
?i. 1997 OPA (Overxas  Publ~\her\ A\\oci,mun) 
4m\terd,im H V Puhl~shed In The >ethcrlmd\ under 

I~ccnw b! Gordon and Brrnch Science Piibl~\hcr\ 
Pr~nred 111 I n d d  

Joirrriol uf 

Reprmts ava 
Photocop~ln ,~  

A Survey of Cell Population Dynamics 

T~~rorut~ci i l  Mrdx rn?. Vol I, pp. 35 - 5  1 
lable d~rect ly from the publ~sher 

pcrmittcd b) Ilccnw unl) 

0. ARINO" and E. SANCHEZ~.* 

%ahoratoire de Mathkmariques Appliqukes, I.P.R.A. Univer-sit& de Pau. 64000 Paw Fmnce;  to to M~lthemtiticns. 
E.T.S.I. Industriales, U.P.M., C/Josk Gutikr-re: Ahmcul, 2, 28006 Mudrid, Spain 

A survey of cell-population models is presented. The so-called cell cycle is discussed, 
including some models which are not population models but which contribute to the 
better understanding proliferation of cell dynamics. Classical linear models of structured 
cell-population models are described with a review of classical results and a comparison 
between different approaches. Finally, some non-linear models are also developed. 

Ke?.word.v: Cell kinetics, cell cycle, structured population dynamics 

INTRCIDUCTION: THE CELL CYCLE 

Cell lifb spans from the birth of a cell as a result 
of the division of another cell, the mother cell, into 
two, thp daughter cells, to the moment when this 
cell has completed ~ t s  d~vision into two new cells. 
There qre cells which never divide or are destroyed 
before lhey divide. In normal conditions, cells of 
a given line tend to follow the same path. The 
life of ian ordinary cell passes through a sequence 
of recopizable transitions, which repeats itself to 
cells of the next generation. This series of events is 
known as the 'cell cycle.' 

The best known scenario for the description of 
the cell cycle considers four successive periods GI, 
S, G2, M. Cells enter the cell cycle In G1. This 
phase does not seem to have a distinctive feature, 
in fact, the letter G refers to the word 'gap', i.e. the 

name given to a non-distinctive part of the cycle. 
They then enter a phase of active production, the 
DNA synthesis, known as the S-phase. This phase 
can be empirically determined. It is followed by 
another, not easily distinguishable period. the G2 
phase. Finally, the cell starts the process which ends 
up with the formation of two new cells, known as 
the mitosis or M-phase. 

During its whole life, the cell grows in size, not 
only because it doubles its DNA content. but also 
in other constituents such as RNA. It is commonly 
admitted that the size is closely related to the mech- 
anisms regulating cell life (Mitchinson, 1971; John, 
1981) but that size does not refer to a unique and 
well-defined character of a cell. It can be the mass 
of some constituent such as RNA or even a hypo- 
thetical constituent, a mitogen in the sense of Lasota 
and Mackey (1984). 
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Molecular Biology Approach to the Cell Cycle 

The cell cycle has been investigated for many years 
at the physiological level and recently by molecular 
biological methods. Starting at the end of the 1980s, 
cell dynamics modeling developed in a new direc- 
tion. Structured cell population models had been 
pushed to a limit. well illustrated by the general 
model analyzed in Rossa (1995). Experimental find- 
ings from cell molecular biology gave a strong impe- 
tus to the search for models describing some of the 
biochemical mechanisms underlying cell develop- 
ment processes. We briefly comment on this. 

First of all, we want to underline that the study 
of cells at the molecular level is not exactly recent. 
Many of the results used today were discovered 
in the 1980s. As an example, Nurse and Bisset 
(1981) report that, in yeast, cdc2 and cdclO genes 
are both needed for completion of G1 (cdc means 
cell division cycle). Nurse and his collaborators 
identified several other genetic elements throughout 
the 1980s (Forsburg and Nurse, 1991). 

One of the puzzling facts regarding the size struc- 
tured models which were so popular in the 1980s 
is the case of embryonic cells. On the one hand, 
embryonic cells do not grow in size. They undergo 
a series of rapid division cycles in the absence of 
any growth. On the other hand, these divisions do 
not seem to be regulated by doubling of nuclear con- 
tent (DNA) since anucleate embryonic cells continue 
to divide (Harvey, 1940). It became more and more 
evident that size growth is not always a faithful indi- 
cator of the progress through the cell cycle and that 
molecular biology data should be taken into account. 

In this context cell cycle is explained via the bio- 
chemical reactions which occur within each cell. It 
is accepted that the evolution through different steps 
of the cell cycle is due to fluctuations in concentra- 
tions of some proteins (cyclins) and this mechanism 
is essentially the same for all types of cells. Roughly 
speaking, cyclins A and B are produced at a constant 
rate in the cell and their concentrations change peri- 
odically along the cell cycle. Cyclin B is related to 
the production of another protein called 'maturation 
promotion factor' (MPF) which at high concentra- 
tion gives rise to the mitotic phase (Hyver and Le 

Guyader, 1990; Norel and Agur, 1991). The first 
models of this type concentrated only on this aspect. 
Focusing the study on a few biochemical species, 
supposedly the main ones, they aimed at describ- 
ing the periodic oscillations of the concentrations 
(or of the quantities) of these products in a cell. To 
mention a few examples, in Thron (1991) and Norel 
and Agur (1991), a system of two first-order ODE 
(ordinary differential equation) satisfied by cyclin 
B and MPF is proposed. Numerical results indicate 
the existence of limit cycles. A more complex model 
involving six equations was introduced by Obeye- 
sekere et al. (1992, 1994, 1995). State variables are 
concentrations of different product which control the 
so-called 'mitotic clock'. 

It seems. however, that a correct description of 
cell dynamics. even restricted to the level of bio- 
chemical species present in the cell, has to take cell- 
population processes into account: both cell growth 
in size and division. Clearly, the cell-cycle clock 
is not a function of only concentration. Otherwise, 
daughter cells would have the same capacity of 
division as the mother cell and could divide right 
after, which would lead to slnaller and smaller cells. 
This is not observed in normal conditions in non- 
embryonic cells. Division is also playing a role in 
the clock, by resetting the values of the species. 

