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Blood cell production is one of the major limiting effects of cell-cycle-specific chemother- 
apy. By studying the effects of the drugs on a mathematical model of hematopoiesis, a 
better understanding of how to prevent over-reduction of circulating blood cells may be 
investigated. 

In this model we will use a delay-differential equation developed by Mackey and 
Glass (1977) to show acceptable chemotherapeutic doses (i.e. survival of the circulating 
blood cells) as a function of: the period which the drugs are administered: the strength 
of the dose; and the delay from initiation of blood cell production to its release into 
the blood stream. We then make qualitative comparisons to known effects of cell-cycle- 
specific chemotherapy on circulating blood cell elements. Finally, we also consider how 
the effects of hematopoietic growth factors alter the outcome of the therapy. 

Keywords: Chemotherapy, hematopoiesis, delay-differential equation, hematopoietic growth factor, 
cancer 

1 INTRODUCTION 

One of the major limiting effects of cell-cycle- 
specific chemotherapy is its negative effects on bone 
marrow. In fact, in many cases the maximum dose 
needed to eradicate the cancer cells will also lead 
to over-destruction of bone marrow tissue and ulti- 
mately death to the patient. Therefore, there is a need 
to better understand the growth kinetics of blood cell 
production (hematopoiesis) so that we may develop 
more effective cell-cycle-specific chemotherapeutic 
regimens that prevent over-destruction of bone mar- 
row tissue and thus circulating blood cells. 

There are a variety of models that describe the 
various aspects of cell-cycle-specific chemotherapy 
and its effects on normal tissue such as bone 
marrow tissue. A cellular automaton model for 
hematopoiesis was developed by Mehr and Agur 
(1992). This model has a spatial aspect in that near- 
est neighbor bone marrow cells influence each other 
to divide, differentiate, etc. Their model shows that 
hemeostasis can be maintained when drug admjnis- 
tration is fully periodic, but when time intervals 
between administrations are stochastic the stem- 
cell pool of bone masrow is rapidly depleted. In 
the works by Agur, Arnon and Schechter (1988) 
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and Cojocaru and Agur (1992), probabilistic mod- 
els were developed that describe methods of reduc- 
ing bone marrow damage. These models suggested 
that the chemotherapeutic drugs should be admin- 
istered at integer multiples of the mean cell-cycle 
length of the normal tissue. They suggest that this 
method will be successful since the cancer cells 
have a longer mean cell-cycle time, thus placing 
them in the more sensitive phase while the nor- 
mal tissue is not. Work similar to this has also 
been carried out by Webb (1990), and Webb (1995) 
who investigated resonance in the cell populations 
as a result of chemotherapy using age- and size- 
dependent differential equation models. A different 
approach was taken in Panetta and Adam (1995). 
Adam and Panetta (1995), and Panetta (1997). In 
these works we considered the effects of a resting 
phase (Go) in the cell-cycle (phase which the cell- 
cycle-specific chemotherapeutic drugs are not effec- 
tive, sometimes known as kinetic resistance) along 
with the effects of the drugs on normal tissue such 
as bone marrow. With these models, we calculated 
the optimal period in which to administer the drugs 
so that they would have the maximum effect on the 
cancerous tissue while preventing over-destruction 
of the normal tissue. We also briefly considered the 
effects hematopoietic growth factors (HGFs) have 
on the success of the chemotherapeutic regimen. 

Here, we will consider a deterministic approach 
which includes some specific kinetics such as a natu- 
ral fluctuation of mature circulating blood cells with 
a period of about 20 days. In particular, Mackey 
and Glass (1977) introduce two different first-order 
non-linear delay-differential equations which model 
the homogeneous population of mature circulating 
blood cells (see models in section 2) which pos- 
sesses these dynamics. The reasoning for consid- 
ering time delays in their model is that there is a 
time lag between when the bone marrow starts to 
produce blood cell elements and when the mature 
cells are released into the blood stream. This paper 
adds the effects of chemotherapy to Mackey and 
Glass's model and discusses both the mathematical 
and medical consequences. Chemotherapy affects all 
the different blood cell elements, each with varying 

