

2
664

3
775

det

V00ðtÞ V01ðtÞ V02ðtÞ

V10ðtÞ V11ðtÞ V12ðtÞ

qðtÞ pðtÞ 1

2
664

3
775
; ð43Þ

where

det

x11 x12 x13

x21 x22 x23

x31 x32 x33

								

								
¼ x11

x22 x23

x32 x33

					
					2 x12

x21 x23

x31 x33

					
					þ x13

x21 x22

x31 x32

					
					 and det

a b

c d

					
					¼ ad2 cb:

For the model in Figure 5 and according to Equation (37), pðtÞ ¼ k21 þ k10þ

k12ðt þ tÞ2h, qðtÞ ¼ k21k10 2 k12hðt 2 1Þt2ðhþ1Þ and f ðtÞ ¼ DdðtÞ, with d(t) standing for

the Dirac delta function, initial conditions M1(0) ¼ D, the bolus i.v. dose, and

M0
1ð0Þ ¼ 2D(k10 þ k12t

2h). Then, using the * convolution notation,

V02ðtÞ ¼
1

2
½ðk21 þ k10Þt

3 þ t 3 * qðtÞ�2 t 2 * pðtÞ; ð44Þ

V01ðtÞ ¼ 2ðk21 þ k10Þt
2 2 t 2 * qðtÞ þ t * pðtÞ; ð45Þ

V00ðtÞ ¼ 1þ ðk21 þ k10Þt 2 t * qðtÞ; ð46Þ

V12ðtÞ ¼
1

2
½ðk21 þ k10Þt

2 þ t 2 * qðtÞ�2 t * pðtÞ; ð47Þ

V11ðtÞ ¼ 12 ðk21 þ k10Þt 2 t * qðtÞ þ

ðt

0

pðuÞdu; ð48Þ

V10ðtÞ ¼ ðk21 þ k10Þ þ

ðt

0

qðuÞdu: ð49Þ

For the constant terms in p(t) and q(t), using the distributive property of all linear

operators, the following convolution rule for any constant k and integer n may be simply
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implemented,

t n
* k ¼

ðt

0

un k du ¼
k

n þ 1
t nþ1; ð50Þ

while for the terms involving two time functions of the kind t n
* t 2h a Laplace

transformation is required which results in,

t n
* t2h ) L{t n}L{t2h} ¼

n!Gð12 hÞ

s ðnþ22hÞ
)
L21 n!Gð12 hÞ

Gðn þ 22 hÞ
t nþ12h; ð51Þ

where G(·) stands for the Gamma function and G(n) ¼ (n 2 1)! for any positive integer n.

Alternative to the method of deriving a second-order ODE in just one variable by

substitution, or when that renders a numerically unfavourable result, the linear system of

differential equations with variable coefficients described in Figure 5 may still be solvable

directly. One of the earliest proposals was made some time ago by Yamamoto [84] for a

homogeneous system of the form

M0 ¼ AðtÞ·M; ð52Þ

where for the fully connected two ODE’s system in Figure 4, with instantaneous input,

M0T ¼
dM1ðtÞ

dt
;
dM2ðtÞ

dt

� �
; MT ¼ ðM1ðtÞ;M2ðtÞÞ;

and the continuously differentiable coefficient matrix

A ¼
2E1ðtÞ E2ðtÞ

E1ðtÞ 2E2ðtÞ

 !
:

He showed that this system may be reduced to another one with a constant coefficients

matrix B and thus easier to solve,

Y0 ¼ B·Y; ð53Þ

under the transformation M ¼ eStY, if and only if the constant matrix S satisfies the

conditions,

A0ðtÞ ¼ SAðtÞ2 AðtÞS and Að0Þ ¼ Sþ B: ð54Þ

The challenge then becomes the estimation of matrices S and B, particularly, if the

fundamental matrix of the system is hard to find. This is defined as,

FðtÞ ¼ eSt·eBt; ð55Þ

with its determinant known as the Wronskian and it corresponds to the non-singular matrix

whose columns are the linearly independent solutions to the homogeneous Equation (52).