A model coupling cell growth and evolution at the 
molecular level was first proposed by Tyson (1991). 
An extension of the Tyson model is given by Novak 
and Tyson (1995). Roughly speaking, the model 
described by Novak and Tyson (1995) is composed 
of two subsystems. One is a two-dimensional system 
of ODE governing the evolution of two concen- 
trations of the biochemical species. The functions 
defining the system are non-linear and depend on 
parameters which, in fact. are time-dependent and 
are solutions to the other subsystem. Amongst these 
parameters is the total mass of the cell. One can 
think of the variation of the second group of vari- 
ables as rapid with respect to the concentrations so 
that they remain nearly constant while the cell pro- 
gresses through the cycle. The qualitative feature of 
the main system (the one verified by the concen- 
tration) depends upon the values of the parameters 
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or, mor generally, the region where the parameters 
live. T o main modes can be depicted: the sponta- 
neous 1 scillator mode, observed in embryonic cells, 
where tapid autonomous cycles repeat themselves, 
and the excitable switch mode, followed by non- 
embryo~lic cells in which cells can be switched from 
quiescehce to proliferating state by some perturba- 
tion. A( quasi-static model of excitable switch is 
described in Thron (in preparation). 

Val dnd Tyson (in preparation) present a model 
for the budding yeast (Sacchoromyces cerevisae) 
combidng a description of the cell cycle in terms 
of somb molecular events, and a stage structured 
model is proposed. This structured model is a trans- 
port eqation of the type described by Metz and 
Diekmdnn (1986) and Arino (1995). The vector 
of state is a double infinite sequence of functions 

{ny(t3 x i ) ) ,  In: (t, t, XI). 
ny is, the density (with respect to x) of cells with 

j scarq, in GI, called pre-START phase by Val 
and Ty$on (in preparation); n: is the corresponding 
density of cells further on in the cell cycle (called 
post-START phase); t is the chronological time, 
while d is the time spent in post-START at time t. 
The po$ition of a cell in the cycle is described by the 
vector & whose components are, in that given order, 
the ma$s of the cell, the START promoting factor, 
a comIplex made of the so-called A-type cyclins, 
the mitosis promoting factor, a complex made of B- 
type cyiclins and a specific ubiquitin pathway, which 
regulates the destruction of B-types cyclins. 

Thee  are three sets of equations: one governs 
the dyqiamics of x; the second linear set is made 
of the wansport equations which determine the evo- 
lution ~f cells during the periods when they are 
subjectto growth and mortality only. The third set of 
equatims describes the transition from pre-START 
to postcSTART, on the one hand, and the division 
(or transitions post-START to pre-START of the 
next gGneration), on the other hand. In the absence 
of stochastic effects in the transitions, the passage 
through START occurs for some value of the cell- 
cycle state x which is entirely determined by the ini- 
tial val e. The same is true for the value at division. 
Accor k 'ng to Val and Tyson (in preparation) START 

is a signal indicating that the cell is committed irre- 
vocably to carry out DNA synthesis and engage into 
the sequence of events which ends with mitosis. 

Looked at through several cycles, the cell-cycle 
state of a small cell (it is known that, at division, 
each cell of the budding yeast produces a large cell 
and a small one) is a piecewise continuous function 
with jumps at division times. Between two con- 
secutive jumps, it satisfies the system of equations 
associated with the dynamics of x. It is reported by 
Val and Tyson (in preparation) that the cell-cycle 
state trajectories of all small cells approaches a sim- 
ilar cyclic attractor, and it is conjectured that there 
is a stable size distribution. 

Two Subcycle Cell-Cycle Model 

This model is based on the assumption that the 
cell cycle constitutes two loosely coupled subcycles. 
One is the DNA division cycle (DDC) or chromo- 
some cycle, including G2 and M phases and a pre-S 
phase. The other subcycle is a cell-growth cycle 
(CGC) or cytoplasmic cycle, in which cellular mass 
is doubled. Both subcycles are necessary to pro- 
duce new cells. DDC has a fairly constant duration, 
while CGC varies considerably in growth rate, as 
found experimentally. These subcycles are assumed 
to be mutually dissociated, being possible that their 
completion are not simultaneous. If subcycle CGC 
is finished before DDC is completed, it is possible 
that the new S-phase starts, generating a tetraploid 
cell. Sennerstam and Stromberg (1995a,b) present 
an explanation of this model and simulation results 
are also provided. 

CLASSICAL LINEAR MODELS OF 
STRUCTURED CELL POPULATION 
DYNAMICS 

We introduce in this section some ideas in the 
formulation of classical models of cell-population 
dynamics, following the survey of Arino (1995). 
This work provides a review of classical results 
together with a list of references. 



Structured models in cell-population dynamics 
were considered for the first time in the 1960s. The 
first paper on this subject seems to be by Bell and 
Anderson ( 1967). Work done during the 1970s turns 
mostly around non-linear models, but this situation 
changes in the beginning of the 1980s when lin- 
ear models of population dynamics began to florish 
in various domains of applications, notably in cell- 
population dynamics. Most studies culminate in the 
proof of stuble-&pe distributior? property or asjn- 
clzroizo~is exponential growth (AEG). In a relatively 
very short period of time, many authors identified 
independently the main mathematical problems to be 
solved in this context and the main tools to be used 
(e.g. Pruss. 1981; Diekmann, 1982: Webb. 1983). A 
number of books, amongst which are Webb (1985), 
Metz and Diekmann ( 1  986) and Lasota and Mackey 
(1985. 1994). illustrate the rapid development of the 
subject. Amongst the reasons for such a develop- 
ment. is the progress made earlier in the theory of 
posititxe opemtors. Interestingly. it appears that pop- 
ulation dynamics played also its role in the theory 
of positive operators by giving a strong motivation 
for getting new results or improving the formulation 
of older ones. Good examples of this effect are the 
books by Nagel (1986) and Clement et al. (1987). 