degrees. But, so that we can clearly observe the 
dynamics of the model, without the complexity of 
multiple circulating blood cell element compart- 
ments, we will only consider one homogeneous 
compartment of circulating blood cell elements. In 
the process some intriguing results, some quali- 
tatively similar to Webb (1992a), Webb (1992b), 
Adam and Panetta (1995), and Panetta (1997) will 
be shown relating the period of treatment and the 

or time lag to the survival of the circu- 
lating blood cell elements. We will discuss what 
acceptable treatments (in terms of period) are such 
that the circulating blood cell levels will not be 
depleted. These mathematical results will also be 
qualitatively related to the medical literature such 
as: Klaassen. Wilke, Strumberg, Eberhardt, Korn 
and Seeber (1996), who suggest that shorter peri- 
ods of treatment can be more effective at reduc- 
ing the cancer; Wilson, Berg, Bryant, Wittes, Bates, 
Fojo, Steinberg, Goldspiel, Herdt, O'Shaughnessy, 
Balis and Chabner (1994) and Lopes, Adams, Pitts 
and Bhuyan (1993), who show increased duration 
of exposure to Taxol (a cell-cycle-specific dmg) 
leads to significant increase to cytotoxicity of the 
cancer; and Hainsworth and Greco (1994) and ten 
Bokkel Huinink. Eisenhauer and Swenerton (1993), 
who note that shorter infusion times of cell-cycle- 
specific drugs are less mylosuppressive. In this pro- 
cess, we will also consider the use of (HGFs) to 
improve the recovery of blood cell production after 
the chemotherapeutic dose. From this, we hope to 
have a better understanding of the effects of the 
chemotherapy on the circulating blood cell elements 
and thus a better understanding on how to administer 
cell-cycle-specific chemotherapeutic drugs. 

2 THE MODEL 

The basic models that Mackey and Glass (1977) 
introduced to describe a homogeneous population 
of mature circulating blood cells are: 
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FIGURE 1 Influx Term: Model 1 on left, Model 2 on right. 

where P(t) are mature circulating blood cells, t is 
the delay between the initiation of cellular produc- 
tion in the bone marrow and the release of mature 
cells into the blood, Po is the flux of cells into the 
blood, y is the rate of random cell loss, O is a 
saturation parameter, and n relates to the rate of sat- 
uration (see Figure 1). The main difference between 
these two models is in the first term on the right 
hand side of equations (1) and (2) which describes 
the influx of mature circulating blood cells from the 
bone marrow. In the first model (1), the first term 
is a monotonic decreasing function of P(t  - t) ;  that 
is, for very small P(t  - t )  we have the largest influx 
of new mature circulating blood cells (see Figure 1, 
left). While in the second model (2), the influx term 
is a single-humped function of P(t  - t) ;  that is, ini- 
tially there is little influx of new mature circulating 
blood cells but then the influx increases to some 
maximum from where is monotonically decreases 
after that point (see Figure 1, right). Note that an 
increase in n has the effect of narrowing the range 
of cellular influx and gives a faster change from 
large influx to small influx. 

As stated in Mackey and Glass (1977), some 
acceptable parameters for normal adult circulating 
granulocytes are: O = 1, y = 0.1, = 0.2, n = 10, 
and t = 6. The delay (parameter t) refers to the fact 
that it takes the bone marrow about 6 days from 
the time it is signaled to produce and then release 
new circulating blood cell elements. These values 
will lead to mild oscillations of circulating levels 

of granulocytes with period of about 20 days (see 
analysis in appendix A). For patients with chronic 
leukemia the delay is increased ( t  = 20) and we 
see a dramatic rise in the period (about 72 days) 
and larger periodic or aperiodic oscillations about 
the mean level. 

Glass and Mackey (1979) and Mackey and Mil- 
ton (1988) elaborate on the medical implications 
of these models to periodic hematological diseases 
while Gopalsamy, KulenoviC and Ladas (1990) dis- 
cuss the sufficient and necessary conditions for all 
positive solutions to oscillate about the steady states. 