The same approach may be extended to heterogeneous ODE’s systems, such as

M0 ¼ AðtÞ·Mþ rðtÞ, for which the solution to the initial valued problem is presented as,

MðtÞ ¼ FðtÞFð0Þ21Mð0Þ þFðtÞ

ðt

0

FðuÞ21rðuÞdu; ð56Þ
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with the requirement that the fundamental matrix F(t) is integratable and inversable [17].

In general, there are no explicit methods to construct a fundamental matrix. However, if

one solution is known, the dimension of the initial ODE’s system may be reduced by one

using the method of d’Alembert reduction. As an example, the previously discussed

methodology could be used to estimate M1(t) being then the perhaps more elusive M2(t)

estimated this way with added statistical advantages, since then the eigenvalues and

eigenvectors of the original coefficient matrix would become known.

Still, a different method was proposed at about the same time by Vasilach [78] making

use of composition algebras. For the heterogeneous system, in his notation to facilitate the

interpretation,

dMi

dt
¼ riðtÞ þ

Xn

j¼1

aijðtÞMiðtÞ; 1 # i; j # n; ð57Þ

the solution may be derived to be,

MiðtÞ ¼
Xn

j¼1

ðt

0

Zijðt; uÞrjðuÞdu

� �
þ
Xn

j¼1

Zijðt; t0ÞMjðt0Þ; 1 # i; j # n; ð58Þ

or, for the homogeneous case, the same just omitting the term rj(u), being

Zijðt; t0Þ ¼

1þ
Ð t

t0
Gijðt; uÞdu; for i ¼ jÐ t

t0
Gijðt; uÞdu; for i – j

8<
: ; 1 # i; j # n; ð59Þ

and

Gijðt; t0Þ ¼ aijðtÞ þ
Xn

k1¼1

ðt

t0

aik1 ðuÞdu

� �
ak1jðt0Þ

þ
Xn

k¼1

Xn

k1¼1

ðt

t0

ak1kðuÞdu

ðt

t0

aik1ðuÞakjðt0Þdu;

1 # i; j # n;

ð60Þ

truncating at the third composition power. The original publication addresses the limiting

nth power, although with very unfortunate typographical mistakes throughout the text of

which the reader must be aware.

For the simpler 2 £ 2 system illustrated in Figure 5, the corresponding analytical

solutions become,

M1ðtÞ ¼ M1ðt0Þ 1þ

ðt

t0

G11ðt; uÞdu

� �
þ M2ðt0Þ

ðt

t0

G12ðt; uÞdu

� �

þ

ðt

t0

f ðuÞdu 1þ

ðt

t0

G11ðt; uÞdu

� �
þ

ðt

t0

G12ðt; uÞdu; ð61Þ
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and

M2ðtÞ ¼ M1ðt0Þ

ðt

t0

G21ðt; uÞdu þ M2ðt0Þ 1þ

ðt

t0

G22ðt; uÞdu

� �

þ

ðt

t0

f ðuÞdu

ðt

t0

G21ðt; uÞdu þ 1þ

ðt

t0

G22ðt; uÞdu; ð62Þ

which get further simplified under the initial condition M2(t0) ¼ 0, as it usually happens

in PK.

Results and discussion

Fractal PK, unlike an odd peculiarity, corresponds to the actual time course of drug

molecules when found in heterogeneous, space-restricted, microenvironments. Thus, all

drugs share this characteristic particularly in light of the biophase concept, earlier denoted

as the ‘effect site’, and really meaning the immediate location where the drug interacts

with the body, either in terms of a membrane interface, a metabolic enzyme or a

pharmacological receptor. Although only a few handful of molecules elicit a self-similar

systemic exponential decay, without ever reaching a true log-linear terminal phase, this is

exactly the same behaviour that all drugs endure ‘peripherally’, often just clouded by too

high lower limits of quantification. Essentially, only when the majority of drug molecules

dwell in reasonably homogeneous well stirred media, such as the blood stream, the