Roughly speaking, there are three approaches 
to the classical models in cell-population dynam- 
ics: cell-generation models. size-density models and 
time continuous daughter-cell models. In all cases, 
the main assumptions which can be made are: 

(a) That each of the two daughters of a dividing cell 
gets the same share of the non-genetic material 
of the mother. This situation corresponds to 
equal di~ivion.  The alternative situation is called 
unequal di1Ysion. 

(b) That a cell may or may not alternate between 
active periods. so-called proliferc~tive during 
which it grows and divides. and cloi-niant or qui- 
escent, when it does not grow or divide. 

(c) That the material of a cell grows exponentially 
fast or not. It does if the grow~lz rate function is 
linear. 

(d) That the lfeleizgth of a cell is determined or 
stochastic. 

For each of the above four alternative statements, 
one of them favours AEG, while in some instances 
when the other choice is taken, AEG does not hold. 

Cell Generation Models (Tyson and Hannsgen; 
Lasota and Mackey) 

In this model, the cell cycle is divided into two 
phases; phase A occupies part of the G1 phase. 
During this first phase, the cell grows until it reaches 
a size which for all cells is the same, normalized to 
the value 1 (unit of size). From this moment on, 
it stays in phase A during a time T A  which has a 
random distribution. It then enters phase B. Phase B 
covers part of GI ,  the whole S phase, G2 and goes to 
the end of mitosis. It lasts for a fixed period of time 
TB. the same for all cells (Smith and Martin, 1973). 

Time T A  follows a Poisson law with parameter p: 

Prob { T A  > t }  = exp(-pr) 

so that is the average length of phase A, from 
the moment when cells reach size 1. Size of cell is 
supposed to grow continually during both phases. 
Denoting t the doubling size tinze, it is assumed that 
TB < t. Also, equal division is assumed, i.e. each 
daughter cell has exactly half the size of the mother. 

From the above considerations, one can deduce 
that cells have a nzininwl size a. 

The model concentrates on describing the evolu- 
tion of generations of cells. This implies that the 
time variable is the number of generations (n E N), 
not the chronological time. The initial time is the 
zeroth generation: all cells present at this initial 
stage are taken as the ancestor cells. To each number 
n ,  one associates a probability density function +,, 
obtained by counting the cells produced by n suc- 
cessive divisions, starting from ancestor cells, and 
calculating the proportion of those cells of each size. 

The so-called dyiamical process is the process by 
which cells pass from M"' to ( H  + 1 )th generation. It is 
reflected in the densities by a transformation which 
gives in terms of $,,. This transformation is 
completely determined by the mechanism by which 
individual cells progress through the cycle that we 
explained before. The derivation is done in Tyson 
and Hannsgen (1986) and we refer to this for details. 
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The above transformation is expressed in terms 
of a ke nel K(x ,  y) ,  so that 1 + x 

+ ( 1  = ~ ( x .  Y ) ~ ( Y )  d Y 

which determines a linear positive operator P on 
~'(a, $00) which leaves the subset of probability 
densiti$s invariant. Such an operator is called a 
Markop operator (Lasota and Mackey 1994). 

The stable-size distribution problem can be for- 
mulated as follows: 

To drove existence of a positive $xed point $* 
of oiperator P (a  steady-state distribution), and 
show that $* is globally asymptotically stable, 
that is, show that for each initial probability 
derzjitr). $o, $, tends to $*, as n goes to +m. 

ConQlitions are stated in the above-mentioned 
book (kasota and Mackey, 1994) in order to answer 
positively this problem. 

Size-Dknsity Models 

The bebt account on size-density models is probably 
the bopk by Metz and Diekmann (1986). There 
is sonje connection with fluid dynamics in this 
approach, namely individuals are like particles of 
a fluid which flow into a region, which is the space 
of all tbe structure variables. In a single-type model 
(Diekaann et al., 1984), the state variable is a 
scalar flensity function n ( t ,  x ) ,  where the structure 
variable x may be a vector or a scalar. A standard 
choice is the vector (a ,  s )  where a represents the 
age anfl s is a scalar associated with the measure of 
some qther character. 

This structure variable belongs to some fixed 
region Q c R~ (N is the dimension of the vector 
x )  and we assume that the motion of particles in Q 

is governed by an O.D.E.: 

The model is obtained counting the number of 
individuals entering or leaving any region M of 
Q durijng a time interval ( t ,  t + 6t), jointly with a 
standadd application of the Stokes theorem, which 

enables us to express the evolution of the population 
as a transport equation: 

B and D correspond respectively to source terms and 
sink terms. In order to describe them, we introduce 
three functions: 

The division rate b(x) (per unit of timelper cell 
of size x )  

SJT b(x )n( t ,  x )  d x d t  
XI % ~ 2 1 ~ [ f i . f 2 1  

= number of cells of size in [ X I ,  xz] 
which divide during the time 
interval [tl  , t z ]  . 

The mortality rate p ( x )  (per unit of timelper cell 
of size x). 
The dispersion of cells at division amongst 
the two daughter cells (unequal division). It is 
defined in terms of a conditional density f (x ,  y) 
which gives the distribution of the size of a 
daughter cell (x ) ,  when the size of the mother is 
equal to ( y ) :  

1; f (x ,  y) dx 

= probability for a daughter cell to have a 
size in the interval [ x l ,  x2] knowing that 
the mother had size y. 

Two obvious properties that such a distribution 
should verify are f ( x ,  y)  = 0 if x > y (the size 
of the daughter is less than that of the mother) and 
f ( x ,  y) = f ( y  - x ,  y )  (the distribution is symmetric, 
due to the fact that as soon as the size of one of the 
two daughters is known, the other one is also known 
in terms of the size of the mother). 

With these hypotheses, equation (1 )  takes the 
form 
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In case of equal division, the distribution f reduces 
to a Dirac function 

In order to rigorously derive the corresponding 
model for equation (2 ) ,  it is enough to write an 
approximation of S by a true function and after 
passage to the corresponding limit we obtain the 
following equation 

A natural assumption is that division occurs only in 
a certain size interval, so that b ( x )  = 0 if x < s o  or 
.x > X I  for some 0 < xo < xl < +oc. 

Moreover. (.x1/2) < xo, so that all cells have to 
grow for some time before they can divide. Cells 
may exceed size s l  but cells of size larger than xl 
do not divide anymore. So they can be treated as 
if they had left the cycle. Assuming that division is 
equal and no cell divides below size xo. implies that 
daughter cells have a minimum size so /2 .  