To simplify the calculations of models (1) and (2) 
we will scale them using methods like those found 
in Murray (1990). That is, let 

along with 

in equations ( I )  and (2) respectively. The resulting 
equations (after dropping the *'s) are: 

These will be the models that we work with in this 
paper though we will mostly consider model (4). 
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2.1 Stability 

First, we will consider the stability of the equations 
without any chemotherapeutic effects. 

2.1.1 Instantaneous model 

When t = 0 the steady state of equation (3) is the 
solution to 

Xn + l + x - h = O  ( 5  

shown in Figure (2, left) for various h. The steady 
states to (4) are 

and are shown in Figure (2, right). In the case of 
equation (4), x, only exist for A > 1 in which case 
it is stable, and x ,  exist for all h and is stable for 
h < I and unstable for h > I .  Therefore, we can 
interpret this as there &l be a non-trivial mass of 
mature circulating blood cells if the growth rate is 
"big enough" or the saturation effects and decay 
rates are "small enough". 

2.1.2 Delay model 

Now, let us consider how the delay affects the 
stability of the equations without considering the 
effects of chemotherapy. 

First, consider model (4). The analysis for this 
model without chemotherapy can be followed from 
Murray (1990) and we will summarize that here. In 
the same manner as in the instantaneous case we will 
expand equation (4) about its non-zero equilibrium 
(x, = v), using the expansion 

we get the O(E) equation to be 

h hnx:xl (t - t )  
x1 (t) = - xl(t - t) - 

1 fx:' 
- xl (t) 

(1 +q2 

Defining 

we have 

We will look for solutions to equation (11) of 
the form 

X I  = eat (12) 

and determine when Re(w)  < 0 (i.e. when there is 
a stable solution). 

h h 

FIGURE 2 Instantaneous Bifurcation Diagram: x, vs. h. Left: equation 3; Right: equation 4 



Substituting equation (12) into equation (11) we 
obtain: 

a = AePaT - 1 (13) 

Let a = p + i w  and comparing the real and 
imaginary parts of a we get 

After some manipulation of equations (14) and (15) 
we find the bifurcation ( p  = 0) to be 

and for there to be a stable solution to model (4) 
( p  < 0) the condition becomes 

CHEMOTHERAPEUTIC AND HEMATOPOIESIS 213 

0 1 
1 5  2 2 5 3 3 5 

h h 

FIGURE 3 Bifurcation diagram: rc vs h. Left - model 3, Right - model 4. 
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FIGURE 4 r = 1, r = 6.  t = 20. 
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(see Figure 3, Right). If A > 1 then h < 1 and 
the steady state x,, is stable for any t. For JAJ < I 
the steady state x, is stable for any t. Finally, if 
A < -1 and the first condition in (17) holds then 
the steady state x, is stable otherwise the solution 
will be unstable and will lead to either periodic 
or quasiperiodic solutions (see Murray (1990) and 
Gopalsamy et a/ .  (1990)). The most important fact 
to note is that from condition (17), it can be seen 
that either an increase in t. A, or i z  can have an 
unstabilizing effect that will lead to either periodic 
or quasiperiodic solutions. (See Figure 4 for the 
effects of increasing t.) 

Similar results are also obtained with model (3). 
In this case the analysis is similar to the previ- 
ous case with the main difference being that A in 
equation (10) is of the form: 

where x, is the solution to equation (5). In this 
case the diagram showing the bifurcation from a 
stable equilibrium to periodic solutions is seen in 
Figure (3, Left). Note that this is similar to the 
bifurcation diagram in Figure (3, Right). Thus, for 
either model, an increase in t will lead to periodic 
or quasiperiodic solutions. 