lymphatic system or even the interstitial fluid space, with only a fraction being partitioned

into the deeper heterogeneous microenvironments, under a distribution steady-state, the

classical compartmental homogeneous approximation works, either in terms of a small

number of compartments or ultimately with just one. On the other hand, only more

recently the bioanalytical advancements, both in instrumentation and control software,

have brought the lower limits of quantification of drugs in biological matrices to new

unprecedent lows. Before, sampling would just have to be cut short from revealing the full

kinetic picture for analytical reasons. Now, drugs that have been consistently modelled

over the years under the homogeneity assumption are in many cases disclosing their fractal

kinetics characteristics when followed over time to lower and lower concentrations.

Lastly, there are drug molecules that partition so significantly into all the recondite fractal

environments in the body, that even with little effort their firstly coined ‘strange kinetics’

becomes evident. Such is the case of radioisotopes of so-called bone-seekers like calcium,

strontium, barium and radium and their trace-kinetics, as identified in the very early

physiology literature [52], and more recently corroborated in terms of non-radioactive

calcium whole biodistribution [45]. Fitting those early data with a sum of exponential

terms resulted in a different number of exponentials being needed depending on the time

range chosen. Alternatively, the empirical equations then used for their smaller number

of parameters, namely y(t) ¼ at 2a and y(t) ¼ at 2ae2bt [82], may now be recognized in

Equations (27) and (28) above.

Figure 7 illustrates one of those cases for 47Ca from long time ago [5], where the

original authors used two power functions to describe plasma specific activities measured

in rats. About tissue distribution they came to the conclusion that

equilibration is never in fact complete and kinetics depending on fixed compartments and
exchange rates would not be a good description of this type of exchange. There is a barrier
between the exchange of calcium and the blood, extracellular fluid and the tissues, which
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appears to alter with time in various tissues. At present it is not possible to describe this
mathematical function in a satisfactory manner (sic.).

Nowadays, it seems self-evident that these ‘barriers’ correspond to the fractal nature of the

tissular microenvironments and the reason for a true distribution steady-state never to be

reached is the conceptually infinite detail with which those tissues may be described

relative to the diffusion of such a small molecule like calcium. Its like trying to soak a

sponge that keeps finding more and more imbedded spaces available for water molecules
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Figure 7. Examples of data published as having anomalous, strange or heterogeneous kinetics in
different time scales, fitted with a two compartment fractal model as described in Figure 5: First row,
47Ca data from Anderson and Tomlinson [5]; Second row, Cyclosporin data from Claret et al. [16];
Third row, Amiodarone data from Tucker et al. [76] as shown also in Figure 6. On the left column,
data are plotted in linear scales while on the right, the same data are found in semilog plots.
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to get into. On the comment about a satisfactory mathematical description of this reality,

as it was hopefully illustrated above, there are now better insights on how to do it than at

the time of the study.

Another example also depicted in Figure 7 is the more recent work about the

heterogeneous PK of cyclosporin [16]. This is a drug with documented binding

peculiarities, extensive and multiple metabolism, and deep tissue distribution

characteristics. As these authors wrote, ‘the concept of “homogeneous compartment”

was used in order to simplify the prototype system and make the mathematical analysis

feasible. Later on, due to the complexity and the diversity of observed data, more complex

multicompartmental models were developed’ (sic.), having themselves suggested a

power-law stochastic modelling approach. The fact of the matter is that, in this case, the

whole disposition process begs for a fractal description. To capture all its intricacies either

an endless number of compartments or a robust variance model are needed, with inherent

applicability or interpretation issues. Alternatively, a fractal state-space approach, with a

solid diffusion-based derivation, may provide not just descriptive power but also inference

capability.

Finally, perhaps the most explicit example of a drug eliciting clear fractal PK is

amiodarone, as firstly identified by Tucker et al. [76]. In Figure 7, again just one

illustrative data set reveals now a degree of complexity even more challenging.

The orders of magnitude covered by drug concentrations following a single dose

administration resemble a series of matryoshkas always with one more chuckling inside.