As a consequence, we obtain a boundary condi- 
tion on the solutions 

n ( t ,  x o / 2 )  = 0 .  (4  

A detailed study of system (3)- (4)  was undertaken 
by Diekmann et nl. (1984). 

The .stable-size distribution is a solution of the 
problem which has the form 

Greiner and Nagel (1988) proved the following 
result 

Assume that the filnction g verzfies the piloprrh 
g(2x)  5 2g(x),  ,for all x  E [xh /2 ,  X I  121. Thrn, 
system (3)-(4)  111t.s 11 stuhle-size distrilmtioiz 
(in other ~ ~ ~ r d s ,  lzns e.xponentin1 rr.sjmptotic 
gro+vtlz (AEG)), if the filnction g is such thut 
g(2x) < 2g(.x) for some s ~ ] x ~ / 2 ,  x1/2[. 

The condition g(2s)  5 2g(x)  is biologically 
meaningful. In fact. g(2x) can be interpreted as the 
total growth rate of a mother cell of size 2x, while 
2g(x)  could be seen as the total growth rate of 
the two daughter cells if the division were to take 
place when the mother has size 2x. Whether the 
strict inequality may hold is still an undecided issue. 
When it holds, cell-size growth cannot be linear. On 
the other hand, it seems to be commonly admitted 
amongst biologists that cell size grows exponen- 
tially during the unlimited cell-growth phase. This 
explains attempts made recently in order to allow 
for linear growth rate and have at the same time 
AEG. The general model (2)- (4)  in which f is a 
density of probability other than the Dirac function 
was considered by Heijmans (1984), who proved 
that AEG holds even in the case when g is such that 
g(2x) = 2g(x).  

Whether unequal division is an important factor 
in producing cell variability is still a controversial 
issue amongst biologists. A mechanism was recently 
analyzed, by which AEG can hold even in the case 
of both linear growth rate and equal division. It 
assumes that the total population can be subdivided 
into two categories of cells: the proliferative cells 
(P), whose size grows according to a certain growth 
law, and which are subject to division and the qui- 
escent cells (Q). which do not grow and do not 
divide. A model allowing for such a mechanism, 
motivated by the study of tumour cells was first 
derived by Gyllenberg and Webb (1987) and ana- 
lyzed by Gyllenberg and Webb (1990, 1991). They 
prove that AEG holds under some assumptions. 
Different versions of this model are considered by 
Rossa ( 1  99 1, 1995). In all of them, equal division 
is assumed. 

Time-Continuous Daughter-Cell Models 

We now review models describing the evolution of 
cells in one specific state: either, at the end of growth 
when they are mother cells. or, just after division, 
when they are daughter cells. A first model of this 
type was proposed by Kimrnel et rtl. ( 1  984) aiming 
mainly at showing the influence of ~mequal division 
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on the ispersion of cell rize through successive gen- 
eration . Unequal divi~ion is modelled by a function 
f (x, J) 1 similar to the function considered above, 
which in addition satisfies a support property: There 
exists Y) < d < 112 such that f (x, y) > 0 if 
d y  < XI < (1 - d)y. 

The cell cycle is modeled by means of two 
functiobs 

T = $(XI 

the length (or duration) of the cell cycle of any cell 
entering the cycle with size x. It is assumed that $ 
is decrqasing and 

The other function 

gives the final size, that is, the mother size, as a 
functioO of the initial size. It is assumed that @ is 
increasjng, bounded and continuously differentiable 
with ~ ( ( 0 )  > 1. 

The state variable of the model is n ( t ,  y) = 
density of daughter cells with respect to size 
and time. 

Also important in the derivation of the model is 
m(t, y) = density of mother cells with respect to 
size an4 time. 

n an4 m are related to each other by two funda- 
mental equations 

Equatioh (5) is straightforward and equation (6) is 
obtained by counting the number of mother cells 

in term4 of the daughter-cell density. We refer to 
Kimmel et al. (1984) and Arino and Kimmel (1987) 
for a de I ailed treatment of this computation. 

Substituting the right-hand qide of equation (6) for 
m in equation ( 5 ) ,  we obtain an equation involving 
n only. After a change of variables in the integral, 
it takes the form 

+30 

72 (t, X) = 2 1 f (X @ k ) b ( t  - $ ( ~ h  Z )  d ~ .  (7) 

The condition on the support of f yields a sup- 
port property for the solutions. Under the additional 
assumption 

d@'(O) > I 

one can show that, for any interval ]Al ,  A2[, 0 ~r 

A1 < AZ < +oo, with Al small enough and A2 large 
enough, if we assume that daughter cells born before 
some time to had size in ]A1, A?[, then the same 
is true for all cells born after that time. Moreover, 
the size of daughter cells evolves in such a way 
that asymptotically it belongs to an interval ] a l ,  az[, 
where a1 (or a?) is the non-zero fixed point of cl@ 
(or (1 - d)@) .  

Assuming that daughter-cell sizes are in some 
interval ]Al, A2[, it was proved in Arino and Kimmel 
(1987) that AEG holds if the function 

is such that 

On the other hand, AEG does not hold if we assume 
that 

Q(y) = HO for all y €]A', Az[. 

The function 0(y) has a biological meaning, it gives 
the lifelength of a cell which at mitosis has size y. 

The equal division version of equation (7) is 

n ( t ,  .x) = 4 ( @ - 1 ) ' ( 2 ~ ) ~ ~  (t - 8(2x), @ - I  (2x1). (8) 

Under the assumption that W 1 ( 2 x )  has a positive 
fixed point a*, one can see that AEG does not hold. 

The model introduced here was mainly intended 
to reflect the impact of unequal division on AEG. 
It turns out from version (8) that, in this model, 
unequal division is in fact necessary to get AEG. 



A more general model which yields AEG even in 
the case of equal division. was introduced in Arino 
et al. (1 99 1 ). In this model. stochastic lfeler?gtlz is 
considered. Let us consider the case of unequal divi- 
sion, still modeled by the same function ,f as above. 