3 CHEMOTHERAPEUTIC EFFECTS 

We model the effects of the chemotherapy on the 
peripheral blood cell elements by a reduction in the 
parameter h. As described in the previous section, h 

is a scaled parameter which for model (4) is of the 
form Bo/y (a ratio of cellular influx and decay) or 
net influx. Therefore, if the treatment has a direct 
effect on the peripheral blood cell elements then 
there is an increase in y (cell decay) and thus a 
decrease in the parameter h.  Also. if the treatment 
reduces the influx of new peripheral blood cell ele- 
ments due to destruction of bone marrow tissue then 

will decrease and again the parameter h will 

FIGURE 5 Step Function: $ ( t )  \ s  t .  $ ( t )  represents the pre- 
centape of blood cell iuflux reduction due to the chemotherapy 
relative to the non-treatment influx. 

decrease. So, the general effects of the chemother- 
apeutic treatment on the peripheral blood cell ele- 
ments is a decrease in the parameter h. 

Therefore, to add the effects of periodic drug 
treatment to the model we will alter the parameter h 
in equation (4) to be a periodic function of the form: 

where h is the net influx in the absence of treatment 
and @ ( t )  is a periodic step function with period 
T. Figure 5 shows one period of @(t)  where 0 4 
b 5 c _< 1 and 0 5 a 4 T. The parameter a 
represents the active phase of the treatment during 
which there is a b% decrease in circulating blood 
cell influx while c represents the percent reduction 
of influx during the remaining portion of the period. 
Therefore, b and c are proportional to the dose 
intensity, i.e. large doses of drug are modeled by 
smaller values of h and c while weaker doses are 
modeled by values of b and c near one. Also, if 
no treatment is given then b = c = 1. If the 
treatment is given continuously (or at least the drug 
concentration remains strong enough to actively 
destroy bone marrow during the full period) then 
b = c is the percent reduction of the scaled influx 
term h due to the treatment. 

To help compare various treatments we define the 
mean value of the periodic treatment function @(t) 
to be: 
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Finally, we will also consider how changes in 
the parameter r affect the stability of the circulating 
blood cell elements. 

3.1 Numerical Results 

We would like to define, in parameter space (dose/ 
intensity etc.), acceptable drug regimens for model 
(4). Here, since we are modelling circulating blood 
cells, an acceptable regimen is one where the cir- 
culating blood cells are not destroyed. More speci- 
fically, we would like to have the model solution 
above some threshold, though for simplicity we will 
just determine whether the steady-state solution is 
non-zero. To do this we will fix parameters that are 
known (or use as good an estimate as is known) 
and determine how different doses and delays affect 
the outcome of the positive steady state. The para- 
meters that are fixed are: /lo = 0.22, 1) = 0.1, 
n = 10, O = 1 which are similar to those consid- 
ered in Mackey and Glass (1977). The parameters 
for describing the drug effects are: a = T / 2 ,  b = 0, 
c = 1. Thus, the drug prevents influx of circulating 
blood cell elements for the first half of the period 

and normal influx of circulating blood cell elements 
takes place during the second half of the period. 
Note that for these parameter values (h ( t ) )  = 1.1 is 
near, and on the stable side of, the bifurcation for 
x, in the irzstmtmeous case. It should be observed 
that if ( h ( t ) )  << 1 then according to the stability ana- 
lysis the system will be unstable for any choice of 
T, r ,  and a and the circulating blood cell elements 
will decay to zero. Also note that as the period T 
is changed ( h ( t ) )  does not change, thus. the mean 
value of the influx is constant for any period. There- 
fore, varying the period of the dose does not alter the 
total dose of the treatment, just when it is given. In 
fact, in the instantaneous case (t = 0), we observe 
that varying the period ( T )  or the active phase (a) 
will not change the stability of the solution. We 
will see below, this is not the case when delays 
are present. 

3.1.1 The effects of varying the period 

First, we consider how the model predicts changes in 
the period T affect the outcome of the treatment with 
the delay fixed at t = 6. From Figure 6, it can be 

FIGURE 6 P(r )  vs t : T = 7, 12, 13. 20. There is circulating blood cell decay for T > 13 
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observed that as the period is increased, the positive 3.1.2 The effects of varying the delay 
periodic solution is altered from stable to unsta- 
ble (i.e. circulating blood cell elements decay), thus 
suggesting that treatments with shorter periods (but 
the same mean values as longer periods) could be 
better for circulating blood cells. This result is even 
more interesting when compared to results from 
Webb (1992a), Webb (1992b) and Panetta (1997). 
In modelling the cell-cycle-specific chemotherapeu- 
tic effects on proliferating and quiescent cell popu- 
lations of cancerous tissue, they showed that in 
some cases shorter periods are better at eliminating 
the cancerous tissue. Thus, the result in this paper 
and those in Webb and Panetta would indicate that 
shorter periods not only can be better for the cir- 
culating blood cells but also are more effective in 
destroying cancerous tissue. 