In this case, it is like squeezing the fractal ‘sponge’ endlessly and always continuing to

see drug material coming out. Inevitably, the lower limit of quantification of the

bioanalytical method used truncates this process when the heteroscedasticity of the data

starts producing non-random residuals and regression anomalies. Amiodarone is known

to take weeks to elicit maximal efficacy, since it distributes and stores in essentially all

body tissues with very large saturation thresholds. Accordingly, it is not eliminated or

excreted like most other drugs, but instead it seems to be leached out as amiodarone-

containing cells are lost from the body according to their own turnover. A pertinent

implication of this fractal PK is the fact that amiodarone, being stored in so many

different microenvironments, may produce adverse side effects in as many different

organs and systems. It’s both a class I and III antiarrhythmic agent, a beta-blocker, a

calcium blocker, a vasodilator and a thyroid blocking agent, among other attributes. And

most of these effects take so long to develop as they take to fade away upon drug

discontinuation. In the process, drug may accumulate in the cornea causing halo-vision,

in the skin causing blue–grey discolorations, in the thyroid causing hypo- or

hyperthyroidism, in the liver causing hepatic disease, in the upper intestine causing

severe gastric reflux, in the lungs causing acute lung syndrome and, on and on, as if the

whole body was a macroscopic fractal network. It’s most adequate PK modelling

becomes thus undisputable.

Looking at the big picture, fractal PK ought to be considered as the general overall

theory of which homogeneous compartmental analysis is just a part. As illustrated in

Figure 8, according to Equation (35), when the fractal exponent h is simulated to be close

to zero, classical homogeneous kinetics results, identified for a two compartment model by

the short-time upward curvature before a distribution steady-state is established, and by

the clear log-linear terminal phase extrapolatable to infinity. When h is simulated to

approach unity, then sustained concentrations result as time increases, never reaching such

log-linearity.
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Conclusions

The early approach of fitting power functions with negative exponents to experimental

data, although empirical, provided ‘better long-term predictions of how much substance

was left in the human body many weeks or months later. The corresponding estimates

based on a polyexponential function were then out by 100% or more’, in the words of Wise

[82]. In the 1980s, he concluded that ‘twenty-years later it is scarcely appreciated that all

of this could apply, mutatis mutandis, to pharmacokinetic data’. Now, 40 years after the

1960s, one may dare to say nearly the same.

Nature, and therefore biological systems, is inherently fractal. As so many of its other

aspects, this understanding escaped us for centuries, as many others will continue to

escape for many more. Nevertheless, knowledge inexorably accrues over time regardless

of mankind and it is just our choice to make use of it or not. As we stand today, it seems

congruent that fractal PK encompasses all the required characteristics and explanations for

all experimental observations related to the time course of drugs when administered to

biological systems. Which means that it includes as sub-cases, the more common and

previously exclusive compartmental, physiological and systems analyses. Therefore, it

does not disprove them, nor does it replace them. It just provides the necessary insight for
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Figure 8. Simulations from the model and respective parameters described in Figure 6 changing
the fractal exponent h alone. Each row refers to the same data just plotted on a linear scale at the left,
midway through on a semi-log scale on the middle and likewise just for a few early times on the right.
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every time the underlying assumptions required for all those other modelling approaches

are just not valid. The universal parsimony principle states it the best: ‘pluralities ought not

be supposed without necessity’, William of Ockham (1285–1349). But as a contemporary

of Smoluchowski put it more recently, ‘We should make things as simple as possible, but

not simpler’ A. Einstein (1879–1955).

Every time the heterogeneity of living organisms, as opposed to physical ones, impacts

on the whereabouts of drug molecules and thus on their kinetics, this will become fractal.

Focusing on a diffusion rationale for the movement of each single molecule, a time-

dependent rate constant formalism may be conceived using fractal exponential

parameters. This strategy may summarize the underlying phenomena under a small

parameter space still amenable to be handled by standard statistics towards significance

and inference issues. Fractal PK is reputable and it’s available.
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