The cell-cycle duratioiz is modeled by a condi- 
tional probability. expressed in terms of a density 
y(.. x): 

y ( s  .XI d r 
4 

= probability for a cell of initial size .r to 

have a cell cycle of length r E [tl. s?]. 

Moreover, y satisfies a technical support property. 
It is also assumed that the function @ depend$ on 
r and s and @ is also increasing with respect to s .  
Eq~lation (7) is changed to 

n( t .  .XI = 2 S L+,,- f (x, @(T. )'))M (f  - r. J'? d !'d T 

(9) 
It was proved in Arino et al. (1991) that, under some 
conditions stated on f .  @ and y. AEG holds. 

The equal division version of equation (9) i$ 
formulated by Arino (1995) and proves that AEG 
holds. 

Comparison Between the Three Approaches 

Comparative remarks about the cell-growth law 

Kimmel et al. (1984) and subsequent work by Arino 
and Kimmel assume that cell growth is modeled in 
terms of a function @ = @(x) or = @(t. x). If we 
assume that cell growth is governed by a differential 
equation 

and we denote X(t, r) the flow a5sociated to the 
equation. then X ( r .  .L) plays the same role as @(t. i )  

~n Arino et a1 (1991) 
Conversely, ~t was proved by Armo and Kimrnel 

(1993) that to a function @(s. x) it can be associated 
a non-autonomous d~fferentlal equation 

The flow X ( r ,  s .  s )  determined by the differential 
equation i $  related to as follows: 

In particular. we have X(t. 0, r) = @(t. x). 
So, we can conclude that the model with Q, = 

@(s. X) is in fact more general than the differential 
equation. 

PDE versus integral equation 

Size-density models are expressed in terms of PDE 
(partial differential equation). In contrast, time- 
continuous daughter-cell models lead to integral 
equations. 

Arino and Kimmei (1993) prove that the integral 
equation (9) is equivalent to a first-order PDE 
involving the derivatives with respect to time. 
size and age, through a one-to-one correspondence 
between the solutions of (9) and the solutions of 
PDE. Such a comparison had be made previously 
by Webb (1987). 

Time-continuous versus discrete 
generation models 

The two approaches, the time-continuous approach 
and the cell-generation one. are completely different 
ways of cell counting. Strictly speaking, cell- 
generation models are not evolution models: cells of 
a given generation are not in general contemporary 
to each other. Even when starting from a single 
cell, after a time large enough for asynchronicity 
to take on its effect, a large number of generations 
coexist on the one hand. while, on the other hand, 
cells of a same generation may be present at quite 
different times. Although the two approaches are 
so different. it is natural to think that they are 
somehow related to each other. Ideally. one should 
be able to describe cell generations in terms of a 
cell-population time map and conversely. It seems 
to be however that not all the models allow this. A 
basic requirement is that the model should be able 
to distinguish cells by their state in the cycle. The 
models described above do not feature these traits 
since the state variable 11 (t. .x) accounts for all cells 
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which, t time t ,  have the same size x independent 
on wh t part of the cell cycle they are in. On 
the ot 1 r hand, t~me-continuous daughter models 
as the bne described above allow a description in 
terms qf generations. Such a description was done 
by Kimmel and Axelrod (1991), in a framework 
slightly different from the one described above. We 
will now review the work by Kimmel and Axelrod 
(1991),introducing occasionally some modifications 
in thei~f presentation in a way which copes more 
closely with assumptions and the analysis made by 
Arino qnd Kimmel (1987). 

The model by Kimmel and Axelrod (1991) is 
described in terms of three functions: 
(a) the function @ which, as noted above, gives the 

sizq at division as an increasing function of the 
initjal size. 

(b) A dunction G, a cumulative distribution func- 
tioq, governing a random dispersion of the size 
at division with respect to the initial size. This 
medns that in the Kimmel-Axelrod model. the 
sizd at division y is expressed in terms of the 
siza at birth (x) by the following 

where v is a stochastic disturbance. 

Prob {v ( V} = G(V).  

No Landom dispersion corresponds to G(V) = 0 
for V < 0, G(V) = 1 for V > 0. 

(c) A hnction H ,  a cumulative distribution func- 
tion, governing a random dispersion of the sizes 
of the daughter cells with respect to the size of 
the mother. 

Let 4s immediately compare these assumptions 
to thosa made previously. There is no equivalent to 
functiod G: no dispersion is assumed with respect 
to the ibitial size. Function H ,  on the other hand, 
is strongly connected to the conditional density 
f (x, y). In fact, the assumption made by Kimmel 
and Axelrod (1991) turns out to be a special case of 
that of Arino and Kimmel (1987). 

Kim el and Axelrod (1991) show unequal divi- 
sion to be modelled as follows: From a mother of 
size y, 7 t is assumed that one of the daughter cells 

has the size uy, where ~i is a random variable with 
values in [0,1], the size of the other cell being. of 
course, (1 - u)y. The law of LL is given by the func- 
tion H :  

Prob { u  5 U) = H(U). 

Assuming this law. we can compute: 

In terms of the function f ,  we have 

This yields the equality 

which, in particular, entails that H is absolutely 
continuous, and its density h satisfies the following 
relationship 

So, the assumption made by Kimmel and Axelrod 
(1991) is a special case of the one made by Arino 
and Kimmel (1987). It corresponds to the case when 
the function y f (x, y) is positively homogeneous of 
degree 0 in (x, y) .  

An important difference between the two models 
is the absence in (Kimmel and Axelrod, 1991) of 
a function $ giving the duration of the cycle, in 
contrast to what was assumed previously (Arino and 
Kimmel, 1987). This absence is justified by the fact 
that the generation model does not account for the 
time spent by cells in their cycle. It indicates that 
that model carries less information than the time- 
continuous daughter model and that one cannot, 
in general, derive the latter one in terms of the 
generation model. 

Another difference between the two models is that 
Kimmel and Axelrod (1991) envisaged mortality 
and quiescence of daughter cells, while these factors 
were not considered by Arino and Kimmel (1987). 
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It is assumed that of all the daughter cells, a fraction 
11 is going to grow and divide. a fraction q will die 
while the remaining rth part becomes quiescent; p q 
and r being three constant numbers, with p + q + r  = 

1. It is also assumed that, of all the quiescent cells, 
a fraction s is going back into the proliferating state 
while the remaining (1 -sith part stays in quiescence. 