Next, we consider how the model predicts changes 
in the delay t affects the outcome of the treat- 
ment. This is important to consider for several 
reasons. First, it has been observed that in some 
cancers such as chronic granulocytic leukemia and 
chronic mylogenous leukemia this delay is signi- 
fically increased (Mackey and Glass (1977)). It has 
also been observed that hematopoietic growth fac- 
tors reduce this delay (see section 4). Finally, the 
chemotherapeutic treatment may increase the delay 
due to the treatment slowing down the cell-cycle 
time of the bone marrow. Also an increase in the 
delay can explain the chemotherapeutic induced 
periodic neutropenia discussed in Weldon, Kirk 
and Finlay (1974) and Mackey and Milton (1988). 
Holding the period fixed at T = 10, we find intervals 

t t 
FIGURE 7 P ( t )  vs t : r = 1. 2. 4. 5. 11, 12. 14. 15. The period is fixed in each graph T = 10. Note that as the delay increased. the 
circulating blood cell element5 alternate between regions of positive growth (0 5 r 5 1. 5 5 r 5 11. . .  .) and decay (2 5 r 5 4. 
12 5 r 5 14.. . .). 
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the above case between approximately t = 12 + 10 1 /' 
/ 

(between t = 2 and r = 4 and alco between 

and t = 14 + 10. 

t = 12 and t = 14) where the circulating blood cells 

3.1.3 The T vs t dynamics 

I 

For a more general picture of the dynamics of this 
system near (h ( t ) )  = 1 we numerically calculate 
the T - t bifurcation diagram showing where stable 
non-zero periodic solutions and unstable decaying 
solutions exist (see Figure 8). It should be noted that 
the bands of unstable decaying solution will keep 
repeating themselves every t + T along the t axis. 
This idea of unstable bands or "forbidden" zones 
in the T - t parameter space is similar to those 
described in the cell-cycle-specific chemotherapy 
model for cancerous tissue by Adam and Panetta 

1 Stable I 

decay (see Figure 7). It is also observed that these 
intervals in t of decaying circulating blood cells 
repeat themselves for each multlple of the period. 
For instance, there is another decaying interval for t- 200 

FIGURE 8 Bifurcation Diagram: T ~s r .  Region? marked sta- 
ble indicate stable circulating blood cell elements. Unstable 
regions are where the circulating blood cell element\ decay 
to zero. 

\ Unstable / /' I 
I //' 

- 

/ 

(1995). In that paper, unacceptable intervals in terms 
of dose and period with respect to cell-cycle-specific 
chemotherapy were also determined. 

Furthermore, it should be noted that as the delay 
is increased (due to reasons given in the previous 

FIGURE 9 P ( r )  v b  t :  Vary a. There is circulating blood cell decay for smaller values of relative to T. 
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section) the dynamics of the system become more 
complex. For example, with delays below t - 10 
there is just one interval where the circulating blood 
cells bifurcate from its positive periodic state to 
decaying, but if r is increased above this point there 
are multiple regions of growth and decay malung 
it much more difficult to determine an acceptable 
period. 

3.1.4 The effects of varying the active time 

Finally, we considered the case where the period T 
is fixed and we varied a (the active phase of the 
drug) and b (the percent reduction of circulating 
blood cell element influx due to the drugs) (see 
Figure 5) .  As a is varied we adjust b (with c = 1) 
such that (h ( t ) )  is constant, thus we compare equi- 
valent treatments. For example, if the chemothera- 
peutic treatment is very mylosuppressive then the 
influx rate will be small (b << 1) while if the 
treatment is less mylosuppressive the influx rate will 
be larger and b will be closer to one. Thus, for 
( h ( t ) )  = constant the parameter a is set smaller for 
b << 1 than for b closer to one. 