Recurrence formulae for successive generations 
of proliferating and quiescent cells were obtained 
by Kimmel and Axelrod (1991) using a branching 
process approach. We will obtain the same result 
using a direct probability argument, in the restricted 
case when the quiescent cells do not return to 
the proliferating state, i.e. s = 0. As a matter of 
fact, the case when quiescent cells are allowed to 
become proliferating seems to bear some difficulties. 
As long as it is quiescent, a cell keeps the same 
generation number. So. assuming a stochastic return 
to the proliferating state. one can have cells with 
a low generation number at arbitrarily large times. 
A full description of cells of any given generation 
will necessitate the computation of cells of that 
generation through all positive times and seems to 
be subject to some information on how long it takes 
to quiescent cells to become proliferating. 

We start from an initial generation. the zeroth 
generation, whose distribution over the cell size is 
a function Do(() (Di(() is the distribution for the ith 
generation). The Di are the states at birth. We denote 
Mo(<) the initial distribution of cells at division, the 
mother cells (Mi(() is the distribution for the ith 
generation). 

The word initial refers here to the first genera- 
tion: the zeroth generation of mother cells follows 
the zeroth generation of daughter cells. In order to 
compute Mo in terms of Do, we first give an expres- 
sion of the size at division as a function of the size 
at birth. It is easy to see that 

It corresponds to the probability density dG(Y - @ 

( X i )  or g(Y -@(X)) d Y if G is absolutely continuous. 

Counting the mother cells with mass between y1 and 
y2 in terms of the daughter-cell density yields 

l:' MO(Y) d Y 

= iix ( 1 i 2 d G ( !  - @(.x))Do(x) 

So. assuming that G is absolutely continuous, we 
arrive at 

If there is no random dispersion of the sizes, i.e. 
G(v) = 0 if l1 < 0, G(v) = 1 if v > 0, the above 
formula reduces to 

After division, mother cells of the zeroth generation 
are followed by daughter cells of the first generation, 
surviving with probability p. This leads to 

Substituting for Mo its expression in terms of Do, 
we obtain a relationship between two consecutive 
generations of cells which determines a discrete 
dynamical system. The transition from the ith to the 

(i  + generation is given by the following 

In the case considered by Kimmel and Axelrod 
( 1  991), it yields 

This is the same as formula (A.lO) of Kimmel and 
Axelrod (1 99 1 ). 
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We no+ present some non-linear modified versions 
of tim&continuous daughter-cell models developed 
by Arioo and Kimmel (1989,1991). These models 
includd non-linear dependence of the fraction of 
cells uqdergoing effective division on the total num- 
ber of bells in the cycle. 

Non-Linear Functional-Integral Equation of Cell 
KinetiQs with Unequal Division 

We k e q  notations and hypotheses of the section on 
'Time-Qontinuous daughter-cell models' and we add 
the follbwing assumptions: 

(a) Aftpr division, a proportion a of daughter cells 
retqrn to the cycle, while the rest (fraction 1 -a )  
chaose another development path, for example, 
they differentiate. a is a function of the total 
number of the cycling cells, a = a(N). The 
peak value of a is 1. 

(b) Th4re exists a probability of a defective division. 
Thq probability of this fact is 1 - h. Thus, 
h E [0, 11 is the probability of correct division. 

Base/l on these assumptions, equation ( 5 )  

and theb, equation (7) has to be changed to 

Notice that the number of cells of birthmass x 
present in the cycle at time t is equal to the number 
of cells of that mass which entered the cycle in the 
time in@rval from t - $(x) to t. Integrating over x 
yields 

s ( I  0) and (1 1) define the model completely 

can be considered as a linear version of equation 
(1 1 )  describing the situation where each division 
results in one proliferating cell (on average), i.e. 
during zero population growth. 

From equations (10) and (1 1) it is obtained, using 
the fact that ATX f (y, x) d y = I ,  that 

and then either 2 h a ( N ( + c ~ ) )  = 1 or N ( + o )  = 0, 
where N(+oo) = lim,,,, N(t). It can be shown 
that N(+oc) is completely determined in terms of 
combinations of parameters h and N(0). 

This model is analyzed in detail by Arino and 
Kimmel (1989) using the operator semigroup theory 
combined with a classical differential-equation 
approach. The non-negative solutions either tend to 
a stable steady state or to zero. It is not difficult 
to realize that results of the same completeness can 
be obtained for any regulation feedback function a .  
provided it satisfies some technical hypotheses. The 
only difference is in the number and configuration of 
the equilibria. However, all of them have the form 
N(+m)vo(x). 

The reason for this simplicity is that the non-linear 
aspects of the asymptotic behavior of the system 
(10) and (1  1 )  are reduced to the analysis of an 
ODE (13) for N(t). The functional aspect of the 
asymptotic analysis is completely contained in the 
limit equation (12) which is nearly identical to the 
equation of unrestrained growth considered by Arino 
and Kimmel (1987). (It inay be noticed, however, 
that the analysis of existence of solutions is more 
difficult for the non-linear problem.) 

A modification of this model is proposed by Arino 
and Mortabit (1991) in which it is assumed that 
the non-linear dependence of the fraction of cells 
reentering proliferation is on the total number of 
cells that were in the cycle at time t - 1. 
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Equation (10) can be substituted by 

n (t. x) = 2 k ~ ( N ( t  - 1 )) 1- f (x. @(z)) 

and the total population satisfies a retarded differen- 
tial equation 

This model provides an example where slow 
oscillations are forced into existence by the 
introduction of a delay term. 

A very general model of cell-population 
dynamics. which includes the classical random 
transition, size control and inherited property models 
as special cases, is derived and analyzed by Webb 
(1987). Among specific applications of this model. 
the author includes the model by Kimmel et nl. 
(1984) which serves as a basis of nonlinear model 
( lo)-(]  1). It is interesting to remark that this 
model fits into the general approach only when the 
distribution of cell-generation time. which is one of 
the functions defining Webb's model, is replaced by 
Dirac's delta function. However. the study within 
the framework of Webb's paper seems to be difficult. 

With respect to the concept of mitotic regulation, 
model (10)-(11) is analogous to Mackey's (1978) 
description of the proliferation of the stem cells 
of the hemopoietic system. The behavior of the 
population predicted by both models is, however, 
completely different: Mackey's model is capable 
of producing periodic oscillations while (lo)-(] 1)  
predict a stable regime or extinction of the 
population. 

Selective Regulation of Cell-Population Growth 

A more sophisticated and difficult nonlinear model 
was introduced by Arino and Kimmel (1991). The 
cells leave proliferation with probability increasing 
with either the total cell mass or the amount 
of a cellular constituent. RNA, selected protein. 
etc. This process is called  elective regulation of 

cell popdntion growth. and is in a qualitative 
agreement with observations in many biological cell 
systems. 

The following assumption distinguishes the model 
and replace hypothesis (a) on page 45. 

(a') After division, a proportion of daughter cells 
return to the cycle, while the rest choose another 
development path. for example, they differentiate. 
Cells staying in the cycle are, with the highest 
probability, those with the lower x. 

The probability of entering GI is equal to 
H ( n  - x). where H is a sigtnoidal smooth 
approximation of the Heaviside function, increasing, 
with H ( - m )  = 0. H ( + m )  = l . n ( . )  is a 
decreasing function of the total number of cycling 
cells, i.e. l7 = n(N). 

Finally, the fraction entering G1, among cells with 
mass ..r is H ( n ( N ( t ) )  - x). 

Equation (10) has to be changed to 

n(t .  y)  = 2hH(n(N( t ) )  - J . )  

+ s 
f .  ( ) I  - . ) d (14) 

and the model is completely determined by 
equations ( 1  1)-(14). 

Fro111 the mathematical viewpoint, the stability 
analysis carried out by Arino and Kimmel (1991) 
has required novel tools of analysis of the spectral 
properties of semigroup of operators. 

The solutions of the model equations generate 
a semigroup of non-linear positive operators. A 
trivial equilibrium exists for all h E [O, I] and 
a non-trivial steady-state branches from it at h = 
112 and continues to exist for h E [1/2, 11. For 
i, E [O. 1/21. the trivial solution attracts all the non- 
negative solutions. 

The study of the stability of the non-trivial equi- 
Iibriuni has motivated the elaboration of an original 
abstract result on the spectrum of a difference of two 
operators with certain non-negativity properties. In 
intuitive terms, it is shown that (under appropriate 
technical conditions), if P is a linear operator with 
a simple eigenvalue 1 and with the rest of its spec- 
trum constrained to a disc with radius < 1, and if 
R is an operator with certain positivity properties 
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and n t too large norm, then perturbing P by -R 
transf rms the spectrum of P in such a way that its 
spectr, i 1 radius is < 1. 

Fro& biological viewpoint, the so called selective 
regulaiiotl provides a tool for joint consideration of 
cell-pc/pulation growth and maturation of individual 
cells. 

The' oldest concept of homeostatic regulation of 
the nufnber of cells in a population seems to be that 
of mitOtic autoregulation (Wheldon, 1988). Suppose 
that eaph cell synthesizes at a constant rate a molec- 
ular sdecies which acts as an inhibitor of prolifera- 
tion i n  the cells concerned. Suppose also that such 
moleciles are both exported into the environment 
by the cell and reabsorbed from it. The intracellular 
densiti concentration depends on the density of 
inhibitqr-synthesizing cells in the neighbourhood, 
which provides a negative-feedback mechanism. 
The idhibitory molecules may be thought of as 
maintaining the cell in a proliferative resting state. 
Many rhodels exploited this concept (Mackey, 1978; 
Arino 8nd Kimmel, 1986), which has the disadvan- 
tage ofl not taking into account any interdependence 
betweelp regulation of cell number and maturation 
of indipidual cells. 

It sqems, however, probable that the maturation 
procesq is directly coupled with population regula- 
tion. Lpt us suppose that maturation means that the 
cell achuires a sufficient amount of a biochemical 
specie%. Cells which have enough of this substance 
leave groliferation. The regulatory mechanism may 
act in *e following way: If the number of prolifer- 
ating cklls decreases, the threshold level of the sub- 
stance required to leave proliferation is increased. 
Convedsely, if the number of cells increases, the 
threshdld level of the substance is decreased. These 
are the essential features of the model described 
before. 

The basic question is whether a regulation feed- 
back df this type could stabilize the number of 
prolifeqating stem cells and the distribution of the 
bioche#ical species in the population, under the 
influenee of external perturbations. In the language 

ematics, this is the question of stability 
Arino and Kimmel (1991) answer 

this question in the affirmative, in a local sense. 
The existence of a stable equilibrium depends on 
a parameter E, equal to the fraction of successful 
divisions. If this parameter is < 112, the stem-cell 
population becomes extinct. 

A common feature of many non-linear models 
is that the non-linearity is obtained by introducing 
dependence of some of the coefficients upon the 
total population. This frequently allows determining 
a sort of decoupled problem in terms of the total 
population and another variable corresponding to a 
structure-dependent density. First, the evolution of 
the total population can be investigated, frequently 
on its own. If a limit behavior of the total population 
can be derived from that study, then it frequently 
derives the behavior of the density. Thus, global 
behavior of the model can be obtained. 

Arino and Kimmel (1989) show that the total 
population satisfies an ODE. In other approaches, 
a retarded equation has to be considered (Arino and 
Mortabit, 1991). 

A recent example of a model with non-linearity 
depending upon the total population has been found 
(Mackey and Rudnicki. 1994). We provide a brief 
description of the model. The cell cycle is divided 
into two parts: a resting phase GO during which 
cells are aging and growing in size (more precisely, 
here, in maturity, a rather abstract unspecified char- 
acter associated with a variable with values in an 
interval [0, m F ] ,  mp < +m). and a proliferating 
phase during which replication of DNA and mito- 
sis take place. Right after division, cells go into the 
resting phase where they can stay from O to +m, 

depending upon the total population of resting cells. 
The flux of resting population (n) inside the prolif- 
erating compartment ( p )  is given by 

where ~ ( t )  is the total number of resting cells at 
all maturation levels, while Nit ,  m )  is the density of 
such cells with respect to the maturation variable. 