Here we observe that for fixed periods (T) we 
need a larger a with larger b (drug causes a smaller 
decrease in influx) to prevent total destruction of the 
circulating blood cells (see Figure 9). 

4 HEMATOPOIETIC GROWTH FACTORS 

The use of hematopoietic growth factors (HGFs) to 
accelerate hematopoiesis has become common prac- 
tice in cancer treatment in recent years (see Engel- 
hard and Brittinger (1994). Aglietta, Piacibello, 
Pasquino, Sanavio, Stacchini, Volta, Monteverde, 
Fubini, Morelli and Severino (1994), Hiddemann, 
Wormann, Reuter, Schleyer, Ziihlsdorf, Bockrnann 
and Biichner (1994), Wormann. Reuter, Zuhlsdorf, 
Biichner and Hiddemann (1994), Willemse, Boon- 
stra and de Vries (1994), Bhalla, Holladay, Arlin. 
Grant, Ibrado and Jasiok (1991), Demetri (1994) to 
list only a few). If given appropriately, they allow 

the clinician to adhere to the planned chemother- 
apeutic regimen or allow them to deliver higher 
doses of chemotherapy while preventing extreme 
detrimental effects to the bone marrow. In fact 
Lindley ( 1994) and Demetri (1 994) state that these 
HGFs allow larger doses of chemotherapy to be 
safely given because of the increased circulating 
leukocytes. Typically, HGFs are given to a patient 
after they receive a chemotherapeutic treatment 
to help reduce chemotherapeutic-induced febrile 
neutropenia. Therefore. we consider the effects of 
HGFs have on our models. 

Lindley (1994) observes that HGFs "accelerate 
hematopoiesis by expanding the mitotic pool of 
committed progenitor cells and shorting the period 
of time spent in the postmitotic pool from 5 to 
6 days down to 1 day". In terms of the model in this 
paper, a decrease in n (a stabilizing change) has the 
effect of expanding the mitotic pool and a decrease 
in the delay t (a stabilizing change) has the effect 
of shorting the period of time spent in the postmi- 
totic pool. In particular, this model shows, through 
changes in the parameters described above, how the 
use of HGFs can help in improving circulating blood 
cell recovery by seeing increased circulating blood 
cells and less oscillations. For example, if we con- 
sider that the HGFs reduce the parameter t then the 
period and amplitude of the oscillations of the circu- 
lating blood cells will be reduced or even eliminated 
(see Figure 4) which is a positive affect that allows 
the patient to receive more treatment sooner. Also, 
we observe from Figure 8 that as t is decreased, 
the system with chemotherapy becomes more stable, 
i.e. circulating blood cell elements are less likely to 
decay. 

Currently. clinicians are not clear on how to 
optimally schedule HGFs. Since there are some 
toxic side effects to HGFs and if given too soon 
after the chemotherapeutic treatment is stopped 
then there will be detrimental affects to the bone 
marrow, models are needed to help determine opti- 
mal usage of HGFs. In fact, it is commonly reco- 
mmended by some pharmaceutical companies that 
produce HGFs that they be given 24 hours post- 
chemotherapy while others suggest that a longer 
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waiting period is needed, e.g. "Because the nadir 
with most chemotherapeutic agents does not occur 
until 10 to 14 days after administration, the question 
of whether CSFs can be postponed until the neu- 
trophil count begins to decrease has been raised." 
(see Oncolink). One might ask, what is an acceptable 
period. This model cannot answer these questions, 
and more sophisticated models are needed (see the 
conclusions). 

5 CONCLUSIONS 

The model presented in this paper gives one method 
of explicitly determining the toxic effects of chemo- 
therapeutic drugs on circulating blood cells. To 
accomplish this, a mathematical model that was 
originally designed to describe the dynamics of the 
circulating blood cells is modified to also account 
for negative chemotherapeutic effects. 

This model, which shows some very con~plex 
dynamics readily observed in mature blood cells 
without the chemotherapeutic modifications, also 
describes some interesting and clinically relevant 
results when the chemotherapy is considered. These 
results include the following. (1) Shorter periods 
allow circulating blood cell elements to be main- 
tained while longer periods can cause reductions in 
the blood cells. This is complimentary to the mathe- 
matical results of Webb (1992b), Webb (1992a) and 
Panetta (1997) along with the clinical results by 
Klaassen et al. (1996), Lopes et al. (1993), and Wil- 
son et al. (1994) which show that shorter periods 
can be more effective against cancers. (2) Intervals 
or bands exist in the T - t parameter space where 
the drugs cause circulating blood cell decay which 
is similar to Adam and Panetta (1995). (3) Longer 
active phase a with a smaller reduction of influx 
due to treatment (b) are less detrimental to circu- 
lating blood cells. This is also seen mathematically 
in Panetta (1997) and clinically by Hainsworth and 
Greco (1994) and ten Bokkel Huinink et al. (1993) 
who show that for cell-cycle-specific drugs such as 
Paclitaxel short strong doses are less mylosuppre- 
ssive. For example, with a fixed period of 21 days, 

one day infusions are less mylosuppressive (i.e. 
larger b, thus larger a )  then 3 day infusions (smaller 
b, thus smaller a).  (4) Altering appropriate para- 
meters, related to the use of HGFs, has positive 
stabilizing effects on the model. 

Not only does this model show some interest- 
ing dynamics, it also poses the following ques- 
tions. I .) Are these dynamics clinically relevant? 
Due to the fact that clinicians have not considered 
the possibility of some of these dynamics (such as 
periodic fluctuations in circulating blood cell ele- 
ments) and because of the clinical impracticality of 
testing some of these results (for example, clini- 
cians cannot directly alter the delay like they can 
alter the period) the clinical relevance is in gen- 
eral not known. But, in some cases. general clinical 
observations have been made such as reduced or 
periodic fluctuating circulating blood cells due to 
chemotherapy and the fact that shorter periods can 
be better. 2.) What is a better protocol for deliver- 
ing HGFs? Currently it is recommended that they 
be given 24 hours post-chemotherapy, but this is 
not necessary correct. Some suggest a longer delay 
before the HGFs be used. To help answer this ques- 
tion some modifications to the model are needed. A 
more sophisticated two-compartment model describ- 
ing proliferating and quiescent cells in the bone 
marrow such as those by Mackey (1978) and Mac- 
Donald (1978) with the added terms to describe the 
effects of cell-cycle-specific chemotherapy might be 
able to help answer this question. This is because it 
would explicitly model the effects of the chemother- 
apy and HGFs on the bone marrow. Thus, by alter- 
ing when the HGFs are given, it could be determined 
which protocols would be effective. 3.) Finally, how 
should clinicians determine when the next dose 
should be given? Due to the oscillating nature of 
blood cell counts, only a few blood samples may not 
be enough to clearly show the big picture of how 
the chemotherapy is affecting the patient. Therefore, 
a blood cell count above some threshold may not 
be an appropriate measure of determining when the 
next dose should be given. Models such as the ones 
posed here can help in determining how to schedule 
cell-cycle-specific chemotherapy. 
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A PERIOD OF OSCILLATIONS NEAR 
THE BIFURCATION 

Here we will show how to obtain an estimate for the 
period of oscillations close to the bifurcation given 
in equation 16. To do this we will follow ideas given 
in Murray (1990). First, define 

where r, is defined in equation 16. Also, define w, 

as the value of w when t = t, and also note that 
LL = 0 at t = t,. Therefore, near the bifurcation 

Substituting equations (21, 22, 23) into (12) we get 
that the solution will oscillate with period 

to O(e). Note that 

(1 + t c  - W,2 t, )co, 
w1 = 

(1 - 7, + W ~ T , )  ' 
(25) 

In terms of the parameters listed in section (2) we 
see that to O(1) the period is about 20.67 days which 
is close to the actual period of 20 days. Note that in 
some cases it is useful to know the period in terms 
of the delay. That is, the period (24) is equivalent to 
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