Interestingly, the original model in ( 1 2 ,  p )  can be 
somehow integrated to yield a system of equations 
in N and P (the density of proliferating cells with 
respect to the maturation variable). That system is a 



non-local PDE, the non-local terms being deviations 
both in time and the maturation variable. 

Under further restriction on the coefficients, a 
delay-differential equation, is obtained for N by 
which it is possible to determine the behavior of 
N first, then that of N and finally that of n and p. 

CELL-CYCLE KINETICS WITH 
SUPRAMITOTIC CONTROL 

This section is intended to present a model which 
incorporates a ht.0 subcycles description of the cell 
cycle, and which is developed by Kimmel and 
Arino (1991). The model is based on the so-called 
supramitotic regulation, i.e. decisions controlling 
growth of the cell are made not at the beginning of 
the cell-division cycle but a previous point and their 
impact is extended to the next decision point, which 
is located in the next division cycle. The period from 
one decision point to the next is called the 'growth 
control cycle'. In this model, the new growth-control 
cycle, is entered when the cell attains a threshold 
size. The threshold is. in general, a random variable, 
so the model allows for imprecise control. 

Another feature of the model is the presence 
of two types of cells. At the beginning of each 
growth-control cycle, cells may switch from one 
type to the other with given transition probabilities. 
This assumption is based on a theory of cell-cycle 
regulation for PPC3 cells formulated by Sennerstam 
and Stromberg (1988). The main ideas are that 
cells may switch from a ,fast to a slo+t- cell-cycle 
variant and back and that the decision is made in the 
preceding cell division cycle (supramitotic character 
of the regulation). 

To derive the model. consider cells of type 1 
(smaller) and of type 2 (larger) which may switch 
from type i to type j with a probability y,j at a size- 
control point between cell divisions, for example on 
the GUS phase boundary. Then they proceed to divi- 
sion, producing progeny of identical type. Therefore 
it is necessary to consider four variants of cell- 
division cycle ( 1 , 1 ) ,  (1,2), (2.1). (2,2), where (~ i .  j )  
denotes cells born as type i that switched to type j .  

It is assumed that the growth rate r is constant 
throughout the cell cycle and identical for both cell 
types. Daughter cells entering G1 at size y grow 
to a threshold size lr.,, which is a random variable 
with distribution density h, depending on cell type 
i. The support of lz, is a closed interval [LV,, . ~ t . , ~ ]  

the ends of which are the minimum and maximum 
threshold values, respectively. Then the cells begin 
DNA synthesis, that is, they enter the S-phase. 
Parameters of the model will be chosen in a way 
that excludes the possibility of a daughter cell being 
equal to, or larger than. the minimum threshold for 
DNA synthesis. In other words, it is guaranteed that 
the G I  phase is longer than 0. 

After leaving G1, cells progres5 through phases 
S. G2 and M towards division. Total duration of 
these phases is assumed to be equal to t. During this 
time cells are still growing at rate r. The division is 
unequal, modelled by a distribution density f (x. y) 
as described above. 

The dynamics of the model is described in terms 
of distribution densitiei of cell flow rates through 
various pointc of the cell cycle. First, n, ,( t ,  y) is the 
density of flow rate of the age 0 daughter cells into 
GI phase. for the type i cells that will switch to type 
j at the GlIS boundary. The interpretation is that 
n, ,  ( t .  y) d t d I' is equal to the number of these cells 
with sizes in the interval (J*. !,+d y) that entered GI 
in the time interval ( t ,  t + d t ) .  

Analogously, nz,,(r. n) is the density of flow rate 
of mother cells through division. These are cells 
that started as type i daughters and now are type 
j .  Finally qi,(t .  x) is the flow-rate density of daugh- 
ter cells descending from mothers described above, 
before they are assigned to the G1 phase of any of 
the four cell-division cycle types. 

The relationship between ni, and qij is described 
by the system of equations 

The principle of unequal division implies that the 
relationship between y,, and mi, i i  
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the distribution mij of the flow rate of 
can be found from a balance argument 

CombiIping equations (15), (16) and (17A we obtain 

a dominating eigenvalue determined as a solution 
of a characteristic equation and that the asymptotic 
behavior of the semigroup is determined by the dom- 
inating eigenvalue. This allows conclusion of AEG 
for this model. 

Kimmel and Arino (1991) make a comparison of 
the model with experimental data. Basic pedigree 
statistics, fl curves and generation time correlations 
are obtained from measurements available for the 
embryonic cells. The main biological conclusion 
which is consistent with these results is that switch- 
ing from one cell type to the other is a necessary 
but relatively infrequent event. 

where We have used the matrix-vector notation 
Remark 

The expression for the total number N,,(t)  of the 
(ij)-typb cells present at time t is derived in the 
followiIpg way. The density of cell flux into G1 
includiqg cells born with size c at time p that will 
enter S after reaching threshold size w,  is equal to 
h , (w)nI j (p ,  t). Population at time t includes cells 
born before t but not earlier than one cell-cycle 
duratioq before t ,  i.e. after t  - [t - (w - <)/r] .  
Eventut$ly 

where t4e upper bound wl, reflects the fact that only 
cells with size less than the minimum threshold size 
are allowed into G1, by hypothesis. 

This model is of independent mathematical inter- 
est. The analysis of asymptotic properties is accom- 
plished by defining and investigating an abstract 

p of positive linear operators in an appro- 
space. In brief, it is proved that the semi- 

compact, that its spectrum has 

The mechanism described by Kimmel and Arino 
(1991) for the switch is quite rudimentary. It is 
assumed that with a fixed probability, cells of a 
given type may either keep that type or switch to 
the other. This has the following consequence, with 
the notations used by Kimmel and Arino (1991). 

for t large enough. Thus, the dynamics can be 
reduced to the dynamics of cells not changing type. 
This ceases to be true if it is assumed that the pij 
depend on the size. In that case, the analysis made 
by Kimmel and Arino (1991) remains valid. 
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